3GPP TR 38.903 V16.6.0 (2020-12)

Technical Report

3rd Generation Partnership Project;

Technical Specification Group Radio Access Network;

NR;

Derivation of test tolerances and measurement uncertainty for

User Equipment (UE) conformance test cases (Release 16)

The present document has been developed within the 3rd Generation Partnership Project (3GPPTM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and Reports for implementation of the 3GPPTM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

5G

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© 2020, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC). All rights reserved.

UMTSTM is a Trade Mark of ETSI registered for the benefit of its members 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTETM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association

Contents

Foreword			
Intro	duction8		
1	Scope9		
2	References9		
3	Definitions, symbols and abbreviations10		
3.1	Definitions10		
3.2	Symbols10		
3.3	Abbreviations10		
4	General Principles		
4.1	Principle of Superposition11		
4.2	Sensitivity analysis		
4.3	Statistical combination of uncertainties11		
4.4	Correlation between uncertainties12		
4.4.1	Uncorrelated uncertainties12		
4.4.2	Positively correlated uncertainties12		
4.4.3	Negatively correlated uncertainties13		
4.4.4	Treatment of uncorrelated uncertainties14		
4.4.5	Treatment of positively correlated uncertainties with adverse effect14		
4.4.6	Treatment of positively correlated uncertainties with beneficial effect14		
4.4.7	Treatment of negatively correlated uncertainties14		
5	Determination of Test System Uncertainties14		
5.1	General14		
5.2	Uncertainty figures15		
6	Determination of Test Tolerances15		
6.1	General15		

Annex A: Derivation documents for test tolerance 20 A.1 Void. 20 A.2 Handling of common Test Tolerance topics for radiated test cases defined in TS 38.533. 20 A.2.1 Angles of Arrival. 20 A.2.1 Relevant core requirements. 20 A.2.1.2 Modelling of variation within spherical coverage directions. 21 A.2.1.3 Principles for Test Tolerance analysis. 21 A.2.2.1 Relevant core requirements. 21 A.2.2.2 UE Fine beams and Rough beams. 21 A.2.2.3 Principles for Test Tolerance analysis. 22 A.2.2.4 Modelling of Fine beams and Rough beams. 22 A.2.2.3 Principles for Test Tolerance analysis. 22 A.2.3.1 Relevant core requirements. 23 A.2.3.2 Calculation method. 23 A.2.3.3 Principles for Test Tolerance analysis. 24 A.2.4 Calculation method. 24 A.2.4.1 Relevant core requirements. 24 A.2.4.2 Calculation method. 24 A.2.4.3 Principles for Test Tolerance analysis. <t< th=""><th>7</th><th>Grouping of test cases defined in TS 38.521-4</th><th>15</th></t<>	7	Grouping of test cases defined in TS 38.521-4	15
A.1 Void 20 A.2 Handling of common Test Tolerance topics for radiated test cases defined in TS 38.533	8	Grouping of test cases defined in TS 38.533	16
A.2 Handling of common Test Tolerance topics for radiated test cases defined in TS 38.533	Anne	x A: Derivation documents for test tolerance	20
A.2.1 Angles of Arrival. 20 A.2.1.1 Relevant core requirements. 20 A.2.1.2 Modelling of variation within spherical coverage directions. 21 A.2.1.3 Principles for Test Tolerance analysis. 21 A.2.2 UE Fine beams and Rough beams. 21 A.2.2.1 Relevant core requirements. 21 A.2.2.2 Modelling of Fine beams and Rough beams. 22 A.2.2.3 Principles for Test Tolerance analysis. 22 A.2.2.3 Principles for Test Tolerance analysis. 22 A.2.3.1 Relevant core requirements. 23 A.2.3.2 Calculation method. 23 A.2.3.3 Principles for Test Tolerance analysis. 24 A.2.4 Calculation method. 24 A.2.4.1 Relevant core requirements. 24 A.2.4.2 Calculation method. 24 A.2.4.3 Principles for Test Tolerance analysis. 25 A.2.4.3 Principles for Test Tolerance analysis. 25 A.2.4.3 Calculation method. 24 A.2.4.4 Relevant core requirements. 25	A.1	Void	20
A.2.1.1 Relevant core requirements. .20 A.2.1.2 Modelling of variation within spherical coverage directions. .21 A.2.1.3 Principles for Test Tolerance analysis. .21 A.2.2 UE Fine beams and Rough beams. .21 A.2.2.1 Relevant core requirements. .21 A.2.2.2 Modelling of Fine beams and Rough beams. .22 A.2.2.3 Principles for Test Tolerance analysis. .22 A.2.3.1 Relevant core requirements. .23 A.2.3.2 Calculation method. .23 A.2.3.3 Principles for Test Tolerance analysis. .24 A.2.4 Calculation method. .23 A.2.3.3 Principles for Test Tolerance analysis. .24 A.2.4 Calculation method. .24 A.2.4.1 Relevant core requirements. .24 A.2.4.2 Calculation method. .24 A.2.4.3 Principles for Test Tolerance analysis. .25 A.2.4.2 Calculation method. .24 A.2.4.3 Principles for Test Tolerance analysis. .25 A.2.5.1 Relevant core requirements. .2	A.2	Handling of common Test Tolerance topics for radiated test cases defined in TS 38.533	20
A.2.1.2 Modelling of variation within spherical coverage directions. .21 A.2.1.3 Principles for Test Tolerance analysis .21 A.2.2 UE Fine beams and Rough beams. .21 A.2.2.1 Relevant core requirements. .21 A.2.2.2 Modelling of Fine beams and Rough beams. .22 A.2.2.3 Principles for Test Tolerance analysis. .22 A.2.3.1 Relevant core requirements. .23 A.2.3.2 Calculation method. .23 A.2.3.3 Principles for Test Tolerance analysis. .24 A.2.3.2 Calculation method. .23 A.2.3.3 Principles for Test Tolerance analysis. .24 A.2.4 Calculation of Es/Iot at UE baseband. .24 A.2.4.1 Relevant core requirements. .24 A.2.4.2 Calculation method. .25 A.2.4.3 Principles for Test Tolerance analysis. .25 A.2.4.2 Calculation method. .25 A.2.4.3 Principles for Test Tolerance analysis. .25 A.2.5.1 Relevant core requirements. .25 A.2.5.2 Calculation method.	A.2.1	Angles of Arrival	20
A.2.1.3Principles for Test Tolerance analysis21A.2.2UE Fine beams and Rough beams21A.2.2.1Relevant core requirements21A.2.2.2Modelling of Fine beams and Rough beams22A.2.2.3Principles for Test Tolerance analysis22A.2.3UE internal noise23A.2.3.1Relevant core requirements23A.2.3.2Calculation method23A.2.3.3Principles for Test Tolerance analysis24A.2.4.1Relevant core requirements24A.2.4.2Calculation of Es/Iot at UE baseband24A.2.4.3Principles for Test Tolerance analysis24A.2.4.4Relevant core requirements24A.2.4.5Calculation of Es/Iot at UE baseband24A.2.4.1Relevant core requirements25A.2.5Calculation method25A.2.5.1Relevant core requirements25A.2.5.2Calculation of Applied Io25A.2.5.3Principles for Test Tolerance analysis26A.2.5.3Principles for Test Tolerance analysis26A.2.6UE Reported RSRP and UE gain26A.2.6.1Relevant core requirements26	A.2.1.1	1 Relevant core requirements	20
A.2.2 UE Fine beams and Rough beams. 21 A.2.2.1 Relevant core requirements. 21 A.2.2.2 Modelling of Fine beams and Rough beams. 22 A.2.2.3 Principles for Test Tolerance analysis. 22 A.2.3.1 Relevant core requirements. 23 A.2.3.2 Calculation method. 23 A.2.3.3 Principles for Test Tolerance analysis. 24 A.2.4.2 Calculation method. 23 A.2.4.1 Relevant core requirements. 24 A.2.4.2 Calculation of Es/Iot at UE baseband. 24 A.2.4.2 Calculation method. 24 A.2.4.2 Calculation method. 24 A.2.4.1 Relevant core requirements. 24 A.2.4.2 Calculation method. 24 A.2.4.3 Principles for Test Tolerance analysis. 25 A.2.5 Calculation method. 25 A.2.5.1 Relevant core requirements. 25 A.2.5.2 Calculation method. 25 A.2.5.3 Principles for Test Tolerance analysis. 26 A.2.6 UE Reported RSRP and UE	A.2.1.2	2 Modelling of variation within spherical coverage directions	21
A.2.2.1 Relevant core requirements. 21 A.2.2.2 Modelling of Fine beams and Rough beams. 22 A.2.2.3 Principles for Test Tolerance analysis. 22 A.2.3 UE internal noise. 23 A.2.3.1 Relevant core requirements. 23 A.2.3.2 Calculation method. 23 A.2.3.3 Principles for Test Tolerance analysis. 24 A.2.4.2 Calculation of Es/Iot at UE baseband. 24 A.2.4.1 Relevant core requirements. 24 A.2.4.2 Calculation method. 24 A.2.4.2 Calculation method. 24 A.2.4.3 Principles for Test Tolerance analysis. 24 A.2.4.2 Calculation method. 24 A.2.4.3 Principles for Test Tolerance analysis. 25 A.2.5. Calculation method. 25 A.2.5.1 Relevant core requirements. 25 A.2.5.2 Calculation method. 25 A.2.5.3 Principles for Test Tolerance analysis. 26 A.2.6.1 Relevant core requirements. 26 A.2.6.1 Relevant cor	A.2.1.3	3 Principles for Test Tolerance analysis	21
A.2.2.2Modelling of Fine beams and Rough beams22A.2.3Principles for Test Tolerance analysis22A.2.3UE internal noise23A.2.3.1Relevant core requirements23A.2.3.2Calculation method23A.2.3.3Principles for Test Tolerance analysis24A.2.4Calculation of Es/Iot at UE baseband24A.2.4.1Relevant core requirements24A.2.4.2Calculation method24A.2.4.3Principles for Test Tolerance analysis24A.2.4.4Calculation of Es/Iot at UE baseband24A.2.4.2Calculation method24A.2.4.3Principles for Test Tolerance analysis25A.2.5Calculation method25A.2.5.1Relevant core requirements25A.2.5.2Calculation of Applied Io25A.2.5.3Principles for Test Tolerance analysis26A.2.5.3Principles for Test Tolerance analysis26A.2.6UE Reported RSRP and UE gain26A.2.6.1Relevant core requirements26	A.2.2	UE Fine beams and Rough beams	21
A.2.2.2Modelling of Fine beams and Rough beams22A.2.3Principles for Test Tolerance analysis22A.2.3UE internal noise23A.2.3.1Relevant core requirements23A.2.3.2Calculation method23A.2.3.3Principles for Test Tolerance analysis24A.2.4Calculation of Es/Iot at UE baseband24A.2.4.1Relevant core requirements24A.2.4.2Calculation method24A.2.4.3Principles for Test Tolerance analysis24A.2.4.4Calculation of Es/Iot at UE baseband24A.2.4.2Calculation method24A.2.4.3Principles for Test Tolerance analysis25A.2.5Calculation method25A.2.5.1Relevant core requirements25A.2.5.2Calculation of Applied Io25A.2.5.3Principles for Test Tolerance analysis26A.2.5.3Principles for Test Tolerance analysis26A.2.6UE Reported RSRP and UE gain26A.2.6.1Relevant core requirements26	A.2.2.1	1 Relevant core requirements	21
A.2.3UE internal noise	A.2.2.2		
A.2.3.1Relevant core requirements.23A.2.3.2Calculation method.23A.2.3.3Principles for Test Tolerance analysis.24A.2.4Calculation of Es/Iot at UE baseband.24A.2.4.1Relevant core requirements.24A.2.4.2Calculation method.24A.2.4.3Principles for Test Tolerance analysis.24A.2.4.3Principles for Test Tolerance analysis.25A.2.5Calculation of Applied Io.25A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.26A.2.6UE Reported RSRP and UE gain.26A.2.6.1Relevant core requirements.26	A.2.2.3	3 Principles for Test Tolerance analysis	22
A.2.3.2Calculation method.23A.2.3.3Principles for Test Tolerance analysis.24A.2.4Calculation of Es/Iot at UE baseband.24A.2.4.1Relevant core requirements.24A.2.4.2Calculation method.24A.2.4.3Principles for Test Tolerance analysis.25A.2.5Calculation of Applied Io.25A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.25A.2.5.4Calculation method.25A.2.5.5Calculation method.25A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.26A.2.6UE Reported RSRP and UE gain.26A.2.6.1Relevant core requirements.26	A.2.3	UE internal noise	23
A.2.3.2Calculation method.23A.2.3.3Principles for Test Tolerance analysis.24A.2.4Calculation of Es/Iot at UE baseband.24A.2.4.1Relevant core requirements.24A.2.4.2Calculation method.24A.2.4.3Principles for Test Tolerance analysis.25A.2.5Calculation of Applied Io.25A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.25A.2.5.4Calculation method.25A.2.5.5Calculation method.25A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.26A.2.6UE Reported RSRP and UE gain.26A.2.6.1Relevant core requirements.26	A.2.3.1	1 Relevant core requirements	23
A.2.3.3Principles for Test Tolerance analysis.24A.2.4Calculation of Es/Iot at UE baseband.24A.2.4.1Relevant core requirements.24A.2.4.2Calculation method.24A.2.4.3Principles for Test Tolerance analysis.25A.2.5Calculation of Applied Io.25A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.25A.2.5.4Calculation of Applied Io.25A.2.5.5Calculation method.25A.2.5.4Calculation method.25A.2.5.5Calculation method.25A.2.5.4Relevant core requirements.26A.2.6UE Reported RSRP and UE gain.26A.2.6.1Relevant core requirements.26	A.2.3.2		
A.2.4.1Relevant core requirements.24A.2.4.2Calculation method.24A.2.4.3Principles for Test Tolerance analysis.25A.2.5Calculation of Applied Io.25A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.26A.2.6UE Reported RSRP and UE gain.26A.2.6.1Relevant core requirements.26	A.2.3.3	3 Principles for Test Tolerance analysis	24
A.2.4.2Calculation method	A.2.4	Calculation of Es/Iot at UE baseband	24
A.2.4.3Principles for Test Tolerance analysis.25A.2.5Calculation of Applied Io.25A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.26A.2.6UE Reported RSRP and UE gain.26A.2.6.1Relevant core requirements.26	A.2.4.1	1 Relevant core requirements	24
A.2.5Calculation of Applied Io.25A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.26A.2.6UE Reported RSRP and UE gain.26A.2.6.1Relevant core requirements.26	A.2.4.2	2 Calculation method	24
A.2.5.1Relevant core requirements.25A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.26A.2.6UE Reported RSRP and UE gain.26A.2.6.1Relevant core requirements.26	A.2.4.3	3 Principles for Test Tolerance analysis	25
A.2.5.2Calculation method.25A.2.5.3Principles for Test Tolerance analysis.26A.2.6UE Reported RSRP and UE gain.26A.2.6.1Relevant core requirements.26	A.2.5	Calculation of Applied Io	25
A.2.5.3Principles for Test Tolerance analysis	A.2.5.1	1 Relevant core requirements	25
A.2.5.3Principles for Test Tolerance analysis	A.2.5.2	2 Calculation method	25
A.2.6 UE Reported RSRP and UE gain	A.2.5.3		
A.2.6.1 Relevant core requirements			
A.2.6.3 Relative RSRP, 2 levels on same cell, same Angle of Arrival			
A.2.6.4 Relative RSRP, 2 intra-frequency cells, same Angle of Arrival			

A.2.6.5	Relative RSRP, 2 inter-frequency cells, same Angle of Arrival	29
A.2.6.6	Relative RSRP, 2 cells, different Angles of Arrival	29
A.2.6.7	Principles for Test Tolerance analysis	30
A.2.7	Intra-frequency cells without AWGN, same Angle of Arrival	30
A.2.7.1	Test system	30
A.2.7.2	Calculation method for Es/Iot at UE baseband	30
A.2.7.3	Calculation method for Applied Io	31
A.2.7.4	Principles for Test Tolerance analysis	32
A.3 Te	st Tolerance analysis templates for radiated test cases awaiting completion	32
Annex B	8: Acceptable uncertainty of test system for test cases defined in TS 38.521-2 for radiative testing	.34
B.1 U	ncertainty budget calculation principle	.34
B.1.1	Uncertainty budget calculation principle for DFF	34
B.1.2	Uncertainty budget calculation principle for IFF	35
B.1.3	Uncertainty budget calculation principle for NFTF	35
B.2 M	easurement error contribution descriptions	.35
B.2 M B.2.1	easurement error contribution descriptions	
	-	35
B.2.1	Measurement error contribution descriptions for DFF	35 35
B.2.1 B.2.1.1	Measurement error contribution descriptions for DFF Positioning misalignment	35 35 35
B.2.1 B.2.1.1 B.2.1.2	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty	35 35 35 35
B.2.1 B.2.1.1 B.2.1.2 B.2.1.3	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty Quality of quiet zone	35 35 35 35 35
 B.2.1 B.2.1.1 B.2.1.2 B.2.1.3 B.2.1.4 	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty Quality of quiet zone Mismatch	35 35 35 35 35 37
 B.2.1 B.2.1.1 B.2.1.2 B.2.1.3 B.2.1.4 B.2.1.5 	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty Quality of quiet zone Mismatch Standing Wave Between the DUT and measurement antenna	35 35 35 35 35 37
 B.2.1 B.2.1.1 B.2.1.2 B.2.1.3 B.2.1.4 B.2.1.5 B.2.1.6 	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty Quality of quiet zone Mismatch Standing Wave Between the DUT and measurement antenna Uncertainty of the RF power measurement equipment	35 35 35 35 37 37 38
 B.2.1 B.2.1.1 B.2.1.2 B.2.1.3 B.2.1.4 B.2.1.5 B.2.1.6 B.2.1.7 	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty Quality of quiet zone Mismatch Standing Wave Between the DUT and measurement antenna Uncertainty of the RF power measurement equipment Phase curvature	35 35 35 35 37 37 38 38
 B.2.1 B.2.1.1 B.2.1.2 B.2.1.3 B.2.1.4 B.2.1.5 B.2.1.6 B.2.1.7 B.2.1.8 	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty Quality of quiet zone Mismatch Standing Wave Between the DUT and measurement antenna Uncertainty of the RF power measurement equipment Phase curvature Amplifier uncertainties	35 35 35 37 37 38 38 38
 B.2.1 B.2.1.1 B.2.1.2 B.2.1.3 B.2.1.4 B.2.1.5 B.2.1.6 B.2.1.7 B.2.1.8 B.2.1.9 	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty Quality of quiet zone Mismatch Standing Wave Between the DUT and measurement antenna Uncertainty of the RF power measurement equipment Phase curvature Amplifier uncertainties Random uncertainty	35 35 35 37 37 38 38 38 39
B.2.1.1 B.2.1.2 B.2.1.3 B.2.1.3 B.2.1.4 B.2.1.5 B.2.1.6 B.2.1.7 B.2.1.8 B.2.1.9 B.2.1.10	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty Quality of quiet zone Mismatch Standing Wave Between the DUT and measurement antenna Uncertainty of the RF power measurement equipment Phase curvature Amplifier uncertainties Random uncertainty Influence of the XPD	35 35 35 37 37 38 38 38 38 39 43
 B.2.1 B.2.1.1 B.2.1.2 B.2.1.3 B.2.1.4 B.2.1.5 B.2.1.6 B.2.1.7 B.2.1.8 B.2.1.9 B.2.1.10 B.2.1.11 	Measurement error contribution descriptions for DFF Positioning misalignment Measure distance uncertainty Quality of quiet zone Mismatch Standing Wave Between the DUT and measurement antenna Uncertainty of the RF power measurement equipment Phase curvature Amplifier uncertainties Random uncertainty Influence of the XPD Insertion loss Variation	35 35 35 37 37 37 38 38 38 39 43

B.2.1.15	Uncertainty of the absolute gain of the calibration antenna	43
B.2.1.16	Positioning and pointing misalignment between the reference antenna and the measurement antenna	43
B.2.1.17	gNB emulator uncertainty	43
B.2.1.18	Phase centre offset of calibration	44
B.2.1.19	Quality of quiet zone for calibration process	44
B.2.1.20	Standing wave between reference calibration antenna and measurement antenna	44
B.2.1.21	Influence of the calibration antenna feed cable (Flexing cables, adapters, attenuators, connector repeatability)	45
B.2.1.22	Influence of TRP measurement grid	45
B.2.1.23	Influence of beam peak search grid	45
B.2.1.24	Systematic error due to TRP calculation/quadrature	45
B.2.1.25	Multiple measurement antenna uncertainty	45
B.2.1.26	DUT repositioning	45
B.2.1.27	Influence of noise	45
B.2.1.28	Systematic error related to beam peak search	46
B.2.1.29	Influence of spherical coverage grid	46
B.2.1.30	Systematic error related to EIS spherical coverage	46
B.2.1.31	Misalignment of DUT due to change of DUT orientation	46
B.2.1.32	Additional Impact of Interferer ACLR	46
B.2.1.33	Modulated Interferer uncertainty	46
B.2.1.34	Influence of ETC on EIRP/EIS	46
B.2.2	Measurement error contribution descriptions for IFF	47
B.2.2.1	Positioning misalignment	47
B.2.2.2	Measure distance uncertainty	47
B.2.2.3	Quality of Quiet Zone	47
B.2.2.4	Mismatch	47
B.2.2.5	Standing wave between DUT and measurement antenna	47
B.2.2.6	Uncertainty of the RF power measurement equipment	47
B.2.2.7	Phase Curvature	47
B.2.2.8	Amplifier Uncertainties	47
B.2.2.9	Random uncertainty	47
B.2.2.10	Influence of XPD	47

8

B.2.2.11

Insertion Loss Variation	47
RF leakage (from measurement antenna to receiver/transmitter)	47

9

B.2.2.12	RF leakage (from measurement antenna to receiver/transmitter)	47
B.2.2.13	Misalignment of positioning system	48
B.2.2.14	Uncertainty of the Network Analyzer	48
B.2.2.15	Uncertainty of the absolute gain of the calibration antenna	48
B.2.2.16	Positioning and pointing misalignment between the reference antenna and the measurement antenna	48
B.2.2.17	gNB emulator uncertainty	48
B.2.2.18	Phase centre offset of calibration	48
B.2.2.19	Quality of the Quiet Zone for Calibration Process	48
B.2.2.20	Standing wave between reference calibration antenna and measurement antenna	48
B.2.2.21	Influence of the calibration antenna feed cable (Flexing cables, adapters, attenuators, connector repeatability)	48
B.2.2.22	Influence of TRP measurement grid	48
B.2.2.23	Influence of beam peak search grid	48
B.2.2.24	Systematic error due to TRP calculation/quadrature	48
B.2.2.25	Multiple measurement antenna uncertainty	48
B.2.2.26	DUT repositioning	49
B.2.2.27	Influence of noise	49
B.2.2.28	Systematic error related to beam peak search	49
B.2.2.29	Influence of spherical coverage grid	49
B.2.2.30	Systematic error related to EIS spherical coverage	49
B.2.2.31	Misalignment of DUT due to change of DUT orientation	49
B.2.2.32	Additional Impact of Interferer ACLR	49
B.2.2.33	Modulated Interferer uncertainty	49
B.2.2.34	Influence of ETC on EIRP/EIS	49
B.2.3	Measurement error contribution descriptions for NFTF	49
B.2.3.1	Axes Alignment	49
B.2.3.2	Measurement Distance uncertainty	49
B.2.3.3	Quality of the Quiet Zone	50
B.2.3.4	Mismatch	50
B.2.3.5	Multiple Reflections: Coupling Measurement Antenna and DUT	50
B.2.3.6	Uncertainty of the RF power measurement equipment	50

B.2.3.7	Phase curvature	50
B.2.3.8	Amplifier uncertainties	50
B.2.3.9	Random uncertainty	50
B.2.3.10	D Influence of the XPD	50
B.2.3.11	NF to FF truncation	50
B.2.3.12	2 Probe Polarization Amplitude and Phase	50
B.2.3.13	Probe Array Uniformity (for multi-probe systems only)	50
B.2.3.14	4 Uncertainty of the Network Analyzer	51
B.2.3.15	5 Uncertainty of the absolute gain of the calibration antenna	51
B.2.3.16	5 Phase Recovery Non-Linearity over signal bandwidth	51
B.2.3.17	7 Probe Pattern Effect	51
B.2.3.18	B Phase centre offset of calibration	51
B.2.3.19	9 Quality of the Quiet Zone for Calibration Process	51
B.2.3.20) Phase Drift and Noise	51
B.2.3.21	1 Mismatch in the connection of the calibration antenna	51
B.2.3.22	2 Influence of TRP measurement grid	51
B.2.3.23	3 51	
B.2.3.24	4 51	
B.2.3.25	5 Leakage and Crosstalk	51
B.2.3.26	5 Systematic error due to TRP calculation/quadrature	52
B.2.3.27	7 Multiple measurement antenna uncertainty	52
B.2.3.28	3 DUT repositioning	52
B.2.3.29	9 Influence of noise	52
B.3 U	JE maximum output power	52
B.3.1	Uncertainty budget format and assessment for DFF	
B.3.2	Uncertainty budget format and assessment for IFF	
B.3.3	Uncertainty budget format and assessment for NFTF	
D 4 I		
	UE maximum output power for modulation / channel bandwidth	
B.4.1	Uncertainty budget format and assessment for DFF	
B.4.2	Uncertainty budget format and assessment for IFF	
B.4.3	Uncertainty budget format and assessment for NFTF	70

B.5 to	o B6	
B.7	Minimum Output power	70
B.7.1	Uncertainty budget format and assessment for DFF	71
B.7.2	Uncertainty budget format and assessment for IFF	74
B.8	Transmit OFF power	
B.8.1	Uncertainty budget format and assessment for DFF	80
B.8.2	Uncertainty budget format and assessment for IFF	82
B.9	86	
B.10	Frequency error	86
B.10.1	1 Uncertainty budget format and assessment for DFF	86
B.10.2	2 Uncertainty budget format and assessment for IFF	86
B.11 t	to B.14	87
B.15	Occupied bandwidth	87
B.15.1	1 Uncertainty budget format and assessment for DFF	
B.15.2	2 Uncertainty budget format and assessment for IFF	87
B.16	Spectrum emission mask	87
B.16.1	1 Uncertainty budget format and assessment for DFF	
B.16.2	2 Uncertainty budget format and assessment for IFF	91
B.17	Adjacent Channel Leakage Ratio	95
B.17.1	1 Uncertainty budget format and assessment for DFF	96
B.17.2	2 Uncertainty budget format and assessment for IFF	99
B.18	Spurious emissions	104
B.18.1	1 Uncertainty budget format and assessment for DFF	
B.18.2	2 Uncertainty budget format and assessment for IFF	110
B.18.3	3 Uncertainty budget format and assessment for NFTF	132
B.19	Reference Sensitivity	132
B.19.1	1 Uncertainty budget format and assessment for DFF	133
B.19.2	2 Uncertainty budget format and assessment for IFF	133

B.21 A	djacent Channel Selectivity	140	
B.21.1	Uncertainty budget format and assessment for DFF	.140	
B.21.2	Uncertainty budget format and assessment for IFF	.140	
B.22 I	n-Band Blocking	141	
B.22.1	Uncertainty budget format and assessment for DFF	.141	
B.22.2	Uncertainty budget format and assessment for IFF	.141	
B.23 1	42		
B.24 1	42		
B.25 F	eceiver spurious emissions	142	
B.25.1	Uncertainty budget format and assessment for DFF	.143	
B.25.2	Uncertainty budget format and assessment for IFF	.146	
Annex	Annex C: Acceptable uncertainty of test system for test cases defined in TS 38.521-3 for radiative testing		
Annex	D: Acceptable uncertainty of test system for test cases defined in TS 38.521-4 for radiative testing	168	
	• • • •		
	testing	174	
D.1 U	testing	174 .174	
D.1 U D.1.1	testing Incertainty budget calculation principle Uncertainty budget calculation principle for DNF	174 .174 .174	
D.1 U D.1.1 D.1.2 D.1.3	testing Incertainty budget calculation principle Uncertainty budget calculation principle for DNF Uncertainty budget calculation principle for DFF	174 .174 .174 .174	
D.1 U D.1.1 D.1.2 D.1.3	testing Incertainty budget calculation principle Uncertainty budget calculation principle for DNF Uncertainty budget calculation principle for DFF Uncertainty budget calculation principle for IFF	174 .174 .174 .174 174	
D.1 U D.1.1 D.1.2 D.1.3 D.2 M	testing Uncertainty budget calculation principle for DNF Uncertainty budget calculation principle for DFF Uncertainty budget calculation principle for IFF Uncertainty budget calculation principle for IFF	174 .174 .174 .174 174 .174	
D.1 U D.1.1 D.1.2 D.1.3 D.2 N D.2.1	testing Uncertainty budget calculation principle for DNF Uncertainty budget calculation principle for DFF Uncertainty budget calculation principle for DFF Uncertainty budget calculation principle for IFF Measurement error contribution descriptions Measurement error contribution descriptions for DNF	174 .174 .174 .174 174 .174 .174	
D.1 U D.1.1 D.1.2 D.1.3 D.2 M D.2.1 D.2.1.1	testing Incertainty budget calculation principle Uncertainty budget calculation principle for DNF Uncertainty budget calculation principle for DFF Uncertainty budget calculation principle for IFF Measurement error contribution descriptions Measurement error contribution descriptions for DNF gNB emulator SNR uncertainty	174 .174 .174 .174 .174 .174 .174	
D.1 U D.1.1 D.1.2 D.1.3 D.2 N D.2.1 D.2.1.1 D.2.1.2	testing Incertainty budget calculation principle Uncertainty budget calculation principle for DNF Uncertainty budget calculation principle for DFF Uncertainty budget calculation principle for IFF Incertainty budget calculation principle for IFF Measurement error contribution descriptions Measurement error contribution descriptions for DNF gNB emulator SNR uncertainty gNB emulator Downlink EVM	174 .174 .174 .174 .174 .174 .174 .175	
D.1 U D.1.1 D.1.2 D.1.3 D.2 M D.2.1 D.2.1.1 D.2.1.2 D.2.1.3	testing Uncertainty budget calculation principle for DNF Uncertainty budget calculation principle for DFF Uncertainty budget calculation principle for IFF Uncertainty budget calculation principle for IFF Measurement error contribution descriptions Measurement error contribution descriptions for DNF gNB emulator SNR uncertainty gNB emulator Downlink EVM gNB emulator fading model impairments	174 .174 .174 .174 .174 .174 .174 .175 .175	
D.1 U D.1.1 D.1.2 D.1.3 D.2 N D.2.1 D.2.1.1 D.2.1.2 D.2.1.3 D.2.2	testing Incertainty budget calculation principle for DNF Uncertainty budget calculation principle for DFF Uncertainty budget calculation principle for IFF Uncertainty budget calculation principle for IFF Measurement error contribution descriptions Measurement error contribution descriptions for DNF gNB emulator SNR uncertainty gNB emulator Downlink EVM gNB emulator fading model impairments Measurement error contribution descriptions for DFF	174 .174 .174 .174 .174 .174 .174 .175 .175 .175	

Release	16 13 3G	GPP TR 38.903 V16.6.0 (2020-12)
D.2.3	Measurement error contribution descriptions for IFF	
D.2.3.1	gNB emulator SNR uncertainty	
D.2.3.2	gNB emulator Downlink EVM	
D.2.3.3	gNB emulator fading model impairments	
Annex B	E: Acceptable uncertainty of test system for test cases defined in TS	•
E.1 U	ncertainty budget calculation principle	
E.1.1	Uncertainty budget calculation principle for DFF	
E.1.2	Uncertainty budget calculation principle for IFF	
E.2 M	leasurement error contribution descriptions	
E.2.1	Measurement error contribution descriptions for DFF	
E.2.1.1	gNB emulator SNR uncertainty	
E.2.1.2	gNB emulator Downlink EVM	
E.2.1.3	gNB emulator fading model impairments	
E.2.2	Measurement error contribution descriptions for IFF	
E.2.2.1	gNB emulator SNR uncertainty	
E.2.2.2	gNB emulator Downlink EVM	
E.2.2.3	gNB emulator fading model impairments	
E.3 U	ncertainty assessment for RRM MU quantities	
E.3.1	Uncertainty assessment for DL AWGN absolute power or wanted DL signal	absolute power177
E.3.1.1	Uncertainty budget format and assessment for DFF test setup	
E.3.1.2	Uncertainty budget format and assessment for Simplified DFF test setup.	
E.3.1.3	Uncertainty budget format and assessment for IFF test setup	
E.3.1.4	Uncertainty budget format and assessment for Enhanced IFF test setup	
E.3.1.5	Uncertainty budget format and assessment for IFF+DFF Hybrid test setu	p184
E.3.2	Uncertainty assessment for DL applied SNR	
E.3.3	Uncertainty assessment for DL Fading profile uncertainty	
E.3.4	Uncertainty assessment for DL AWGN and signal flatness	
E.3.5	Uncertainty assessment for UL absolute power measurement	
E.3.6	Uncertainty assessment for UL relative power measurement	
E.3.7	Uncertainty assessment for UL signal transmit timing relative to DL	

Annex F	: Change history	
E.3.8	Uncertainty assessment for Relative transmit timing accuracy during UE timing adjustment	

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

15

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

FFS

1 Scope

The present document specifies a general method used to derive Measurement Uncertainties and Test Tolerances for UE conformance tests. The acceptable uncertainties for each test case are documented and establish a system for relating the Test Tolerances to the measurement uncertainties of the Test System.

For UE radio transmitting and reception tests, only FR2 is considered in this document. For UE RRM and Demodulation tests, both FR1 and FR2 are considered in this document.

The test cases which have been analysed to determine Test Tolerances are included as .zip files.

The present document is applicable from Release 15 up to the release indicated on the front page of the present Terminal conformance specifications.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TR 36.903: "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Derivation of test tolerances for Radio Resource Management (RRM) conformance tests".
- [3] 3GPP TS 36.904: "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Derivation of test tolerances for User Equipment (UE) radio reception conformance tests".
- [4] ETSI ETR 273-1-2: "Improvement of radiated methods of measurement (using test sites) and evaluation of the corresponding measurement uncertainties; Part 1: Uncertainties in the measurement of mobile radio equipment characteristics; Sub-part 2: Examples and annexes".
- [5] 3GPP TS 36.521-1: "User Equipment (UE) conformance specification, Radio transmission and reception Part 1: conformance testing".
- [6] 3GPP TS 38.521-1: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone".
- [7] 3GPP TS 38.521-2: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone".
- [8] 3GPP TS 38.521-3: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: NR interworking between NR range1 + NR range2; and between NR and LTE".

Release 16	17	3GPP TR 38.903 V16.6.0 (2020-12)
[9]	3GPP TS 38.521-4: "NR; User Equipment (UE) conform and reception; Part 4: Performance requirements".	ance specification; Radio transmission
[10]	3GPP TS 38.533: "NR; User Equipment (UE) conforman Management (RRM)".	ce specification; Radio Resource
[11]	ETSI TR 102 273-1-1 V1.2.1 (2001-12): "Electromagnet Matters (ERM); Improvement on Radiated Methods of M evaluation of the corresponding measurement uncertainti measurement of mobile radio equipment characteristics;	feasurement (using test site) and es; Part 1: Uncertainties in the
[12]	3GPP TR 25.914: "Measurement of Radio Performances	for UMTS terminals in speech mode".
[13]	3GPP TR 38.810: "Study on test methods for New Radio	".
[14]	CTIA OTA Test Plan version 3.7, https://www.ctia.org/.	
[15]	3GPP TS 36.521-3: "User Equipment (UE) conformance reception Part 3: Radio Resource Management (RRM) co	-
[16]	3GPP TS 38.101-2: "User Equipment (UE) radio transmi Standalone"	ssion and reception Part 2: Range 2
[17]	3GPP TS 38.133: "Requirements for support of radio reso	ource management"
[18]	3GPP TS 38.508-1: "5GS; User Equipment (UE) conform environment"	nance specification; Part 1: Common test

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] apply.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

D DUT radiating aperture

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

BW	Bandwidth
CA	Carrier Aggregation
DFF	Direct Far Field
DUT	Device Under Test
EIS	Effective Isotropic Sensitivity
EIRP	Effective (or equivalent) isotropic radiated power
EVM	Error Vector Magnitude
FF	Far Field

FR1	Frequency Range 1
FR2	Frequency Range 2
FWA	Fixed Wireless Access
IFF	Indirect Far Field
MBW	Maximum Bandwidth
MU	Measurement Uncertainty
NFTF	Near Field To Far-field
NR	New Radio
OTA	Over The Air
SNR	Signal-to-Noise Ratio
TRP	Total Radiated Power
UE	User Equipment

4 General Principles

4.1 Principle of Superposition

For multi-cell tests there are several cells each generating various Physical channels. In general cells are combined along with AWGN, so the signal and noise seen by the UE may be determined by more than one cell.

Since several cells may contribute towards the overall power applied to the UE, a number of test system uncertainties affect the signal and noise seen by the UE. The aim of the superposition method is to vary each controllable parameter of the test system separately, and to establish its effect on the critical parameters as seen by the UE receiver. The superposition principle then allows the effect of each test system uncertainty to be added, to calculate the overall effect.

The contributing test system uncertainties shall form a minimum set for the superposition principle to be applicable.

4.2 Sensitivity analysis

A change in any one channel level or channel ratio generated at source does not necessarily have a 1:1 effect at the UE. The effect of each controllable parameter of the test system on the critical parameters as seen by the UE receiver shall therefore be established. As a consequence of the sensitivity scaling factors not necessarily being unity, the test system uncertainties cannot be directly applied as test tolerances to the critical parameters as seen by the UE.

EXAMPLE: In many of the tests described, the Ês / I_{ot} is one of the critical parameters at the UE. Scaling factors are used to model the sensitivity of the Ês / I_{ot} to each test system uncertainty. When the scaling factors have been determined, the superposition principle then allows the effect of each test system uncertainty to be added, to give the overall variability in the critical parameters as seen at the UE.

There are often constraints on several parameters at the UE. The aim of the sensitivity analysis, together with the acceptable test system uncertainties, is to ensure that the variability in each of these parameters is controlled within the limits necessary for the specification to apply. The test has then been conducted under valid conditions.

4.3 Statistical combination of uncertainties

The acceptable uncertainties of the test system are specified as the measurement uncertainty tolerance interval for a specific measurement that contains 95 % of the performance of a population of test equipment. In the RRM and UE radio transmission and reception conformance tests covered by the present document, the Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, with an uncertainty not exceeding the specified values.

The method given in the present document combines the acceptable uncertainties of the test system, to give the overall variability in the critical parameters as seen at the UE. Since the process does not add any new uncertainties, the method of combination should be chosen to maintain the same tolerance interval for the combined uncertainty as is already specified for the contributing test system uncertainties.

The basic principle for combining uncertainties is in accordance with ETR 273-1-2 [4]. In summary, the process requires 3 steps:

- a) Express the value of each contributing uncertainty as a one standard deviation figure, from knowledge of its numeric value and its distribution.
- b) Combine all the one standard deviation figures as root-sum-squares, to give the one standard deviation value for the combined uncertainty.
- c) Expand the combined uncertainty by a coverage factor, according to the tolerance interval required.

Provided that the contributing uncertainties have already been obtained using this method, using a coverage factor of 2, further stages of combination can be achieved by performing step b) alone, since steps a) and c) simply divide by 2 and multiply by 2 respectively.

The root-sum-squares method is therefore used to maintain the same tolerance interval for the combined uncertainty as is already specified for the contributing test system uncertainties. In some cases where correlation between contributing uncertainties has an adverse effect, the method is modified in accordance with clause 4.4.5 of the present document.

In each analysis, the uncertainties are assumed to be uncorrelated, and are added result root-sum-square unless otherwise stated.

The combination of uncertainties is performed using dB values for simplicity. It has been shown that using dB uncertainty values gives a slightly worse combined uncertainty result than using linear values for the uncertainties. The analysis method therefore errs on the safe side.

4.4 Correlation between uncertainties

The statistical (root-sum-square) addition of uncertainties is based on the assumption that the uncertainties are independent of each other. For realisable test systems, the uncertainties may not be fully independent. The validity of the method used to add uncertainties depends on both the type of correlation and on the way in which the uncertainties affect the test requirements.

Clauses 4.4.1 to 4.4.3 give examples to illustrate different types of correlation.

Clauses 4.4.4 to 4.4.7 show how the scenarios applicable to multi-cell RRM tests are treated.

4.4.1 Uncorrelated uncertainties

The graph shows an example of two test system uncertainties, A and B, which affect a test requirement. Each sample from a population of test systems has a specific value of error in parameter A, and a specific value of error in parameter B. Each dot on the graph represents a sample from a population of test systems, and is plotted according to its error values for parameters A and B.

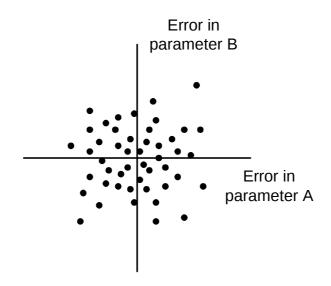
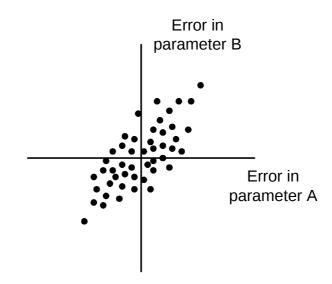




Figure 4.4.1-1: Example of two test system uncertainties affecting a test requirement

It can be seen that a positive value of error in parameter A, for example, is equally likely to occur with either a positive or a negative value of error in parameter B. This is expected when two parameters are uncorrelated, such as two uncertainties which arise from different and unrelated parts of the test system.

4.4.2 Positively correlated uncertainties

The graph shows an example of two test system uncertainties, A and B, which affect a test requirement. Each sample from a population of test systems has a specific value of error in parameter A, and a specific value of error in parameter B. Each dot on the graph represents a sample from a population of test systems, and is plotted according to its error values for parameters A and B.

21

It can be seen that a positive value of error in parameter A, for example, is more likely to occur with a positive value of error in parameter B and less likely to occur with a negative value of error in parameter B. This can occur when the two uncertainties arise from similar parts of the test system, or when one component of the uncertainty affects both parameters in a similar way.

In an extreme case, if the error in parameter A and the error in parameter B came from the same sources of uncertainty, and no others, the dots would lie on a straight line of slope +1.

4.4.3 Negatively correlated uncertainties

The graph shows an example of two test system uncertainties, A and B, which affect a test condition. Each sample from a population of test systems has a specific value of error in parameter A, and a specific value of error in parameter B. Each dot on the graph represents a sample from a population of test systems, and is plotted according to its error values for parameters A and B.

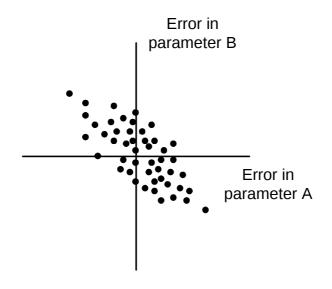


Figure 4.4.3-1: Example of two test system uncertainties affecting a test condition

It can be seen that a positive value of error in parameter A, for example, is more likely to occur with a negative value of error in parameter B and less likely to occur with a positive value of error in parameter B. This effect can theoretically occur, and is included for completeness, but is unlikely in a practical test system.

4.4.4 Treatment of uncorrelated uncertainties

If two uncertainties are uncorrelated, they are added statistically in the analysis. Provided that each uncertainty is already expressed as an expanded uncertainty with coverage factor 2, the contributing uncertainties are added root-sum-squares to give a combined uncertainty which also has coverage factor 2, and the 95% tolerance interval is maintained.

This is the default assumption.

4.4.5 Treatment of positively correlated uncertainties with adverse effect

If two test system uncertainties are positively correlated, and if they affect the value of a critical parameter in the same direction, the combined effect may be greater than predicted by adding the contributing uncertainties root-sum-squares.

In this scenario the two uncertainties are added worst-case in the analysis. Provided that each uncertainty is already expressed as an expanded uncertainty with coverage factor 2, the combined uncertainty will cover a 95% tolerance interval even when the two contributing uncertainties are fully correlated. If the two contributing uncertainties are less than fully correlated, the combined uncertainty will cover a tolerance interval greater than 95%.

4.4.6 Treatment of positively correlated uncertainties with beneficial effect

If two test system uncertainties are positively correlated, and if they affect the value of a critical parameter in opposite directions, the combined effect will be less than predicted by adding the contributing uncertainties root-sum-squares.

In this scenario the two uncertainties are added statistically in the analysis. Provided that each uncertainty is already expressed as an expanded uncertainty with coverage factor 2, the combined uncertainty will cover a 95% tolerance interval when the two contributing uncertainties are uncorrelated. If the two contributing uncertainties are positively correlated, the combined uncertainty will cover a tolerance interval greater than 95%.

4.4.7 Treatment of negatively correlated uncertainties

Negatively correlated uncertainties are excluded by the assumptions. This has been agreed as an acceptable restriction on practical test systems, as the mechanisms which produce correlation generally arise from similarities between two parts of the test system, and therefore produce positive correlation.

5 Determination of Test System Uncertainties

5.1 General

The uncertainty of a test system when making measurements reduces the ability of the test system to distinguish between conformant and non-conformant test subjects. The aim is therefore to minimise uncertainty, subject to a number of practical constraints:

- a) A vendor's test system should be reproducible in the required quantities.
- b) A choice of test systems should be available from different vendors.
- c) The uncertainties should allow reasonable freedom of test system implementation
- d) The test system can be run automatically
- e) The test system may include several radio access technologies
- f) It should be possible to maintain calibration of deployed test systems over reasonable spans of time and environmental conditions

In practice therefore within 3GPP the acceptable uncertainty of the test system is the smallest value that can be agreed between the test system vendors represented, consistent with the above constraints. The uncertainty will not therefore be as low as could be achieved, for example, by a national standards laboratory.

5.2 Uncertainty figures

The actual figures for the acceptable uncertainty of a test system are defined in Annex F of 38.521-1, Annex F of 38.521-2, Annex F of 38.521-3, Annex F of TS 38.521-4 and Annex F of TS 38.533. To avoid maintenance issues with

figures in separate specifications, the uncertainties are not formally defined within the present document, but informative guidelines are provided in Annex B to Annex E of the present document.

6 Determination of Test Tolerances

6.1 General

The general principles given in the present document are applied to each test case, according to the applicable uncertainties and requirements to obtain a correct verdict.

The test cases which have been analysed to determine Test Tolerances are included the present document as .zip files. The name of the zip file indicates the specification and the test cases covered.

Annex A gives the rationale for their inclusion.

7 Grouping of test cases defined in TS 38.521-4

Editor's note: intended to capture grouping of demodulation test cases.

8

Grouping of test cases defined in TS 38.533

Table 8-1: Grouping of FR1 test cases defined in Clauses 4, 6 and 8 of TS 38.533

Group	Test Case	.zip file name	Comments
	Numbers	• • • •	
SCell_Activation_01	4.5.3.1	"38.533	"2 Inter Frequency
	4.5.3.2	4.5.3.1+4.5.3.2+6.5.3.1+6.5.3.2	NR Cells,
	4.5.3.3	TT.zip"	3 time periods,
	4.0.0.0	1.2.0	Various number of
	6.5.3.1		sub-tests,
	6.5.3.2		No fading"
	6.5.3.3	#20 500	"O listing Fing music and
Intra_Freq_Meas_01	4.6.1.1	"38.533	"2 Intra Frequency
	4.6.1.2	4.6.1.1+4.6.1.2+4.6.1.3+4.6.1.4	NR Cells,
	4.6.1.3	TT.zip"	2 time periods,
	4.6.1.4		Various number of
	4.6.1.5		sub-tests,
	4.6.1.6		No fading"
	6.6.1.1		
	6.6.1.2		
	6.6.1.3		
	6.6.1.4		
	6.6.1.5		
Inter Fred Mass 01	6.6.1.6		"O later Erecuency
Inter_Freq_Meas_01	4.6.2.1	"4.6.2.1+4.6.2.2+4.6.2.5+4.6.2.6	"2 Inter Frequency
	4.6.2.2	TT.zip"	NR Cells,
	4.6.2.5		2 time periods,
	4.6.2.6		Various number of
			sub-tests,
	6.6.2.1		No fading"
	6.6.2.2		
	6.6.2.5		
	6.6.2.6		
Intra_Reselection_01	6.1.1.1	"38.533 6.1.1.1 TT v2.zip"	"2 Intra Frequency
			NR Cells,
			3 time periods,
			No fading"
Inter_Reselection_01	6.1.1.2	"38.533 6.1.1.2 TT v2.zip"	"2 Inter Frequency
		•	NR Cells,
			3 time periods,
			No fading"
InterRAT Higher Reselection 01	6.1.2.1	"38.533 6.1.2.1 TT v2.zip"	"1 E-UTRAN Cell,
			1 NR Cells,
			3 time periods,
			No fading"
InterRAT Lower Reselection 01	6.1.2.2	"38.533 6.1.2.2 TT v2.zip"	"1 E-UTRAN Cell,
	0.1.2.2	00.000 0.1.2.2 I I VZ.ZIP	1 NR Cells,
			-
			2 time periods,
InterDAT Known Handavar 01	6214	"20 E22 6 2 1 4 TT v2 -:"	No fading"
InterRAT_Known_Handover_01	6.3.1.4	"38.533 6.3.1.4 TT v2.zip"	"1 E-UTRAN Cell,
			1 NR Cells,
			3 time periods,
			No fading"
InterRAT_Unknown_Handover_01	6.3.1.5	"38.533 6.3.1.5 TT.zip"	"1 E-UTRAN Cell,
			1 NR Cells,
			2 time periods,
			No fading"

Release 16

Intra_RRC_re-establishment_01	6.3.2.1.1	"38.533 6.3.2.1.1 TT.zip"	"2 Intra Frequency
	0.0.2.111		NR Cells,
			3 time periods,
			No fading"
Intra_SS-RSRP_Abs_Acc_01	4.7.1.1.1	"38.533 4.7.1.1.1+6.7.1.1.1 TT.zip"	"2 Intra-Frequency
IIIIIa_SS-RSRP_ADS_ACC_01		36.555 4.7.1.1.1+0.7.1.1.1 T1.2IP	
	6.7.1.1.1		NR Cells,
			3 Sub-tests,
			periodic reporting,
			No fading"
Intra_SS-RSRP_Rel_Acc_01	4.7.1.1.2	"38.533 4.7.1.1.2+6.7.1.1.2 TT.zip"	"2 Intra-Frequency
	6.7.1.1.2		NR Cells,
			3 Sub-tests,
			periodic reporting,
			No fading"
Inter_RRC_re-establishment_01	6.3.2.1.2	"38.533 6.3.2.1.2 TT.zip"	"2 Inter Frequency
			NR Cells,
			3 time periods,
			No fading"
Inter BBC redirection 01	6.3.2.3.1	"38.533 6.3.2.3.1 TT.zip"	"2 Inter Frequency
Inter_RRC_redirection_01	0.3.2.3.1	30.333 0.3.2.3.1 T.ZIP	
			NR Cells,
			2 time periods,
	1		No fading"
InterRAT_RRC_redirection_01	6.3.2.3.2	"38.533 6.3.2.3.2 TT.zip"	"1 E-UTRAN Cell,
			1 NR Cells,
			2 time periods,
			No fading"
RLM_InSync_01	4.5.1.2	"38.533	"1 NR Cell (1 E-UTRA
	4.5.1.4	4.5.1.2+4.5.1.4+6.5.1.2+6.5.1.4	Cell for NSA case), 1
	6.5.1.2	TT.zip"	sub-test, Fading, 5
	6.5.1.4	1 1.210	Time Periods"
	0.3.1.4		Time Fenous
	4516		
	4.5.1.6		
	4.5.1.8		
	6.5.1.6		
	6.5.1.8		
RLM_Out_of_Sync_01	4.5.1.1	"38.533	"1 NR Cell (1 E-UTRA
	4.5.1.3	4.5.1.1+4.5.1.3+6.5.1.1+6.5.1.3	Cell for NSA case), 1
	6.5.1.1	TT.zip"	sub-test, Fading, 3
	6.5.1.3		Time Periods"
	4.5.1.5		
	4.5.1.7		
	6.5.1.5		
LIE Timing Advance 01	6.5.1.7	"20 E22 4 4 2 1 TT -i~"	
UE_Timing_Advance_01	4.4.3.1	"38.533 4.4.3.1 TT.zip"	"1 NR Cell (1 E-UTRA
	6.4.3.1		Cell for NSA case),
			No Fading"
UE Transmit_Timing_01	4.4.1.1	"38.533 4.4.1.1+6.4.1.1 TT.zip"	"1 NR Cell (1 E-UTRA
	6.4.1.1		Cell for NSA case), 2
			sub-tests, No Fading"
RRC_reconfiguration_delay_01	4.5.4.1	"38.533 4.5.4.1+6.5.1.1 TT.zip"	"1 E-UTRA Cell, 2 NR
	6.5.4.1		Cells", 3 Time
			Periods, No Fading"
Intra_Freq_HO_Known_Target	6.3.1.1	"38.533 6.3.1.1 TT.zip"	"2 Intra-Freq NR
			Cells, 3 Time Periods,
			No Fading"
Intra_Freq_HO_Unknown_Target	6.3.1.2	"38.533 6.3.1.2 TT.zip"	"2 Intra-Freq NR
	0.0.1.2	00.000 0.0.1.2 T I.2ip	Cells, 2 Time Periods,
Inter Fred LIO	6010	"20 E22 C 2 4 2 TT -:~"	No Fading"
Inter_Freq_HO	6.3.1.3	"38.533 6.3.1.3 TT.zip"	"2 Inter-Freq NR
			Cells, 2 Time Periods,

25

26

No Fading"

Release 16

InterRAT_Meas_01	6.6.3.1	"38.533 6.6.3.1+6.6.3.2 TT.zip"	"1 E-UTRAN Cell,
Internal_meas_01	6.6.3.2	30.333 0.0.3.1 0.0.3.2 T 1.21p	1 NR Cells,
	0.0.3.2		
			2 time periods,
	1501		Fading"
Interruption_Transition_01	4.5.2.1	"38.533 4.5.2.1+4.5.2.2 TT.zip"	"1 E-UTRAN Cell,
	4.5.2.2		1 NR Cells,
			1 time period,
			No fading"
Interruption_meas_NR_SCC_01	4.5.2.3	"38.533 4.5.2.3+4.5.2.4 TT.zip"	"1 E-UTRAN Cell,
	4.5.2.4		2 NR Cells (2 NR
	_		Cells for SA case),
	6.5.2.1		1 time period,
	0.5.2.1		No fading"
Interruption_meas_NR_SCC_01	4.5.2.5	"38.533 4.5.2.5+4.5.2.6 TT.zip"	"2 E-UTRAN Cell,
Interruption_meas_NR_SCC_01		30.555 4.5.2.5+4.5.2.0 T L2IP	
	4.5.2.6		1 NR Cells,
			1 time period,
			No fading"
Inter_SS-RSRP_Abs_Acc_01	4.7.1.2.1	"38.533 4.7.1.2.1+6.7.1.2.1 TT v2.zip"	"2 Inter-Frequency
	6.7.1.2.1		NR Cells,
			periodic reporting,
			No fading"
Inter_SS-RSRP_Rel_Acc_01	4.7.1.2.2	"38.533 4.7.1.2.2+6.7.1.2.2 TT.zip"	"2 Inter-Frequency
	6.7.1.2.2		NR Cells,
	0.7.1.2.2		periodic reporting,
	4704	"00 500 4 7 0 1 · 0 7 0 1 TT -:"	No fading"
Intra_SS-SINR_Acc_01	4.7.3.1	"38.533 4.7.3.1+6.7.3.1 TT.zip"	"2 Intra-Frequency
	6.7.3.1		NR Cells,
			periodic reporting,
			No fading"
SSB_Based_L1-RSRP-Meas	4.6.4.1	"38.533 4.6.4.1+4.6.4.2 TT.zip"	"1 NR Cell (1 E-UTRA
	4.6.4.2		Cell for NSA case), 2
	6.6.4.1		time periods, No
	6.6.4.2		fading"
CSI-RS Based L1-RSRP-Meas	4.6.4.3	"38.533 4.6.4.3+4.6.4.4 TT.zip"	"1 NR Cell (1 E-UTRA
	4.6.4.4		Cell for NSA case),
	6.6.4.3		one time period, No
			-
	6.6.4.4		fading"
Intra_SS-RSRQ_Acc_01	4.7.2.1	"38.533 4.7.2.1+6.7.2.1 TT.zip"	"2 Intra-Frequency
	6.7.2.1		NR Cells,
			periodic reporting,
			No fading"
Inter_SS-RSRQ_Abs_Acc_01	4.7.2.2.1	"38.533 4.7.2.2.1+6.7.2.2.1 TT.zip"	"2 Inter-Frequency
	6.7.2.2.1		NR Cells,
			periodic reporting,
			No fading"
Inter_SS-RSRQ_Rel_Acc_01	4.7.2.2.2	"38.533 4.7.2.2.2+6.7.2.2.2 TT.zip"	"2 Inter-Frequency
· _ · · · · · · · · · · · · · · · · · ·	6.7.2.2.2		NR Cells,
	0.1.2.2.2		periodic reporting,
Inter CC CIND Abo Acc 04	47001		No fading"
Inter_SS-SINR_Abs_Acc_01	4.7.3.2.1	"38.533 4.7.3.2.1+6.7.3.2.1 TT.zip"	"2 Inter-Frequency
	6.7.3.2.1		NR Cells,
			periodic reporting,
			No fading"
Inter_SS-SINR_Rel_Acc_01	4.7.3.2.2	"38.533 4.7.3.2.2+6.7.3.2.2 TT.zip"	"2 Inter-Frequency
	6.7.3.2.2		NR Cells,
			periodic reporting,
			No fading"
Inter RAT SS-	8.5.2.1.1.1	"38.533 8.5.2.1.1.1 TT.zip"	1 NR Cell, 1 LTE
	0.0.2.1.1.1	00.000 0.0.2.1.1.1 T 1.21p	
RSRP_LTE_Serving_01			serving cell, periodic
			SS-RSRP reporting,
			No fading

27

	0 5 2 2 1	"20 F22 0 F 2 2 1 TT -:"	
Inter_RAT_SS-	8.5.2.2.1	"38.533 8.5.2.2.1 TT.zip"	1 NR Cell, 1 LTE
RSRQ_LTE_Serving_01			serving cell, periodic
			SS-RSRQ reporting,
			No fading
Inter_RAT_SS-	8.5.2.3.1	"38.533 8.5.2.3.1 TT.zip"	1 NR Cell, 1 LTE
SINR_LTE_Serving_01			serving cell, periodic
			SS-SINR reporting,
			No fading
L1-RSRP_Abs_Acc_01	4.7.4.1.1	"38.533	1 NR Cell, periodic
	6.7.4.1.1	4.7.4.1.1+4.7.4.2.1+6.7.4.1.1+6.7.4.2.	L1-RSRP reporting,
	4.7.4.2.1	1 TT.zip"	No fading
	6.7.4.2.1		, it is is a second sec
L1-RSRP_Rel_Acc_01	4.7.4.1.2	"38.533	1 NR Cell with 2
	6.7.4.1.2	4.7.4.1.2+4.7.4.2.2+6.7.4.1.2+6.7.4.2.	Beams, periodic L1-
	4.7.4.2.2	2 TT.zip"	RSRP reporting, No
	6.7.4.2.2	Σ ΤΤ.ΖΙΡ	fading
SCR Record REP		"38.533	"1 NR Cell (1 E-
SSB_Based_BFR	4.5.5.1		
	4.5.5.2	4.5.5.1+4.5.5.2+6.5.5.1+6.5.5.2	UTRA Cell for NSA
	6.5.5.1	TT.zip"	case),
	6.5.5.2		5 time periods,
			Fading"
CSI-RS_Based_BFR	4.5.5.3	"38.533	"1 NR Cell (1 E-
	4.5.5.4	4.5.5.3+4.5.5.4+6.5.5.3+6.5.5.4	UTRA Cell for NSA
	6.5.5.3	TT.zip"	case),
	6.5.5.4		5 time periods,
			Fading"
DCI_Based_BWP_Switch	4.5.6.1.1	"38.533	"1 NR Cell (2NR
	4.5.6.1.2	4.5.6.1.1+4.5.6.1.2+6.5.6.1.1+6.5.6.1.	Cells for Scell case, 1
	6.5.6.1.1	2 TT.zip"	E-UTRA Cell for NSA
	6.5.6.1.2		case),
	0.5.0.1.2		3 time periods,
			-
DDC Based DWD Cwitch	45021		No fading"
RRC_Based_BWP_Switch	4.5.6.2.1	"38.533 4.5.6.2.1+6.5.6.2.1 TT.zip"	"1 NR Cell (1 E-
	6.5.6.2.1		UTRA Cell for NSA
			case),
			3 time periods,
			No fading"
Intra_RRC_re-	6.3.2.1.3	"38.533 6.3.2.1.3 TT.zip"	"2 Intra Frequency
establishment_without_timing			NR Cells,
			3 time periods,
			No fading"
InterRAT_re-	8.2.1.1	"38.533 8.2.1.1 TT.zip"	"1 NR Cell, 1 LTE
selection_LTE_Serving			serving cell,
			3 time periods
			No fading"
InterRAT_HO_LTE_Serving	8.3.1.1	"38.533 8.3.1.1 TT.zip"	"1 NR Cell, 1 LTE
			serving cell,
			3 time periods
	0/11	"20 522 0 4 1 1 0 4 1 2 TT -in"	No fading" "1 NR Cell, 1 LTE
InterRAT_SFTD_Meas_LTE_Servi	8.4.1.1	"38.533 8.4.1.1+8.4.1.2 TT.zip"	
ng	8.4.1.2		serving cell,
			1 time period
			No fading"
InterRAT_Meas_LTE_Serving	8.4.2.1	"38.533	"1 NR Cell, 1 LTE
	8.4.2.2	8.4.2.1+8.4.2.2+8.4.2.3+8.4.2.4	serving cell,
	8.4.2.3	TT.zip"	2 time periods
	8.4.2.4		Fading"
PSCell_Addition	4.5.7.1	"38.533 4.5.7.1 TT.zip"	1 NR Cell, no fading
SFTD_Accuracy	4.7.5.1	"38.533 4.7.5.1 TT.zip"	1 E-UTRA Cell, 1 NR
			Cell, no fading
iRAT_E-UTRA_RSRP_Accuracy	6.7.5.1	"38.533 6.7.5.1 TT.zip"	1 E-UTRA Cell, 1 NR
		•	· · · ·

			Cell, no fading
iRAT_E-UTRA_RSRQ_Accuracy	6.7.6.1	"38.533 6.7.6.1 TT.zip"	1 E-UTRA Cell, 1 NR
			Cell, no fading
iRAT_E-UTRA_RS-	6.7.7.1	"38.533 6.7.7.1 TT.zip"	1 E-UTRA Cell, 1 NR
SINR_Accuracy			Cell, no fading

Table 8-2: Grouping of FR2 test cases defined in Clauses 5, 7 and 8 of TS 38.533

Group	Test Case	.zip file name	Comments
	Numbers		
iRAT_SS-RSRP_01	8.5.2.1.2	"38.533 8.5.2.1.2 TT draft.zip"	"1 NR FR2 cell, 1 E-
			UTRA serving cell,
			2 sub-tests,
			No fading"
iRAT_SS-RSRQ_01	8.5.2.2.2	"38.533 8.5.2.2.2 TT draft.zip"	"1 NR FR2 cell, 1 E-
			UTRA serving cell,
			2 sub-tests,
			No fading"
iRAT_SS-SINR_01	8.5.2.3.2	"38.533 8.5.2.3.2 TT draft.zip"	"1 NR FR2 cell, 1 E-
			UTRA serving cell,
			2 sub-tests,
			No fading"

Annex A: Derivation documents for test tolerance

The documents (and spreadsheets where applicable) used to derive the test tolerances for each test case are included in the present document as zip files.

The aim is to provide a reference to completed test cases, so that test tolerances for similar test cases can be derived on a common basis. The information on test case grouping in clauses 7 and 8 can be used to identify similarities.

A.1 Void

A.2 Handling of common Test Tolerance topics for radiated test cases defined in TS 38.533

The basic principles of Test Tolerance analysis are the same for conducted testing and radiated testing, but for radiated testing additional topics are taken into account. This annex contains methods to handle common additional topics, to allow re-use and to avoid the need for each test case analysis to repeat the same detail.

Individual test case analyses are expected to follow the methods contained here where applicable, and to refer to relevant clauses in this Annex.

A.2.1 Angles of Arrival

A.2.1.1 Relevant core requirements

In FR2, the performance of the UE depends on the downlink signal angle of arrival, and is characterised by two parameters:

- Refsens: lowest signal level for a given demodulation performance in the UE Rx beam peak direction, specified in TS 38.101-2 [16] clause 7.3.2 according to UE Power class, Channel bandwidth and operating band
- EIS spherical coverage: lowest signal level for a given demodulation performance in a specified percentile of other directions, specified in TS 38.101-2 [16] clause 7.3.4 according to UE Power class, Channel bandwidth and operating band

As both of these requirements are defined in the context of a throughput requirement, the UE is assumed to be using fine beams. Note that for directions outside the specified percentile of spherical coverage directions, there are no requirements. Testing must therefore be carried out within the spherical coverage directions. For testing, direction is 3-dimensional, but the principle can be illustrated in a 2-dimensional diagram:

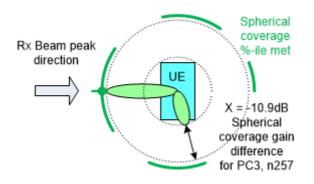


Figure A.2.1.1-1: UE Rx Beam-peak and spherical coverage directions, Fine beams

A.2.1.2 Modelling of variation within spherical coverage directions

Within the spherical coverage directions, a signal may be anywhere from near Rx Beam Peak (high gain direction, close to Refsens) to the worst of the allowed percentile (low gain direction, close to EIS spherical coverage requirement value). This is modelled by taking the midpoint of the Spherical coverage range as the nominal value, and then adding a variation of \pm (half the difference between Refsens and Spherical coverage).

UE Spherical coverage gain midpoint in dB is derived as (UE Refsens - UE Spherical coverage)/2

Figure A.2.1.2-1 shows an example for UE Power class 3, Channel bandwidth 100MHz and operating band n257. In this example the UE Spherical coverage gain midpoint would be -5.45dB, as the gain is lower than in the Rx Beam peak direction. Variation about the midpoint is handled as a UE uncertainty.

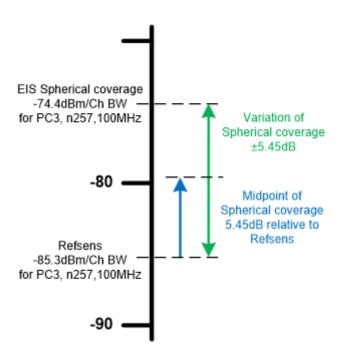


Figure A.2.1.2-1: Example modelling of variation within spherical coverage directions, Fine beams

A.2.1.3 Principles for Test Tolerance analysis

The following principles shall be followed in the test case analysis:

- The Angle of Arrival for each downlink signal shall be defined: either from UE Rx beam peak direction or from a direction within the EIS spherical coverage
- Variations over the EIS spherical coverage directions shall be included, using the method shown in A.2.1.2.

Variations over the EIS spherical coverage directions do not directly affect signals applied to the UE, but they do affect the SS-RSRP level measured by the UE, and the Es/Iot at UE baseband. Where the test case has requirements on UE baseband Es/Iot_{BB}, UE internal noise calculation is given in clause A.2.3, and calculation of Es/Iot at UE baseband is given in clauses A.2.4 and A.2.7.

A.2.2 UE Fine beams and Rough beams

A.2.2.1 Relevant core requirements

UE requirements such as Refsens in TS 38.101-2 [16], assume that the UE is using a fine beam which has higher antenna gain to give good demodulation performance. However, in some RRM scenarios where the UE is for example searching for or measuring other cells, the UE uses rough beams which have lower antenna gain. The difference in gain is specified depending on the Angle of Arrival:

- The Gain difference Y between fine and rough beams in the UE Rx beam peak direction is specified in TS 38.133 [17] Table B.2.1.3.1-1 according to UE Power class
- The Gain difference Z between fine and rough beams in the UE Spherical coverage directions is specified in TS 38.133 [17] Table B.2.1.3.2-1 according to UE Power class

The Gain differences Y and Z are not dependent on Channel bandwidth or operating band. The concept is illustrated in Figures A.2.2.1-1 and A.2.2.1-2.

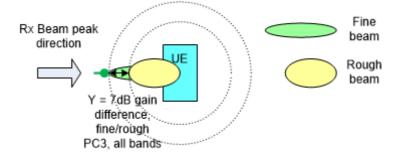


Figure A.2.2.1-1: Fine and rough beams, Rx Beam peak direction

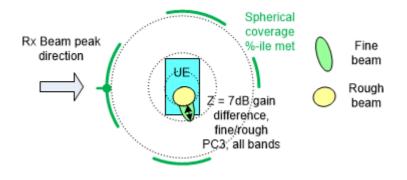


Figure A.2.2.1-2: Fine and rough beams, spherical coverage directions

A.2.2.2 Modelling of Fine beams and Rough beams

Where the UE is assumed to use fine beams, the scenario is already covered in the Refsens and EIS spherical coverage requirements, and no further modifications are needed.

Where the UE is assumed to use rough beams, the effect is modelled as a reduction in gain of YdB or ZdB, according to the Angle of Arrival of each downlink signal. The reduction in gain translates to a higher UE internal noise seen at the Reference point where the downlink signals are applied. UE noise calculated from Refsens or from EIS spherical coverage requirements is increased by YdB or ZdB respectively. UE internal noise calculation is given in clause A.2.3.

A.2.2.3 Principles for Test Tolerance analysis

The following principles shall be followed in the test case analysis:

- The Type of beam assumed to be used by the UE for each downlink signal shall be defined: either Fine Beam or Rough Beam
- Where UE internal noise is relevant, and the UE is assumed to be using Rough Beams, it is increased by the value of Y or Z, selected according to UE Power class and Angle of Arrival.

UE internal noise calculation is given in clause A.2.3.

A.2.3 UE internal noise

A.2.3.1 Relevant core requirements

The relevant Core requirements are:

- Refsens or EIS spherical coverage, specified in TS 38.101-2 [16] clauses 7.3.2 and 7.3.4 respectively
- UE baseband SNR at which Refsens or EIS spherical coverage is specified, in TS 38.133 [17] clause B.2.1.3
- N_{RB} in channel BW at which Refsens or EIS spherical coverage is specified, in TS 38.101-2 [16] Table 5.3.2-1
- Gain difference between fine and rough beams, in TS 38.133 [17] clause B.2.1.3
- UE multi-band relaxation factors, in TS 38.101-2 [16] Table 6.2.1.3-4

A.2.3.2 Calculation method

For signals arriving from Rx Beam Peak direction:

```
Noise in dBm/SCS = Refsens PC, band, Ch BW - SNR<sub>Refsens</sub> -10Log<sub>10</sub> (N<sub>RB_Ch BW, SCS</sub> x 12) +Y PC + ΣMB<sub>P</sub>
```

where:

Refsens _{PC, band, Ch BW} is the reference sensitivity value in dBm specified in TS 38.101-2 [16] clause 7.3.2 according to Power Class, Operating band and Channel bandwidth

SNR_{Refsens} is the SNR used for simulation of Refsens and EIS spherical coverage, and is -1 dB

 $N_{RB_Ch BW, SCS}$ is the number of PRBs specified in TS 38.101-2 [16] Table 5.3.2-1 according to Channel bandwidth and subcarrier spacing (not necessarily equal to the number of PRBs used in the test case)

12 is the number of subcarriers in a PRB

 Y_{PC} is the gain difference in dB specified in TS 38.133 [17] Table B.2.1.3.1-1, according to Power Class, and is only applied when the UE is assumed to be using rough beams. Otherwise, use 0dB

ΣMB_P is the UE multi-band relaxation factor value in dB specified in TS 38.101-2 [16] clause 6.2.1

For signals arriving from Spherical coverage directions:

Noise in dBm/SCS = EIS spherical coverage $_{PC, band, Ch BW}$ - SNR_{Refsens} -10Log₁₀ (N_{RB_Ch BW, SCS} x 12) + Z_{PC} + Σ MB_s

where:

EIS spherical coverage _{PC, band, Ch BW} is the EIS spherical coverage value in dBm specified in TS 38.101-2 [16] clause 7.3.4 according to Power Class, Operating band and Channel bandwidth

SNR_{Refsens} is the SNR used for simulation of Refsens and EIS spherical coverage, and is -1 dB

 $N_{RB_Ch BW, SCS}$ is the number of PRBs specified in TS 38.101-2 [16] Table 5.3.2-1 according to Channel bandwidth and subcarrier spacing (not necessarily equal to the number of PRBs used in the test case)

12 is the number of subcarriers in a PRB

Z_{PC} is the gain difference in dB specified in TS 38.133 [17] Table B.2.1.3.2-1, according to Power Class, and is only applied when the UE is assumed to be using rough beams. Otherwise, use 0dB

ΣMB_s is the UE multi-band relaxation factor value in dB specified in TS 38.101-2 [16] clause 6.2.1

The analysis spreadsheet converts dBm/SCS to linear power in pW/SCS for ease of further calculations.

A.2.3.3 Principles for Test Tolerance analysis

The following principles shall be followed in the test case analysis:

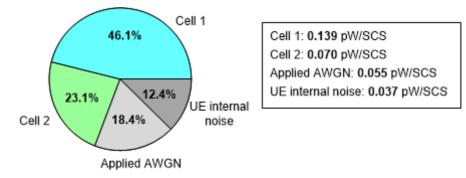
- Where the test case has requirements on UE baseband Es/Iot_{BB}, the Test Tolerance analysis should include UE internal noise in the calculation
- UE internal noise is calculated using the method in A.2.3.2

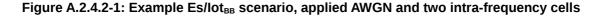
A.2.4 Calculation of Es/lot at UE baseband

A.2.4.1 Relevant core requirements

Core requirements applicable to RRM test cases depend on the test purpose, and should be selected for each test case. For test cases where the UE makes a measurement, the following are relevant:

- Measurement Performance requirements are specified in TS 38.133 [17] clause 10, and side conditions such as Es/Iot are included in the core requirements for each measurement. For FR2, notes in tables clarify that Es/Iot is at UE baseband.
- Operating band specific conditions for RRM requirements are specified in TS 38.133 [17] Annex B, and side conditions such as Es/Iot are included for each measurement. For FR2, notes in tables clarify that Es/Iot is at UE baseband.


Other UE core requirements may also have conditions on Es/Iot.


A.2.4.2 Calculation method

An example is provided here for a scenario with applied AWGN and two intra-frequency cells. SSB Es/Iot at UE baseband is calculated for Cell 1. Interference to Cell 1 comes from the applied AWGN, from the UE internal noise, and from Cell 2. The values are chosen for illustration, and not taken from any specific test case.

Cell 1 SSB Es/Iot_{BB} = 10Log₁₀ ((Cell 1 SSB power) / (Applied AWGN power + UE internal noise + Cell 2 SSB power))

Where Applied AWGN power, UE internal noise, Cell 1 power and Cell 2 power are linear powers in W, per subcarrier.

In this case, the calculation gives Cell 1 SSB Es/Iot_{BB} = $10Log_{10}(0.139 / (0.055 + 0.037 + 0.070)) = -0.67dB$

The main point is that the Es/Iot at UE baseband is lower than the applied Es/Iot, because the UE internal noise adds to the interference, and can be a significant contribution for the parameters used in some test cases.

The presence of UE internal noise also affects the calculation of Es/Iot sensitivity factors in the Test Tolerance analysis. The UE internal noise is a fixed (worst) value, being based on the UE minimum requirement, and is taken into account in the scaling which uses linear powers:

- Cell 1 SSB Es/Iot_{BB} sensitivity to applied AWGN absolute power = UE internal noise /(Applied AWGN power + UE internal noise + Cell 2 SSB power). In this example, (0.037 / (0.055 + 0.037 + 0.070)) = +0.230
- Cell 1 SSB Es/Iot_{BB} sensitivity to Cell 1 Es/Noc = +1.000

Cell 1 SSB Es/Iot_{BB} sensitivity to Cell 2 Es/Noc = -Cell 2 SSB power /(Applied AWGN power + UE internal noise + Cell 2 SSB power). In this example, (0.070 / (0.055 + 0.037 + 0.070)) = -0.429

A positive sensitivity factor is used where an increase in the quantity produces an increase in Cell 1 SSB Es/Iot_{BB}, for example increasing Cell 1 Es/Noc. A negative sensitivity factor is used where an increase in the quantity produces a decrease in Cell 1 SSB Es/Iot_{BB}, for example increasing Cell 2 Es/Noc. The sensitivity factors are used to scale the uncertainties.

Where the uncertainties are uncorrelated, as here, they are added root-sum-square so the sign of the sensitivity factor does not have any effect. In special cases where the uncertainties are correlated, they may be added arithmetically and the sign affects the result, as in clause A.2.7.

A.2.4.3 Principles for Test Tolerance analysis

The following principles shall be followed in the test case analysis:

- UE internal noise is included in the interference when calculating $\text{Es/Iot}_{\text{BB}}$
- Es/Iot_{BB} sensitivity factors are calculated using the method in A.2.4.2

A.2.5 Calculation of Applied Io

A.2.5.1 Relevant core requirements

Core requirements applicable to RRM test cases depend on the test purpose, and should be selected for each test case. For test cases where the UE makes a measurement, the following are relevant:

- Measurement Performance requirements are specified in TS 38.133 [17] clause 10, and side conditions such as Io are included in the core requirements for each measurement. Normally the maximum Io condition is specified in the channel bandwidth, whereas the minimum Io condition is specified as a power density per subcarrier.

A.2.5.2 Calculation method

An example is provided here for a scenario with applied AWGN and two intra-frequency cells. Io applied to the UE is the arithmetic sum of linear powers in the channel bandwidth. UE internal noise is not counted, as it is not applied to the UE. The values are chosen for illustration, and not taken from any specific test case.

Channel Io = 10Log₁₀ (Applied AWGN power + Cell 1 power + Cell 2 power) + 10Log₁₀ (N_{RB_TC} x 12)

where:

AWGN, Cell 1 power and Cell 2 power are linear powers in W, per subcarrier

 $N_{\text{RB}_{TC}}$ is the number of PRBs allocated in the test case (not necessarily equal to the number of PRBs in the channel bandwidth)

12 is the number of subcarriers in a PRB

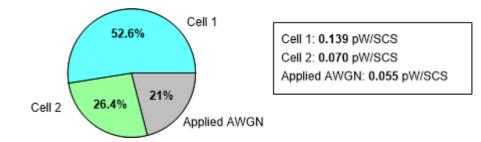


Figure A.2.5.2-1: Example Io scenario, applied AWGN and two intra-frequency cells

With 24 PRBs allocated, the example gives Io = $10Log_{10}$ ((0.055 +0.139 +0.070) $x10^{-9}$)+ $10Log_{10}$ (24 x 12) = -71.2dBm

Io sensitivity factors in the Test Tolerance analysis are based on linear powers:

- Io sensitivity to applied AWGN absolute power = +1.000
- Io sensitivity to Cell 1 Es/Noc = Cell 1 power / (Applied AWGN power + Cell 1 power + Cell 2 power). In this example, (0.139 / (0.055 + 0.139 + 0.070)) = +0.527
- Io sensitivity to Cell 2 Es/Noc = Cell 2 power / (Applied AWGN power + Cell 1 power + Cell 2 power). In this example, (0.070 / (0.055 + 0.139 + 0.070)) = +0.264

All the sensitivity factors are positive, as an increase in the quantity produces an increase in Io. The sensitivity factors are used to scale the uncertainties.

A.2.5.3 Principles for Test Tolerance analysis

The following principles shall be followed in the test case analysis:

- Io is calculated using the method in A.2.5.2
- Io sensitivity factors are calculated using the method in A.2.5.2

A.2.6 UE Reported RSRP and UE gain

A.2.6.1 Relevant core requirements

SS-RSRP is defined to be measured based on the combined signal from antenna elements corresponding to a given receiver branch. The reference point for requirement parameters from the UE perspective is the input of the UE antenna array. The UE gain "G" relates the combined signal from antenna elements corresponding to a given receiver branch to the reference point for requirement parameters.

For test cases where the UE reports a measured value, or compares a measured value to a signalled threshold, the UE Gain "G" affects the SS-RSRP level measured by the UE

- The UE Gain from the reference point (where test case parameters are specified) to the SS-RSRP measurement point is specified in TS 38.133 [17] clause B.2.1.5. As the UE gain "G" is specified for Rx Beam Peak angle of arrival, it does not include effects related to spherical coverage.
- Measurement Performance requirements are specified in TS 38.133 [17] clause 10, and include accuracy requirements as +/-dB values. For FR2, the accuracy is considered to apply at the combined signal from antenna elements corresponding to a given receiver branch, and does not include the UE gain "G".

The specified range of UE Gain "G" allows the UE to use either Rough beams or Fine beams, so no further allowance is required for the parameters Y or Z in A.2.2.

A.2.6.2 Absolute RSRP

An example is provided here for a scenario where the UE reports SS-RSRP for a signal arriving from a direction within the UE spherical coverage, to illustrate variation from both UE spherical coverage and variation from UE gain "G".

UE-measured SS-RSRP_{nom} = Applied SSB_RP + UE Spherical coverage gain midpoint + UE gain G midpoint

where:

Applied SSB_RP is specified in the test case, either directly as Es or derived from Noc and Es/Noc, and is in dBm per subcarrier

UE Spherical coverage gain midpoint in dB is derived as (UE Refsens - UE Spherical coverage)/2

UE gain G midpoint in dB is derived as (Min value of G + Max value of G)/2

As an example for a UE power class 3 in band n257, measuring SS_RSRP from a spherical coverage direction, UE-measured SS-RSRP_{nom} = Applied SSB_RP -5.45dB +5.0dB.

Figure A.2.1.2-1 shows the derivation of UE Spherical coverage gain midpoint. Variation about the midpoint is handled as a UE uncertainty. For signals arriving from Rx Beam Peak direction, this gain is 0dB and does not vary.

Figure A.2.6.2-1 shows the derivation of UE gain G midpoint. Variation about the midpoint is handled as a UE uncertainty.

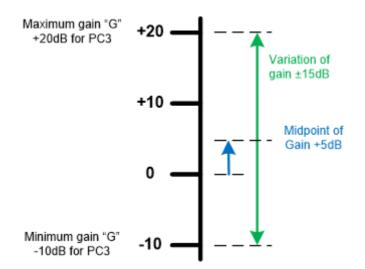


Figure A.2.6.2-1: Example modelling of UE Gain "G" variation

To calculate the range of valid SS-RSRP values that can be reported by the UE, contributions from Spherical coverage gain variation, UE gain variation and UE reporting accuracy are considered:

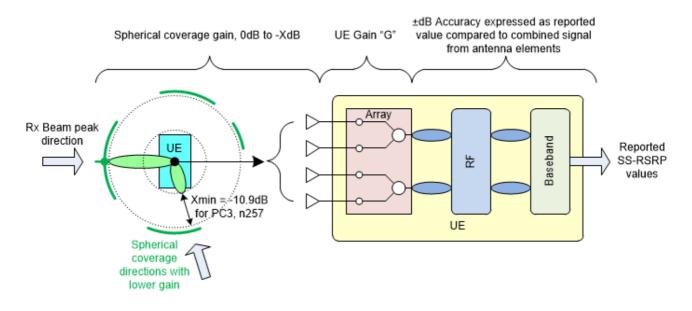


Figure A.2.6.2-2: modelling of contributions affecting SS-RSRP reported values

Reported SS-RSRP = UE measured SS-RSRP_{nom} \pm Spherical coverage gain variation \pm UE gain variation \pm UE accuracy

where:

UE measured SS-RSRP_{nom} is the nominal value derived from Applied SSB_RP, UE Spherical coverage gain midpoint and UE gain G midpoint

Spherical coverage gain variation is derived from Refsens and Spherical coverage, as shown in Figure A.2.1.2-1

UE gain variation is derived from Minimum and maximum values of G, as shown in Figure A.2.6.2-1

UE accuracy is the absolute accuracy from the core requirement referred to in A.2.6.1

As an example for a UE power class 3 in band n257, measuring SS_RSRP from a spherical coverage direction with applied Io > -70dBm, the variation would be (\pm 5.45dB \pm 15dB \pm 8dB) = \pm **28.45dB**

These variations are added arithmetically in the test case analysis, as each could be systematic and not random. For signals arriving from Rx Beam Peak direction, spherical coverage gain variation is 0dB.

A.2.6.3 Relative RSRP, 2 levels on same cell, same Angle of Arrival

An example is provided here for a scenario where the test case require the UE to report SS-RSRP for the same cell at two different levels, with the signal arriving from the same direction. The Angle of Arrival may be within the UE spherical coverage, or from Rx Beam peak direction.

UE-measured SS-RSRP1_{nom} = Applied SSB_RP1 + UE Spherical coverage gain midpoint + UE gain G midpoint

UE-measured SS-RSRP2_{nom} = Applied SSB_RP2 + UE Spherical coverage gain midpoint + UE gain G midpoint

UE-measured SS-RSRP2_{nom} - UE-measured SS-RSRP1_{nom} = Applied SSB_RP2 - Applied SSB_RP1

where:

Applied SSB_RP1 and Applied SSB_RP2 are specified in the test case, either directly as Es or derived from Noc and Es/Noc, and are in dBm per subcarrier

Release 16

40

It can be seen that UE Spherical coverage gain midpoint and UE gain G midpoint cancel out for this relative measurement, as they remain the same for a signal from the same Angle of Arrival.

Reported SS-RSRP2 - Reported SS-RSRP1 = UE-measured SS-RSRP2_{nom} - UE-measured SS-RSRP1_{nom} \pm UE accuracy

where:

UE accuracy is the relative accuracy from the core requirement referred to in A.2.6.1

A.2.6.4 Relative RSRP, 2 intra-frequency cells, same Angle of Arrival

An example is provided here for a scenario where the test case require the UE to report SS-RSRP for two different cells, with the signals arriving from the same direction. The Angle of Arrival may be within the UE spherical coverage, or from Rx Beam peak direction.

UE-measured SS-RSRP1_{nom} = Applied SSB_RP1 + UE Spherical coverage gain midpoint + UE gain G midpoint

UE-measured SS-RSRP2_{nom} = Applied SSB_RP2 + UE Spherical coverage gain midpoint + UE gain G midpoint

UE-measured SS-RSRP2_{nom} - UE-measured SS-RSRP1_{nom} = Applied SSB_RP2 - Applied SSB_RP1

where:

Applied SSB_RP1 and Applied SSB_RP2 are specified in the test case, either directly as Es or derived from Noc and Es/Noc, and are in dBm per subcarrier

It can be seen that UE Spherical coverage gain midpoint and UE gain G midpoint cancel out for this relative measurement, as they are the same for signals from the same Angle of Arrival.

Reported SS-RSRP2 - Reported SS-RSRP1 = UE-measured SS-RSRP2_{nom} - UE-measured SS-RSRP1_{nom} ±UE accuracy

where:

UE accuracy is the relative accuracy from the core requirement referred to in A.2.6.1

A.2.6.5 Relative RSRP, 2 inter-frequency cells, same Angle of Arrival

[FFS]

A.2.6.6 Relative RSRP, 2 cells, different Angles of Arrival

Examples are provided here for scenarios where the test case requires the UE to report SS-RSRP for two different cells, with the signals arriving from different directions.

For both Angles of Arrival from UE spherical coverage directions:

UE-measured SS-RSRP1_{nom} = Applied SSB_RP1 + UE Spherical coverage gain midpoint + UE gain G midpoint

UE-measured SS-RSRP2_{nom} = Applied SSB_RP2 + UE Spherical coverage gain midpoint + UE gain G midpoint

UE-measured SS-RSRP2_{nom} - UE-measured SS-RSRP1_{nom} = Applied SSB_RP2 - Applied SSB_RP1

where:

Applied SSB_RP1 and Applied SSB_RP2 are specified in the test case, either directly as Es or derived from Noc and Es/Noc, and are in dBm per subcarrier

For the nominal values, UE Spherical coverage gain midpoint and UE gain G midpoint cancel out for this relative measurement. For the variations, UE gain variation cancels out as the same value affects both cells, but Spherical coverage gain variation applies separately to each Angle of Arrival.

41

Reported SS-RSRP2 - Reported SS-RSRP1 = UE-measured SS-RSRP2_{nom} - UE-measured SS-RSRP1_{nom} \pm Spherical coverage gain variation_{AoA1} \pm Spherical coverage gain variation_{AoA2} \pm UE accuracy

where:

Spherical coverage gain variation_{AoA1} is derived from Refsens and Spherical coverage, as in Figure A.2.1.2-1

Spherical coverage gain variation_{AoA2} is derived from Refsens and Spherical coverage, as in Figure A.2.1.2-1

UE accuracy is the relative accuracy from the core requirement referred to in A.2.6.1

For one Angle of Arrival from UE spherical coverage directions, and one from Rx Beam peak direction:

UE-measured SS-RSRP1_{nom} = Applied SSB_RP1 + UE Spherical coverage gain midpoint + UE gain G midpoint

UE-measured SS-RSRP2_{nom} = Applied SSB_RP2 + UE gain G midpoint

UE-measured SS-RSRP2_{nom} - UE-measured SS-RSRP1_{nom} = Applied SSB_RP2 - Applied SSB_RP1 - UE Spherical coverage gain midpoint

where:

Applied SSB_RP1 and Applied SSB_RP2 are specified in the test case, either directly as Es or derived from Noc and Es/Noc, and are in dBm per subcarrier

UE Spherical coverage gain midpoint in dB is derived as (UE Refsens - UE Spherical coverage)/2

For the nominal values, UE gain G midpoint cancels out for this relative measurement, but UE Spherical coverage gain midpoint applies to one Angle of Arrival. For the variations, UE gain variation cancels out as the same value affects both cells, but Spherical coverage gain variation applies to one Angle of Arrival.

where:

Spherical coverage gain variation_{AoA1} is derived from Refsens and Spherical coverage, as in Figure A.2.1.2-1

UE accuracy is the relative accuracy from the core requirement referred to in A.2.6.1

A.2.6.7 Principles for Test Tolerance analysis

The following principles shall be followed in the test case analysis:

- UE-measured SS-RSRP_{nom} is calculated using the relevant method in A.2.6.2 to A.2.6.6
- The range of SS-RSRP reported values is calculated using the relevant methods in A.2.6.2 to A.2.6.6

A.2.7 Intra-frequency cells without AWGN, same Angle of Arrival

A.2.7.1 Test system

In a practical test system running a test case where Intra-frequency cells come from the same Angle of Arrival, the level uncertainties for all cells will be highly correlated. If the test case has applied AWGN, it will specify Noc and Es/Noc, and the absolute uncertainty for applied AWGN will be the dominant contribution to the overall Es uncertainty for each cell. As AWGN is common to all cells on that frequency, the correlation is already included.

If the test case does not have applied AWGN, it will specify Es for each cell, with an absolute Es uncertainty for each cell. The method of handling the effect of correlation in the Test Tolerance analysis is given in A.2.7.2 and A.2.7.3.

A.2.7.2 Calculation method for Es/lot at UE baseband

An example is provided here for a scenario with two intra-frequency cells, without applied AWGN. SSB Es/Iot at UE baseband is calculated for Cell 1. Interference to Cell 1 comes from the UE internal noise and from Cell 2. The values are chosen for illustration, and not taken from any specific test case.

Cell 1 SSB Es/Iot_{BB} = 10Log₁₀ ((Cell 1 SSB power) / (UE internal noise + Cell 2 SSB power))

Where UE internal noise, Cell 1 power and Cell 2 power are linear powers in W, per subcarrier.

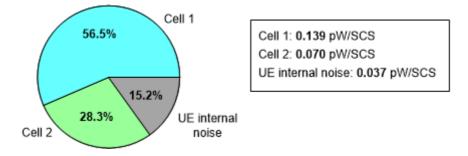


Figure A.2.7.2-1: Example Es/lot_{BB} scenario, two intra-frequency cells

In this case, the calculation gives Cell 1 SSB Es/Iot_{BB} = $10Log_{10}(0.139 / (0.037 + 0.070)) = 1.14dB$

The presence of UE internal noise also affects the calculation of Es/Iot sensitivity factors in the Test Tolerance analysis. The UE internal noise is a fixed (worst) value, being based on the UE minimum requirement, and is taken into account in the scaling which uses linear powers:

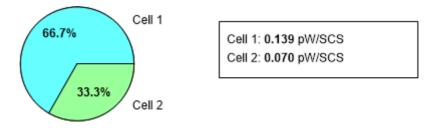
- Cell 1 SSB Es/Iot_{BB} sensitivity to Cell 1 Es = +1.000
- Cell 1 SSB Es/Iot_{BB} sensitivity to Cell 2 Es = -Cell 2 SSB power /(UE internal noise + Cell 2 SSB power). In this example, (0.070 / (0.037 + 0.070)) = -0.651

A positive sensitivity factor is used where an increase in the quantity produces an increase in Cell 1 SSB Es/Iot_{BB} , for example increasing Cell 1 Es. A negative sensitivity factor is used where an increase in the quantity produces a decrease in Cell 1 SSB Es/Iot_{BB} , for example increasing Cell 2 Es. The sensitivity factors are used to scale the uncertainties.

Where the uncertainties are correlated, as here, they are added arithmetically and the sign affects the result. In this example, increasing Cell 1 Es increases the Cell 1 SSB Es/Iot_{BB} , but the correlated increase in Cell 2 Es decreases the Cell 1 SSB Es/Iot_{BB} . The overall effect is smaller, and depends on the ratios of linear powers.

A.2.7.3 Calculation method for Applied Io

An example is provided here for a scenario with two intra-frequency cells, without applied AWGN. Io applied to the UE is the arithmetic sum of linear powers in the channel bandwidth. UE internal noise is not counted, as it is not applied to the UE. The values are chosen for illustration, and not taken from any specific test case.


Channel Io = $10Log_{10}$ (Cell 1 power + Cell 2 power) + $10Log_{10}$ (N_{RB_TC} x 12)


where:

Cell 1 power and Cell 2 power are linear powers in W, per subcarrier

 $N_{RB_{TC}}$ is the number of PRBs allocated in the test case (not necessarily equal to the number of PRBs in the channel bandwidth)

12 is the number of subcarriers in a PRB

With 24 PRBs allocated, the example gives Io = $10Log_{10}$ ((0.139 +0.070) x10⁻⁹) + $10Log_{10}$ (24 x 12) = -72.2dBm

Io sensitivity factors in the Test Tolerance analysis are based on linear powers:

- Io sensitivity to Cell 1 Es = Cell 1 power / (Cell 1 power + Cell 2 power). In this example, (0.139 / (0.139 + 0.070)) = +0.667
- Io sensitivity to Cell 2 Es = Cell 2 power / (Cell 1 power + Cell 2 power). In this example, (0.070 / (0.139 + 0.070)) = +0.333

All the sensitivity factors are positive, as an increase in the quantity produces an increase in Io. The sensitivity factors are used to scale the uncertainties.

Where the uncertainties are correlated, as here, they are added arithmetically, and the sign affects the result. In this example increasing Cell 1 Es increases Io, and the correlated increase in Cell 2 Es also increases Io. The overall effect of scaling adds up to 1, as expected.

A.2.7.4 Principles for Test Tolerance analysis

The following principles shall be followed in the test case analysis:

- For Intra-frequency cells from the same Angle of Arrival without AWGN, Es/Iot_{BB} is calculated using the method in A.2.7.2.
- For Intra-frequency cells from the same Angle of Arrival without AWGN, Es/Iot_{BB} sensitivity factors are calculated using the method in A.2.7.2.
- For Intra-frequency cells from the same Angle of Arrival without AWGN, Io is calculated using the method in A.2.7.3.

- For Intra-frequency cells from the same Angle of Arrival without AWGN, Io sensitivity factors are calculated using the method in A.2.7.3.

A.3 Test Tolerance analysis templates for radiated test cases awaiting completion

Test Tolerance analyses for Radiated testing listed below are not yet complete, but contain the main features for the test cases covered and can be used as templates. For each analysis, the missing aspects are listed.

The analysis documents (and spreadsheets where applicable) are included in the present document as zip files with "draft" at the end of the filename. When the test case analyses are complete, the draft versions and listing in this clause should be removed.

38.533 5.3.2.2.1+5.3.2.2.2+7.3.2.2.1+7.3.2.2.2 TT draft

Editor's note: This test tolerance analysis is incomplete. The following aspects are missing:

- Settable window for first preamble uplink power and the uplink calibration process
- Derivation of test requirement for absolute uplink power after uplink calibration process
- Derivation of test requirement for relative uplink power
- The uncertainty value and test requirement for PRACH timing are in [] and not yet finalised
- The results of the TT analysis are provisional until the corresponding MU values are agreed

38.533 5.4.1.1+7.4.1.1 TT draft

Editor's note: This test tolerance analysis is incomplete. The following aspects are missing:

- The test system measurement uncertainty for Transmit timing error is in [] and not yet finalised
- The test system measurement uncertainty for relative Transmit timing is in [] and not yet finalised

38.533 5.5.1.3+7.5.1.3 TT draft

Editor's note: This test tolerance analysis is incomplete. The following aspects are missing:

- The test system measurement uncertainties for Noc absolute levels are not yet agreed
- The Test Tolerance final values depend on the Noc absolute level uncertainty

38.533 5.6.1.2+5.6.1.4+7.6.1.2+7.6.1.4 TT draft

Editor's note: This test tolerance analysis is incomplete. The following aspects are missing:

- The test system measurement uncertainties for Noc absolute levels are not yet agreed
- Finalisation of the Test Tolerance values may depend on the Noc absolute level uncertainty values

38.533 5.6.2.2+5.6.2.4+7.6.2.2+7.6.2.4 TT draft

Editor's note: This test tolerance analysis is incomplete. The following aspects are missing:

- The test system measurement uncertainties for Noc absolute levels are not yet agreed
- The A3-Offset Test Tolerance may depend on the Noc absolute level uncertainty values

38.533 5.7.1.1+7.7.1.1 TT draft

Editor's note: This test tolerance analysis is incomplete. The following aspects are missing:

- The test system measurement uncertainties for Noc absolute levels are not yet agreed
- The Test Tolerance final values depend on the Noc absolute level uncertainty
- The test system measurement uncertainty for Es relative level, same cell is not yet agreed

38.533 5.7.1.2+7.7.1.2 TT draft

Editor's note: This test tolerance analysis is incomplete. The following aspects are missing:

- The test system measurement uncertainties for Noc absolute levels are not yet agreed
- The Test Tolerance final values depend on the Noc absolute level uncertainty

Annex B: Acceptable uncertainty of test system for test cases defined in TS 38.521-2 for radiative testing

This annex contains suggested uncertainties for each test case in TS 38.521-2.

B.1 Uncertainty budget calculation principle

Three permitted test methodologies, DFF, IFF and NFTF, have been identified for UE RF FR2 test cases defined in TS 38.521-2.

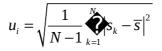
This Annex is deriving Total expanded Measurement Uncertainties per test case for each test methodology.

Threshold MU is equivalent to Total expanded uncertainty of the reference methodology which has been defined as IFF.

If the Total expanded Measurement Uncertainty per test case of a permitted test method is lower than or equal to the threshold MU, then that test method is applicable to the respective test cases defined in TS 38.521-2.

B.1.1 Uncertainty budget calculation principle for DFF

The uncertainty tables should be presented with two stages:


- Stage 1: the calibration of the absolute level of the DUT measurement results is performed by means of using a calibration antenna whose absolute gain is known at the frequencies of measurement
- Stage 2: the actual measurement with the DUT as either the transmitter or receiver is performed.

The MU budget should comprise the following headings:

- 1) The uncertainty source. Compile a complete list of the individual measurement uncertainty elements that contribute to a measurement
- 2) Determine the maximum value of each uncertainty
- 3) Determine the distribution of each uncertainty (rectangular, U-shaped, etc.),
- 4) Calculate (if necessary) the standard deviation of each uncertainty, *u_i*, (NOTE 1) for each uncertainty element,
- 5) Convert the units (if necessary) of each uncertainty element into the chosen unit, i.e., dB,
- Combine ALL the standard uncertainties by the root-sum-squares method to derive the 'combined standard uncertainty',
- 7) Multiply the resulting combined standard uncertainty by an expansion factor 'k' to derive the 'expanded uncertainty' for a given confidence level. All expanded uncertainties are quoted to 95% confidence level, so k is taken as 1.96. This gives 95% confidence that the true value is within 1.96 times the combined standard uncertainty of the measured value to derive the 'expanded uncertainty'.
- 8) Any systematic errors are added to the expanded uncertainty to derive the 'total expanded uncertainty', i.e.,

$$u_{c,\text{total expanded}} = u_{c,\text{expanded}} + u_{c,\text{systematic}} = 1.96\sqrt{\mathbf{Q}}_{i}^{2} + \mathbf{Q}_{i,\text{systematic}}$$

NOTE 1: The standard deviation from a data set of *N* samples is defined as

where s_k are the respective sample results and the mean of all *N* samples. For an uncertainty u_i in dB, the dB values

(instead of the linear powers) of s_k and are used.

 \overline{S}

B.1.2 Uncertainty budget calculation principle for IFF

 \overline{S}

The same as defined in B.1.1.

B.1.3 Uncertainty budget calculation principle for NFTF

The same as defined in B.1.1 with the exception of Stage 2, only the measurement of the DUT transmitter is performed.

B.2 Measurement error contribution descriptions

B.2.1 Measurement error contribution descriptions for DFF

B.2.1.1 Positioning misalignment

This contribution originates from the misalignment of the testing direction and the beam peak direction of the measurement antenna due to imperfect rotation operation. The pointing misalignment may happen in both azimuth and vertical directions and the effect of the misalignment depends highly on the beam width of the beam under test. The same level of misalignment results in a larger measurement error for a narrower beam.

B.2.1.2 Measure distance uncertainty

The cause of this uncertainty contributor is due to the reduction of distance between the measurement antenna and the DUT. If the distance of separation is 2D²/lambda based on D being the entire device size, then the phase variation is 22.5deg. Whether this is the minimum acceptable criteria of phase taper over the entire DUT is FFS and shall be assessed during final MU definition for the test method. Any reduction in the distance of separation increases the phase variation and creates an error which is DUT dependant. Determination of limit of the error shall be done during final MU definition for the test method.

B.2.1.3 Quality of quiet zone

The quality of the quiet zone procedure characterizes the quiet zone performance of the anechoic chamber, specifically the effect of reflections within the anechoic chamber including any positioners and support structures. The MU term additionally includes the amplitude variations effect of offsetting the directive antenna array inside a DUT from the centre of the quiet zone as well as the directivity MU, i.e., the variation of antenna gains in the different direct line-of-sight links. An additional MU term related to phase variation and phase ripple effects which depends on measurement distance is FFS, and shall be assessed during final MU definition for the test method. This might require an augmentation of the quality of the quiet zone validation procedure.

B.2.1.4 Mismatch

Mismatch uncertainty occurs when;

- Changing the signal path between the measurement and calibration procedure
- Evaluating the insertion loss of a signal path

The mismatch uncertainty for a system consisting of a generator, a load and a component in between is defined as

 $\text{Mismatch contribution (standard deviation)} = \frac{|\Gamma_{generator}| \cdot |\Gamma_{load}| \cdot |S_{21}| \cdot |S_{12}| \cdot 100}{\sqrt{2} \cdot 11.5} \text{ dB}$

Mismatch contribution (standard deviation) = $\frac{|\Gamma_{generator}| \cdot |\Gamma_{load}| \cdot |S_{21}| \cdot |S_{12}| \cdot 100}{\sqrt{2} \cdot 11.5} dB$

ΓГ

 $S_{21}S_{21}$

Where denotes the reflection coefficient and is the transmission coefficient, both in linear voltage ratios.

For a cascade of several components, the interactions between all components have to be evaluated. For example, for four devices in a row (shown in Figure B.2.1.4-1) the following contributions have to be accounted for: AB, BC, CD, ABC, BCD, ABCD. The term ABCD represents the interaction between A and D (generator and load) with the components B and C in between.

A B	С	D
-----	---	---

Figure B.2.1.4-1: Cascade of components

The combined mismatch uncertainty is given by the root sum square of the individual contributions:

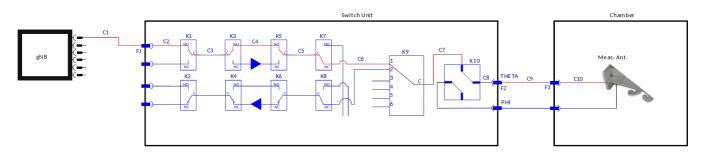
combined mismatch uncertainty = $\sqrt{(AB)^2 + (BC)^2 + (CD)^2 + (ABC)^2 + (BCD)^2 + (ABCD)^2}$

In an optimized test procedure, the overall mismatch uncertainty is smaller when matching pairs of mismatches exist in the calibration and measurement stage since these pairs cancel each other out. Figure B.2.1.4-2 displays a calibration setup, where device D is replaced by device F. The mismatch contributions for this path are AB, BC, CE, ABC, BCE and ABCE. For a result based on the measurement and calibration stage, the mismatch contributions AB, BC, and ABC are matching pairs as they occur both in the measurement and calibration stage. Thus, they can be eliminated [11], and

$$\sqrt{(CD)^2 + (CE)^2 + (BCD)^2 + (BCE)^2 + (ABCD)^2 + (ABCE)^2}$$

the system mismatch uncertainty is obtained as

$$\sqrt{(CD)^2 + (CE)^2 + (BCD)^2 + (BCE)^2 + (ABCD)^2 + (ABCE)^2}$$

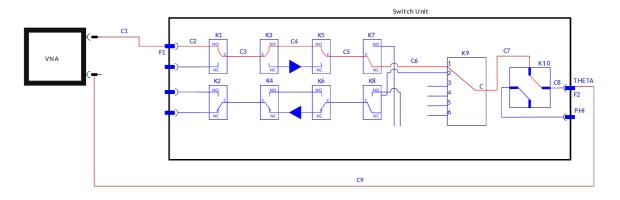

Figure B.2.1.4-2: Sketch of a calibration path

In the following, an example mismatch uncertainty calculation for a TX/RX patch from the measurement equipment to the measurement antenna is performed for a frequency of 43.5GHz. The example path under investigation consists of

four SPDT switches, one SP6T switch and one DPDT switch and microwave cable interconnects with PC2.4 mm connectors. The attenuation and reflectance of typical components suitable for frequencies ranging up to 43.5 GHz have been considered in the calculation of the mismatch uncertainty.

49

Figure B1.1.4.4-3 shows a sample system setup for an EIRP/EIS test case with rather simple complexity of the switch box similar to a current sub 6GHz test setup. It should be noted that the switch unit is significantly less complex than a state-of-the-art switch unit currently used for conformance tests.


Figure B.2.1.4-3: Block Diagram of an EIRP/EIS test case with components from the gNB to the antenna (only portion of switch unit shown)

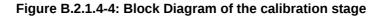

Device / Component	VSWR	Transmission	Identifier in	Additional
		(dB)	Figure B.2.1.4-3	Comment/
				Assumption
System Simulator	3.5		gNB	
Cable	1.5	-5.38	C1	Length: 1.5m
				Loss: 3.59dB/m
Cable	1.5	-0.61	C2, C3, C4, C5,	Length: 0.17m
			C6, C7, C8	Loss: 3.59dB/m
Cable	1.5	-7.18	C9, C10	Length: 2.0m
				Loss: 3.59dB/m
Feedthrough	1.3	-0.66	F1, F2, F3	
SPDT switch	1.9	-1.10	K1, K3, K5, K7	
SP6T switch	2.2	-1.20	K9	
Transfer switch	2.0	-1.10	K10	
Antenna	2.0		Meas. Ant.	

Table B.2.1.4-1: comprises the reflection and transmission properties of the components of the
example path at a frequency of 43.5 GHz

The calculation of the overall mismatch uncertainty for a frequency of 43.5 GHz results in a value of 2.7 dB for the standard deviation, i.e., the expanded uncertainty is 5.3 dB.

Figure B.2.1.4-4 depicts a possible calibration for a part of the setup.

For the VNA a return loss of 30 dB is assumed after a full two-port calibration. The calculation of the system mismatch uncertainty applying the elimination of matching pairs results in a value of 1.0 dB (standard deviation) with an expanded value of 1.9 dB.

Since the overall mismatch uncertainty value is already a standard deviation, which is RSS of values divided by the divisor ($\sqrt{2}$), the overall mismatch uncertainty value should be divided by actual divisor 1 when calculating total mismatch.

B.2.1.5 Standing Wave Between the DUT and measurement antenna

This uncertainty term is related to the amplitude ripple coming from the standing waves between the DUT and measurement antenna. If this term is not considered to be negligible one method to obtain this value is to slide the DUT lambda/4 towards the measurement antenna while measuring the amplitude. The uncertainty term can be derived by performing the standard deviation on the results.

B.2.1.6 Uncertainty of the RF power measurement equipment

The receiving device is used to measure the received signal level in the EIRP tests as an absolute level. These receiving devices are spectrum analysers, communication analysers, or power meters. The uncertainty value will be indicated in the manufacturer's data sheet. It needs to be ensured that appropriate manufacturer's uncertainty contributions are specified for the settings used such as bandwidth and absolute level. If a power meter is used zero offset, zero drift and measurement noise need to be included.

B.2.1.7 Phase curvature

This contribution originates from the finite far field measurement distance, which causes phase curvature across the antenna of UE/reference antenna. At a measurement distance of $2D^2$ /lambda the phase curvature is 22.5 degrees. The impact of this factor shall be assessed during final MU definition for the test method.

B.2.1.8 Amplifier uncertainties

Any components in the setup can potentially introduce measurement uncertainty. It is then needed to determine the uncertainty contributors associated with the use of such components. For the case of external amplifiers, the following uncertainties should be considered but the applicability is contingent to the measurement implementation and calibration procedure.

- Stability

- An uncertainty contribution comes from the output level stability of the amplifier. Even if the amplifier is part of the system for both measurement and calibration, the uncertainty due to the stability shall be considered. This uncertainty can be either measured or determined by the manufacturers' data sheet for the operating conditions in which the system will be required to operate.
- Linearity
 - An uncertainty contribution comes from the linearity of the amplifier since in most cases calibration and measurements are performed at two different input/output power levels. This uncertainty can be either measured or determined by the manufacturers' data sheet.
- Noise Figure
 - When the signal goes into an amplifier, noise is added so that the SNR at the output is reduced with regard to the SNR of the signal at the input. This added noise introduces error on the signal which affects the Error Rate of the receiver thus the EVM (Error Vector Magnitude). An uncertainty can be calculated through the following formula:

$$\varepsilon_{EVM} = 20\log_{10} m + 10^{\frac{-SNR}{20}}$$
 ,

- Where SNR is the signal to noise ratio in dB at the signal level used during the sensitivity measurement.
- Mismatch
 - If the external amplifier is used for both stages, measurement and calibration the uncertainty contribution associated with it can be considered systematic and constant -> 0dB. If it is not the case, the mismatch uncertainty at its input and output shall be either measured or determined by the method described in [12].
- Gain
 - If the external amplifier is used for both stages, measurement and calibration the uncertainty contribution associated with it can be considered systematic and constant -> 0dB. If it is not the case, this uncertainty shall be considered.

B.2.1.9 Random uncertainty

This contribution is used to account for all the unknown, unquantifiable, etc. uncertainties associated with the measurements.

Random uncertainty MU contributions are normally distributed.

The random uncertainty term, by definition, cannot be measured, or even isolated completely. However, past system definitions provide an empirical basis for a value. Current LTE SISO OTA measurements have random uncertainty contributions of ~0.2dB. A value of 0.5dB is suggested due to increased sensitivity to random effects in more complex, higher frequency NR test systems.

B.2.1.10 Influence of the XPD

This factor takes into account the uncertainty caused due to the finite cross polar discrimination (XPD) between the two polarization ports of the measurement probe. The XPD of the probe antenna shall be take into account during final MU definition for the test method.

A typical probe antenna can have XPD of 30dB.

A transmission matrix and calibration setup as shown in Figure B.2.1.10-1 is considered here. Typically, a single-polarized reference antenna with known gain is placed at the centre of the quiet zone and the total attenuation, L,

Release 16

between the reference antenna terminal and the feed antenna terminals is determined as part of the range reference calibration procedure.

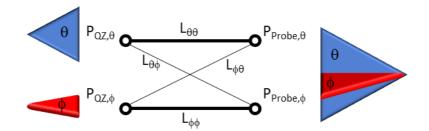
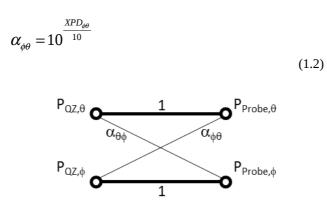
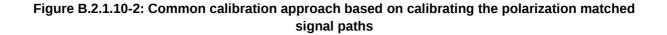


Figure B.2.1.10-1: Calibration Setup

Since the reference antenna is considered a single-polarized antenna, the XPD effect is negligible. Since the measurement probe is assumed to be a dual-linearly polarized antenna, leakage from one terminal/polarization to the other, i.e., XPD, needs to be considered.


The dual-linearly polarized measurement probe has two terminals corresponding to a set of orthogonal polarizations, θ and ϕ which match the orientations of the reference antenna. The most thorough calibration procedure would determine the path losses between the four different combinations of signal paths: $\theta\theta$, $\theta\phi$, $\phi\theta$, and $\phi\phi$, e.g., the power received by the measurement probe at the θ polarization/terminal, $P_{\text{Feed},\theta}$, is attenuated by $L_{\phi\theta}$ with respect to the power delivered to the reference antenna oriented in the ϕ polarization and placed in the centre of quiet zone, $P_{QZ,\phi}$.


The most common calibration approach, however, is based on calibrating the polarization matched paths in Figure B.2.1.10-1 (thick solid lines), i.e., $\theta\theta$ and $\phi\phi$. In this case, as illustrated in Figure B.2.1.10-2, the normalized pathlosses $L_{\theta\theta}$ and $L_{\phi\phi}$ are 1 and the pathlosses of the crossed components become the XPD terms of the measurement probe:

$$\alpha_{\theta\phi} = 10^{\frac{XPD_{\theta\phi}}{10}}$$

(1.1)

and

In the remainder of this analysis, it is assumed that the leakage between the two polarization ports of the measurement probe is assumed to be the same, i.e., $XPD = XPD_{\theta\theta} = XPD_{\theta\theta}$ and $\alpha = \alpha_{\theta\phi} = \alpha_{\phi\theta}$.

The normalized powers at the measurement probe terminals can then be written as

$$P_{\text{Probe},\theta} = P_{\text{QZ},\theta} + \alpha P_{\text{QZ},\phi}$$

$$P_{\text{Probe},\phi} = P_{\text{QZ},\phi} + \alpha P_{\text{QZ},\theta}$$

$$(1.3)$$

The normalized ratio of total powers at measurement probe and the centre of the quiet zone is therefore

$$\frac{\mathbf{P}_{\text{Probe}}}{\mathbf{P}_{\text{QZ}}} = \frac{\mathbf{P}_{\text{Probe},\theta} + \mathbf{P}_{\text{Probe},\phi}}{\mathbf{P}_{\text{QZ},\theta} + \mathbf{P}_{\text{QZ},\phi}} = \frac{\left(\mathbf{P}_{\text{QZ},\theta} + \mathbf{P}_{\text{QZ},\phi}\right)\left(1+\alpha\right)}{\mathbf{P}_{\text{QZ},\theta} + \mathbf{P}_{\text{QZ},\phi}} = 1+\alpha$$
(1.5)

This simple analysis shows that the XPD of the measurement probe introduces a small error of the total power measured by the measurement probe and that the conservation of <u>measured</u> powers is not guaranteed, i.e., the MU based on the XPD can be expressed as

$$MU_{XPD}[dB] = 10 \log_{10}(1+\alpha) = 10 \log_{10} + 10^{\frac{XPD}{10}}$$
(1.6)

This XPD MU is tabulated for different levels of XPD in Table B.2.1.10-1.

Table B.2.1.10-1: XPD MU for different XPD value	Table B.2.1.10-	1: XPD MU fo	or different XPD	values
--	-----------------	--------------	------------------	--------

XPD [dB]	MU _{XPD} [dB]
-20	0.043
-25	0.014
-30	0.004
-35	0.001
-40	0.000

When the range reference calibration is based on a full matrix-based approach, i.e., all signal paths are calibrated, the conservation of measured powers is guaranteed. As shown in Figure B.2.1.10-3, the polarization-matched signal paths take into account the leakage of power into the cross paths.

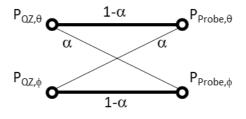


Figure B.2.1.10-3: Calibration approach based on calibrating all signal paths

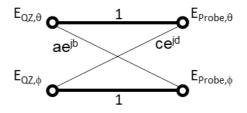
The powers at the measurement probe can now be written as

$$P_{\text{Probe},\theta} = (1 - \alpha)P_{\text{QZ},\theta} + \alpha P_{\text{QZ},\phi}$$

$$(1.7)$$

$$P_{\text{Probe},\phi} = (1 - \alpha)P_{\text{QZ},\phi} + \alpha P_{\text{QZ},\theta}$$

$$(1.8)$$


The normalized ratio of total powers at measurement probe and the centre of the quiet zone is then

$$\frac{\mathbf{P}_{\text{Probe}}}{\mathbf{P}_{\text{QZ}}} = \frac{\mathbf{P}_{\text{Probe},\theta} + \mathbf{P}_{\text{Probe},\phi}}{\mathbf{P}_{\text{QZ},\theta} + \mathbf{P}_{\text{QZ},\phi}} = \frac{\mathbf{P}_{\text{QZ},\theta} + \mathbf{P}_{\text{QZ},\phi}}{\mathbf{P}_{\text{QZ},\theta} + \mathbf{P}_{\text{QZ},\phi}} = 1$$
(1.9)

This simple analysis now shows that for a matrix-based calibration of all signal paths the XPD of the measurement probe no longer introduces any error and that the conservation of <u>measured</u> powers is guaranteed, i.e., the MU based on the XPD is 0dB.

The derivation of the XPD MU based on powers is a more straightforward and less complex approach than with electric fields as attempted in [2]. This annex shows that the same XPU MU result as derived in (1.5) can be derived using electric fields.

The corresponding signal paths are illustrated in Figure B.2.1.10-4.

Figure B.2.1.10-4: Signal paths for electric fields (based on calibrating the polarization matched signal paths)

The normalized fields at the measurement probe terminals can then be written as

$$E_{\text{Probe},\theta} = E_{\text{QZ},\theta} + ce^{jd} E_{\text{QZ},\phi}$$
(1.10)

$$E_{\text{Probe},\phi} = E_{\text{QZ},\phi} + ae^{jb}E_{\text{QZ},\theta}$$
(1.11)

The transmission matrix can be defined as H

$$H = \begin{array}{c} \mathbf{\hat{\Phi}} 1 & ae^{jb} \mathbf{\hat{\Phi}} \\ \mathbf{\hat{\Phi}} e^{jd} & 1 \end{array}$$

(1.13)

The total magnitude component of the electric field including coherence/interference terms at the probe is

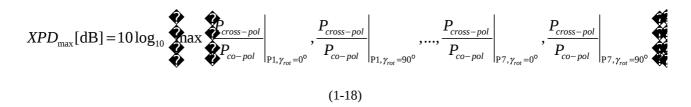
$$E_{\text{Probe},T} = \sqrt{\left|E_{\text{Probe},\theta}\right|^{2} + \left|E_{\text{Probe},\theta}\right|^{2}} = \sqrt{\left|E_{\text{QZ},\theta} + ce^{jd}E_{\text{QZ},\theta}\right|^{2} + \left|E_{\text{QZ},\phi} + ae^{jb}E_{\text{QZ},\theta}\right|^{2}} = \sqrt{\left|E_{\text{QZ},\theta} + cE_{\text{QZ},\phi}\cos(d)\right|^{2} + \left(cE_{\text{QZ},\phi}\sin(d)\right)^{2}} + \left(cE_{\text{QZ},\phi}\sin(d)\right)^{2}} + \left(aE_{\text{QZ},\theta}\cos(b)\right)^{2} + \left(aE_{\text{QZ},\theta}\sin(b)\right)^{2}} = \sqrt{\left|E_{\text{QZ},\theta}^{2} + 2cE_{\text{QZ},\theta}E_{\text{QZ},\phi}\cos(d) + c^{2}E_{\text{QZ},\phi}^{2}\cos^{2}(d) + c^{2}E_{\text{QZ},\phi}^{2}\sin^{2}(d)}\right|^{2}} = \sqrt{\left|E_{\text{QZ},\theta}^{2} + 2aE_{\text{QZ},\theta}E_{\text{QZ},\phi}\cos(b) + a^{2}E_{\text{QZ},\theta}^{2}\cos^{2}(b) + a^{2}E_{\text{QZ},\theta}^{2}\sin^{2}(b)\right|^{2}} = \sqrt{\left|E_{\text{QZ},\theta}^{2} + 2aE_{\text{QZ},\theta}E_{\text{QZ},\phi}\cos(b) + a^{2}E_{\text{QZ},\theta}E_{\text{QZ},\theta}\cos(b) + a^{2}E_{\text{QZ},\theta}\cos(b)\right|^{2} + \left|E_{\text{QZ},\theta}^{2}\cos^{2}(b) + a^{2}E_{\text{QZ},\theta}\cos(b)\right|^{2}} = \sqrt{\left|E_{\text{QZ},\theta}^{2} + 2aE_{\text{QZ},\theta}E_{\text{QZ},\phi}\cos(b) + a^{2}E_{\text{QZ},\theta}E_{\text{QZ},\theta}\cos(b)\right|^{2} + \left|E_{\text{QZ},\theta}^{2}\cos^{2}(b) + a^{2}E_{\text{QZ},\theta}\cos(b)\right|^{2}} = \sqrt{\left|E_{\text{QZ},\theta}^{2} + 2aE_{\text{QZ},\theta}E_{\text{QZ},\theta}\cos(b) + a^{2}E_{\text{QZ},\theta}E_{\text{QZ},\theta}\cos(b)\right|^{2} + \left|E_{\text{QZ},\theta}^{2} + 2aE_{\text{QZ},\theta}\cos(b)\right|^{2} + \left|E_{\text{QZ},\theta}^{2} + 2aE_{\text{QZ},\theta}\cos(b)\right|^{2}$$

When it is assumed that leakage between the two polarization ports of the measurement probe is assumed to be the same, then $a=c=10^{\text{XPD}/20}$ in (1.14). Additionally, it has to be assumed that $d=b+\pi$ which guarantees the orthogonality between the two field vectors, i.e., the dot product between the vectors has to be zero. With these assumptions, Equation (1.14) will become

$$E_{\text{Probe},T} = \sqrt{\left(E_{\text{QZ},\theta}^{2} + E_{\text{QZ},\phi}^{2}\right)\left(1 + a^{2}\right)}$$
(1.15)

The normalized ratio of total powers at measurement probe and the centre of the quiet zone is therefore

$$\frac{\mathbf{P}_{\text{probe}}}{\mathbf{P}_{\text{QZ}}} \mathbf{P}_{\text{QZ},T}^{2} = 1 + a^{2} = 1 + 10^{\frac{2XPD}{20}} = 1 + 10^{\frac{XPD}{10}}$$
(1.16)


The derived XPD MU based on electric fields which included the coherence/interference terms in (1.16) is the same as in (1.6).

The XPD of the measurement system shall be determined from the quality of quiet zone measurements, see clause O.2 of [7], at the 7 reference points, P1 through P7, specifically with reference AUT orientations $\gamma=\beta=0^{\circ}$ for distributed axes systems, Section O.2.6.1 [7], or reference AUT orientations $\beta=\alpha=0^{\circ}$ for combined-axes systems, Section O.2.6.2 [7]. Alternatively, it can be determined using a reference antenna optimized for XPD measurements and with the corresponding alignment to achieve optimal polarization matching between the reference and the measurement antenna.

The XPD for each reference point shall be calculated as the ratio of cross-polarized to co-polarized measured powers and the largest XPD from the 7 different reference points shall be used to determine the XPD MU, i.e.,

$$MU_{XPD}[dB] = 10 \log_{10} (1 + \alpha_{max}) = 10 \log_{10} + 10^{\frac{XPD_{max}}{10}}$$
(1-17)

where

B.2.1.11 Insertion loss Variation

This uncertainty contribution comes from introducing an additional cable which is not present for both the calibration and DUT measurement. If the cables remain the same for the calibration and DUT measurement, then the contribution should be set to zero.

If an additional cable is added for one part of the test, the insertion loss must be accounted for in the measurement results. If the insertion loss is measured the uncertainty contribution will be the combined uncertainty related to the insertion loss measurement. The insertion loss can also be taken from the datasheet and assumed to have a rectangular distribution.

B.2.1.12 RF leakage (from measurement antenna to receiver/transmitter)

This contribution denotes noise leaking in to connector and cable(s) between measurement antenna and receiving/transmitting equipment. The contribution also includes the noise leakage between the connector and cable(s) between reference antenna and transmitting equipment for the calibration phase. This uncertainty contributor is contained in the contributor quality of quiet zone described in clause B.2.1.3 and its value therefore is set to zero.

B.2.1.13 Misalignment of positioning System

This contribution originates from uncertainty in sliding position and turn table angle/tilt accuracy. If the calibration antenna is aligned to the beam peak this contribution can be considered negligible and therefore set to zero.

B.2.1.14 Uncertainty of the Network Analyzer

This contribution originates from all uncertainties involved transmission magnitude measurement with a network analyser, for example: drift, frequency flatness, temperature variation from kit calibration to path losses measurement as well as interpolation of calibration data if test frequencies were not calibrated during path loss characterization. The uncertainty value will be indicated in the manufacturer's data sheet. It needs to be ensured that appropriate manufacturer's uncertainty contribution is specified for the absolute levels measured.

When an end-to-end system calibration approach is used, the absolute levels are related to the total system losses of the measurement path. When a split calibration approach is used, separate MU contributions need to be determined

- u_cond: transmission magnitude uncertainty for the conducted portion of the calibration; the absolute levels are related to the total system losses for the portion of the system calibrated
- u_rad: transmission magnitude uncertainty for the radiated portion of the calibration; the absolute levels are related to the total system losses for the portion of the system calibrated

The total MU of the network analyser for the split calibration is the RSS'ed value of u_cond and u_rad.

B.2.1.15 Uncertainty of the absolute gain of the calibration antenna

The calibration antenna only appears in Stage 2. Therefore, the gain uncertainty has to be taken into account. This uncertainty will come from a calibration report with traceability to a National Metrology Institute with measurement uncertainty budgets generated following the guidelines outlined in internationally accepted standards.

B.2.1.16 Positioning and pointing misalignment between the reference antenna and the measurement antenna

This contribution originates from reference antenna alignment and pointing error. In this measurement if the maximum gain direction of the reference antenna and the transmitting antenna are aligned to each other, this contribution can be considered negligible and therefore set to zero.

B.2.1.17 gNB emulator uncertainty

gNB emulator is used to drive a signal to the horn antenna (via multiple external components such as a switch box, an amplifier and a circulator, etc.) in sensitivity tests either as an absolute level or as a relative level. Receiving device used is typically a UE/phablet/tablet/FWA. Generally there occurs uncertainty contribution from absolute level accuracy, non-linearity and frequency characteristic of the gNB emulator.

For practical reasons, in a case that a VNA is used as calibration equipment, gNB emulator is connected to the system after the calibration measurement (Stage 2) is performed by the VNA. Hence, the uncertainty on the absolute level of gNB emulator (transmitter device) cannot be assumed as systematic. This uncertainty should be calculated from the manufacturer's data in logs with a rectangular distribution, unless otherwise informed. Furthermore, the uncertainty of the non-linearity is included in the absolute level uncertainty.

B.2.1.18 Phase centre offset of calibration

Gain is defined at the phase centre of the antenna. If the phase centre of the calibration antenna is not aligned at the centre of the set up during the calibration, then there will be uncertainty related to the measurement distance.

The phase centre of a horn antenna moves with frequency along the taper length of the antenna therefore during the calibration the phase centre of all frequencies will not be aligned with the setup centre. The associated uncertainty term can be estimated using the following formula [14]:

$$\pm 20\log_{10}*\frac{d_m-d_p}{d_m}$$

+/-20log((measurement distance – d)/measurement distance) [14]

Where d_m is the measurement distance and d_p is the maximum positional uncertainty. For a Horn antenna this is equal to 0.5 the length of the taper. This uncertainty is considered to have a rectangular distribution so the standard uncertainty is calculated by dividing the uncertainty by $\sqrt{3}$.

The same equation applies to log periodic antennas with d_m being 0.5 the length of the boom.

For a dipole antenna, given that the phase centre of the antenna is easily aligned with the centre of the set up the measurement uncertainty is zero.

If the calibration antenna (i.e. horn) is adjusted during the calibration to align the phase centre to the setup centre then this uncertainty term can be considered to be zero.

As an example a horn with a taper length of 50 mm, at 43.5 GHz and a measurement distance of 72.55 cm the uncertainty term is 0.62, with a rectangular distribution the standard uncertainty is 0.358 dB.

For DFF systems this uncertainty contribution must be included.

B.2.1.19 Quality of quiet zone for calibration process

During the calibration process the calibration antenna will be placed at the centre of the quiet zone. Therefore, only point P1 from the procedure outlined in B.2.1.3 needs to be considered for the quality of the quiet zone validation measurement.

For gain calibrations, the standard uncertainty of the EIRP results obtained following the method outlined in 2.10 shall be used. For efficiency calibrations, the standard uncertainty of the TRP result obtained following the method outlined in 2.9 shall be used.

B.2.1.20 Standing wave between reference calibration antenna and measurement antenna

This term comes from the amplitude ripple caused by the standing waves between the reference antenna and measurement antenna. This value can be captured by sliding (lambda/4) the reference antenna towards the measurement antenna as the standing waves go in and out of phase causing a ripple in amplitude. The uncertainty term can be derived by performing the standard deviation on the results.

B.2.1.21 Influence of the calibration antenna feed cable (Flexing cables, adapters, attenuators, connector repeatability)

During the calibration measurement a cable (adapters, attenuators) is used to feed the calibration antenna. This uncertainty captures any influence the cable may have on the measurements result. This term can be assessed by repeating measurements while flexing the cables and rotary joints and using the largest difference between the results as the uncertainty. For some calibration test configurations this uncertainty can be considered to be zero.

B.2.1.22 Influence of TRP measurement grid

This contributor describes the uncertainty of the measured TRP value due to the finite number of measurement grid points.

B.2.1.23 Influence of beam peak search grid

This contributor describes the uncertainty of absolute TX power beam peak measurements, e.g., EIRP in beam peak direction, due to the finite number of measurement points in the beam peak search grid.

B.2.1.24 Systematic error due to TRP calculation/quadrature

When calculating TRP using different quadrature of constant step size data, a mean error shall be taken into account. The value of this contributor depends on the number of measurement grid points and the quadrature technique used.

No mean error has to be taken into account for constant density approach (using the charged particle or the golden spiral implementation) for non-sparse antenna arrays.

This measurement uncertainty contributor represents a systematic uncertainty and must not be root sum squared with contributors described by standard deviation.

B.2.1.25 Multiple measurement antenna uncertainty

This contributor describes the uncertainty caused by switching multiple measurement antennas either by mechanically or electrically to measure TRx spurious emission.

A frequency range of spurious tests (e.g. general spurious emission) is defined from 6 GHz to second harmonic of FR2 bands such as 80 GHz. Since that frequency range is quite wide, it is impossible to cover the whole range only by one measurement antenna. Therefore to provide a feature of the spurious emission measurement by FR2 test system, the system has to equip a capability to switch corresponding measurement antennas in an anechoic chamber. One of the mechanical antenna switching methods can be a structure of a slider. Then a repeatability of a bending loss of a feeder cable which is connected to the measurement antennas shall be taken into account. On the other hand for electrical antenna switching, since multiple antennas need to be aligned in a chamber with a different position, the quiet zone characteristics might receive an influence by a displacement from the ideal focal point. In a case of electrical switching system, if the measurement antenna configuration is the same for the quality of the quiet zone measurement and the DUT measurement, then this uncertainty term is encompassed in the quality of the quiet zone results.

B.2.1.26 DUT repositioning

This contributor describes the uncertainty due to a displacement of a DUT. The DUT may need to be re-positioned between measurements, for instance when the battery runs low in charge.

B.2.1.27 Influence of noise

This contributor describes an offset uncertainty factor caused by a noise floor especially in a case of low SNR. This contributor works as a bias to measured results only to a direction to increase values and thus this shall be included in the uncertainty budget table as a systematic uncertainty. The uncertainty value can be derived by the following equation.

B.2.1.28 Systematic error related to beam peak search

When calculating beam peak search a systematic error shall be taken into account. The value of this contributor depends on the number of measurement grid points.

This measurement uncertainty contributor represents a systematic uncertainty and must not be root sum squared with contributors described by standard deviation.

B.2.1.29 Influence of spherical coverage grid

This contributor describes the uncertainty of spherical measurements, due to the finite number of measurement points in the spherical coverage grid.

B.2.1.30 Systematic error related to EIS spherical coverage

When calculating EIS spherical coverage, a mean error shall be taken into account. The value of this contributor depends on the DL power step size used for the EIS search and then number of measurement grid points.

This measurement uncertainty contributor represents a systematic uncertainty and must not be root sum squared with contributors described by standard deviation.

B.2.1.31 Misalignment of DUT due to change of DUT orientation

This contributor describes the uncertainty due to a mis-alignment of a DUT after a change of DUT orientations described in Tables J.2-1 through J.2-3 in [3] during spurious emission and spherical coverage measurements. This contribution is negligible with spherical coverage TC as far as the misalignment is within the accuracy of DUT repositioning.

B.2.1.32 Additional Impact of Interferer ACLR

This contribution describes the effect of the interferer ACLR over the wanted signal channel when testing ACS and inband blocking. Even if power is set perfectly in the configured transmission bandwidth, interferer power will leak in the wanted signal channel due to its ACLR.

B.2.1.33 Modulated Interferer uncertainty

Modulated Interferer is used to drive a signal to the horn antenna (via multiple external components such as a switch box, an amplifier and a circulator, etc.) in ACS and In-band Blocking tests either as an absolute level or as a relative level. Receiving device used is typically a UE/phablet/tablet/FWA. Generally, there occurs uncertainty contribution from absolute level accuracy, non-linearity and frequency characteristic of the interferer generator.

For practical reasons, in a case that a VNA is used as calibration equipment, Modulated Interferer is connected to the system after the calibration measurement (Stage 2) is performed by the VNA. Hence, the uncertainty on the absolute level of Modulated Interferer (transmitter device) cannot be assumed as systematic. This uncertainty should be calculated from the manufacturer's data in logs with a rectangular distribution, unless otherwise informed. Furthermore, the uncertainty of the non-linearity is included in the absolute level uncertainty.

B.2.1.34 Influence of ETC on EIRP/EIS

This systematic error contributor describes the uncertainty of EIRP/EIS measurements with the ETC enclosure surrounding the DUT, e.g., due to lensing or diffraction effects of the enclosure. This term is assessed by using the absolute difference of EIRP means captured during the Quality of Quiet Zone validation in NTC environment and the EIRP means captured during the Quality of Quiet Zone validation in ETC environment. For NTC validation, the NTC path loss calibration, i.e., the path loss without the ETC enclosure, is applied while for the ETC validation, a path loss calibration is performed with the ETC enclosure surrounding the calibration antenna. Alternate approaches to further improve or completely compensate this systematic error are FFS.

B.2.2 Measurement error contribution descriptions for IFF

B.2.2.1 Positioning misalignment

See B.2.1.1.

B.2.2.2 Measure distance uncertainty

See B.2.1.2. For IFF1 this can be considered to be zero.

B.2.2.3 Quality of Quiet Zone

See B.2.1.3.

B.2.2.4 Mismatch

See B.2.1.4.

B.2.2.5 Standing wave between DUT and measurement antenna

See B.2.1.5.

B.2.2.6 Uncertainty of the RF power measurement equipment

See B.2.1.6.

B.2.2.7 Phase Curvature

See B.2.1.7. For IFF1 this can be considered to be zero.

B.2.2.8 Amplifier Uncertainties

See B.2.1.8.

B.2.2.9 Random uncertainty

See B.2.1.9.

B.2.2.10 Influence of XPD

See B.2.1.10.

B.2.2.11 Insertion Loss Variation

See B.2.1.11.

B.2.2.12 RF leakage (from measurement antenna to receiver/transmitter)

See B.2.1.12.

B.2.2.13 Misalignment of positioning system

See B.2.1.13.

B.2.2.14 Uncertainty of the Network Analyzer

See B.2.1.14.

B.2.2.15 Uncertainty of the absolute gain of the calibration antenna

See B.2.1.15.

B.2.2.16 Positioning and pointing misalignment between the reference antenna and the measurement antenna

See B.2.1.16.

B.2.2.17 gNB emulator uncertainty

See B.2.1.17.

B.2.2.18 Phase centre offset of calibration

See B.2.1.18. For IFF1 this can be considered to be zero.

B.2.2.19 Quality of the Quiet Zone for Calibration Process

See B.2.1.19.

B.2.2.20 Standing wave between reference calibration antenna and measurement antenna

See B.2.1.20.

B.2.2.21 Influence of the calibration antenna feed cable (Flexing cables, adapters, attenuators, connector repeatability)

See B.2.1.21.

B.2.2.22 Influence of TRP measurement grid

See B.2.1.22.

B.2.2.23 Influence of beam peak search grid

See B.2.1.23.

B.2.2.24 Systematic error due to TRP calculation/quadrature

See B.2.1.24.

B.2.2.25 Multiple measurement antenna uncertainty

See B.2.1.25.

B.2.2.26 DUT repositioning

See B.2.1.26.

B.2.2.27 Influence of noise

See B.2.1.27.

B.2.2.28 Systematic error related to beam peak search

See B.2.1.28.

B.2.2.29 Influence of spherical coverage grid

See B.2.1.29.

B.2.2.30 Systematic error related to EIS spherical coverage

See B.2.1.30.

B.2.2.31 Misalignment of DUT due to change of DUT orientation

See B.2.1.31.

B.2.2.32 Additional Impact of Interferer ACLR

See B.2.1.32.

B.2.2.33 Modulated Interferer uncertainty

See B.2.1.33.

B.2.2.34 Influence of ETC on EIRP/EIS

See B.2.1.34.

B.2.3 Measurement error contribution descriptions for NFTF

B.2.3.1 Axes Alignment

Includes the following mechanical alignment errors:

- The uncertainty related with the lateral displacement between the horizontal and vertical axes of the DUT positioner.

- The differences from 90° of the angle between the horizontal and vertical axes.
- The horizontal mis-pointing of the horizontal axis to the probe reference point for Theta=0°.

These mechanical errors can result in sampling the field on a non-ideal sphere. This uncertainty can be considered to have a normal distribution.

B.2.3.2 Measurement Distance uncertainty

See B.2.1.2.

B.2.3.3 Quality of the Quiet Zone

See B.2.1.3.

B.2.3.4 Mismatch

See B.2.1.4.

B.2.3.5 Multiple Reflections: Coupling Measurement Antenna and DUT

The multiple reflections occur when a portion of the transmitted signal is reflected form the receiving antenna back to the transmitting antenna and re-reflected by the transmitting antenna back to the receiving antenna. This uncertainty can be determined by multiple measurements of the DUT when at different distance from the probes. This uncertainty is assumed to have a U-shaped distribution.

B.2.3.6 Uncertainty of the RF power measurement equipment

See B.2.1.6.

B.2.3.7 Phase curvature

See B.2.1.7.

B.2.3.8 Amplifier uncertainties

See B.2.1.8.

B.2.3.9 Random uncertainty

See B.2.1.9.

B.2.3.10 Influence of the XPD

Refer to B.2.1.10. If the Probe Polarization Amplitude and Phase is measured and corrected for then this uncertainty term can be considered to be zero.

B.2.3.11 NF to FF truncation

The measured near field is expanded using a finite set of spherical modes. The number of modes is linked to number of samples. The filtering effect generated by the finite number of modes can improve measurement results by removing signals from outside the physical area of the DUT. Care must be taken in order to make sure the removed signals are not from the DUT itself. This term also includes the uncertainty related to the scan area truncation. This uncertainty is usually negligible. This uncertainty is assumed to have a normal distribution.

B.2.3.12 Probe Polarization Amplitude and Phase

The amplitude and phase of the probe polarization coefficients should be measured. This uncertainty is assumed to have a normal distribution.

B.2.3.13 Probe Array Uniformity (for multi-probe systems only)

This is the uncertainty due to the fact that different probes are used for each physical position. Different probes have different radiation patterns. Generally, the probe array is calibrated so that the uniformity of the probes is achieved. This uncertainty term must be considered if the amplitude and phase of each probe is not identical or corrected for. This uncertainty is assumed to have a normal distribution

B.2.3.14 Uncertainty of the Network Analyzer

See B.2.1.14.

B.2.3.15 Uncertainty of the absolute gain of the calibration antenna

See B.2.1.15.

B.2.3.16 Phase Recovery Non-Linearity over signal bandwidth

This uncertainty originates from the non-linearity of the phase recovery for wide band signal. The phase recovery can be due to either phase non-linearity of the receiver and/or the DUT itself. The method to quantify the non-linearites is not defined.

B.2.3.17 Probe Pattern Effect

The probe/s pattern/s is assumed to be known so that the DUT measurement in near field can be corrected when performing the near field to far field transform. If the probe pattern is known, then the uncertainty term is zero. There is no direct dependence between the DUT pattern and the probe pattern in near field measurements. This uncertainty is assumed to have a normal distribution.

B.2.3.18 Phase centre offset of calibration

See B.2.1.18.

B.2.3.19 Quality of the Quiet Zone for Calibration Process

See B.2.1.19.

B.2.3.20 Phase Drift and Noise

This uncertainty is due to the noise level and drift of the test range and should be determined or measured at the DUT location. The noise level is usually measured with a Spectrum Analyzer. This uncertainty is assumed to have a normal distribution.

B.2.3.21 Mismatch in the connection of the calibration antenna

See B.2.1.4.

B.2.3.22 Influence of TRP measurement grid

See B.2.1.22.

B.2.3.23

B.2.3.24

B.2.3.25 Leakage and Crosstalk

This uncertainty can be addressed by measurements on the actual system setup. The leakage and crosstalk cannot be separated from the random amplitude and phase errors so that the relative importance should be determined. This uncertainty is assumed to have a normal distribution.

B.2.3.26 Systematic error due to TRP calculation/quadrature

See B.2.1.24.

B.2.3.27 Multiple measurement antenna uncertainty

See B.2.1.25.

B.2.3.28 DUT repositioning

See B.2.1.26.

B.2.3.29 Influence of noise

See B.2.1.27.

B.3 UE maximum output power

Following tables summarize the MU threshold for EIRP and TRP measurements for UE maximum output power. The origin MU values for different test setups with varies parameters can be found in following clauses.

Power Class	Frequenc y	MBW	Power (NOTE2)	Threshol d MU value for	Threshold MU value for ETC	
				NTC [dB] (NOTE1)	[dB] (NOTE1)	
PC3	23.45GHz <= f <= 32.125GH z	BW <= 400MHz	P = Max Output Power	4.89	[5.35]	
	32.125GH z < f <= 40.8GHz			5.09	[5.55]	
PC1	23.45GHz <= f <= 32.125GH z	BW <= 400MHz	P = Max Output Power	FFS	FFS	
	32.125GH z < f <= 40.8GHz	•		FFS	FFS	
NOTE 1:	 Total EIRP Expanded MU for IFF for Quiet Zone size ≤30cm in Table B.3.2-2 for PC3 UEs (NTC), in Table B.3.2-8 for PC3 UEs (ETC) and B.3.2-6 for PC1 UEs. 					
NOTE 2:						

Table B.3-1: MU threshold for EIRP measurement for UE maximum output power

Table B.3-2: MU threshold for TRP measurement for UE maximum output p	ower
---	------

Power Class	Frequency	MBW	Power (NOTE2)	Threshold MU value (NOTE 1)			
PC3	23.45GHz <= f	BW <= 400MHz	P = Max Output	4.42			
	<= 32.125GHz		Power				
	32.125GHz < f			4.62			
	<= 40.8GHz						
PC1	23.45GHz <= f	BW <= 400MHz	P = Max Output	FFS			
	<= 32.125GHz		Power				
	32.125GHz < f			FFS			
	<= 40.8GHz						
NOTE 1: Total TRP Expanded MU for IFF for Quiet Zone size \leq 30cm in Table B.3.2-2 for PC3							
	UEs and B.3.2-6 for PC1 UEs						
NOTE 2: Max ou	NOTE 2: Max output power level for device with corresponding power class.						

Power Class	Frequency	MBW	Power	Threshol d MU value (NOTE 1)	
PC3	23.45GHz <= f <= 32.125GHz	BW <= 400MHz	P = TBD	4.60	
	32.125GHz < f <= 40.8GHz			5.20	
PC1	23.45GHz <= f <= 32.125GHz	BW <= 400MHz	P = TBD	FFS	
	32.125GHz < f <= 40.8GHz			FFS	
NOTE 1:Total Spherical coverage Expanded MU for IFF for Quiet Zone size ≤ 30cm in Tables B.3.2-4 for PC3 UEs and B.3.2- 7 for PC1 UEs					

Table B.3-3: MU threshold for Spherical coverage measurement for UE maximum output power

B.3.1 Uncertainty budget format and assessment for DFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.3.1-1.

UID	Description of uncertainty contribution	Details in annex			
	Stage 2: DUT measurement				
1	Positioning misalignment	B.2.1.1			
2	Measure distance uncertainty	B.2.1.2			
3	Quality of quiet zone	B.2.1.3			
4	Mismatch	B.2.1.4			
5	Standing Wave Between the DUT and measurement antenna	B.2.1.5			
6	Uncertainty of the RF power measurement equipment	B.2.1.6			
7	Phase curvature	B.2.1.7			
8	Amplifier uncertainties	B.2.1.8			
9	Random uncertainty	B.2.1.9			
10	Influence of the XPD	B.2.1.10			
11	Insertion Loss Variation	B.2.1.11			
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.1.12			
13	Influence of TRP measurement grid	B.2.1.22			
14	Influence of beam peak search grid	B.2.1.23			
15	Multiple measurement antenna uncertainty	B.2.1.25			
16	DUT repositioning	B.2.1.26			
17	Influence of spherical coverage grid	B.2.1.29			
	Stage 1: Calibration measurement				
18	Mismatch	B.2.1.4			
19	Amplifier uncertainties	B.2.1.8			
20	Misalignment of positioning System	B.2.1.13			
21	Uncertainty of the Network Analyzer	B.2.1.14			
22	Uncertainty of the absolute gain of the calibration antenna	B.2.1.15			
23	Positioning and pointing misalignment between the reference antenna and	B.2.1.16			
	the measurement antenna				
24	Phase centre offset of calibration antenna	B.2.1.18			
25	Quality of quiet zone for calibration process	B.2.1.19			
26	Standing wave between reference calibration antenna and measurement	B.2.1.20			
	antenna				
27	Influence of the calibration antenna feed cable	B.2.1.21			
28	Insertion Loss Variation	B.2.1.11			
	Systematic uncertainties				
29	Systematic error due to TRP calculation/quadrature	B.2.1.24			
30	Influence of noise	B.2.1.27			
31	Systematic error related to beam peak search	B.2.1.28			
32	Influence of ETC on EIRP/EIS	B.2.1.34			

69

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of D = [5 cm], f = {22.65GHz, 31.1GHz, 45.1GHz}, P = [maximum output power].
- The uncertainty assessment for EIRP and TRP is provided in Table B.3.1-2.

Table B.3.1-2: Uncertainty assessment for EIRP and TRP measurement (f=TBD, D=TBD)

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty	
	Stage	2: DUT meas	urement		(σ) [dB]	
1	Positioning misalignment					
2	Measure distance uncertainty					
3	Quality of quiet zone (NOTE 2)					
4	Mismatch (NOTE 3)					
- 5	Standing Wave Between the DUT					
5	and measurement antenna					
6	Uncertainty of the RF power					
•	measurement equipment (NOTE					
	4)					
7	Phase curvature					
8	Amplifier uncertainties					
9	Random uncertainty					
10	Influence of the XPD					
11	Insertion Loss Variation					
12	RF leakage (from measurement					
	antenna to the receiver/transmitter)					
13	Influence of TRP measurement	0.25	Actual	1	0.25	
	grid (NOTE 5)					
14	Influence of beam peak search	0.0	Actual	1	0.0	
	grid (NOTE 6)					
15	Multiple measurement antenna					
	uncertainty					
16	DUT repositioning					
17	Influence of spherical coverage	0.12	Actual	1	0.12	
	grid (NOTE 8)					
		Calibration m	easurement	1	1	
18	Mismatch					
19	Amplifier uncertainties					
20	Misalignment of positioning					
01	System					
21	Uncertainty of the Network					
22	Analyzer Uncertainty of the absolute gain of					
22	the calibration antenna					
23	Positioning and pointing					
23	misalignment between the					
	reference antenna and the					
	measurement antenna					
24	Phase centre offset of calibration					
	antenna					
25	Quality of quiet zone for calibration					
	process (NOTE 2)					
26	Standing wave between reference					
	calibration antenna and					
	measurement antenna					
27	Influence of the calibration antenna					
00	feed cable					
28	Insertion Loss Variation	<u> </u>				
	-	ncertainties (Value 0.00	
29	Systematic error due to TRP calculation/quadrature (NOTE 5)					
30		ence of noise				
31	Systematic error relate				0.5	
	Total measurer				Value	
	EIRP Expanded uncertainty (1.96	σ - confidence	interval of 95 %) [d	B]	TBD	
		CI	interval of 95 %) [d		TBD	

71

NOTE 1: The impact of phase variation on EIRP shall be taken into account during final MU definition for the test method..

B.3.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.3.2-1.

UID	Description of uncertainty contribution	Details in clause
Stage 2: DUT measurement		
1	Positioning misalignment	B.2.2.1
2	Measure distance uncertainty	B.2.2.2
3	Quality of Quiet Zone	B.2.2.3
4	Mismatch	B.2.2.4
5	Standing wave between the DUT and measurement antenna	B.2.2.5
6	Uncertainty of the RF power measurement equipment	B.2.2.6
7	Phase curvature	B.2.2.7
8	Amplifier uncertainties	B.2.2.8
9	Random uncertainty	B.2.2.9
10	Influence of the XPD	B.2.2.10
11	Insertion Loss Variation	B.2.2.11
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.2.12
13	Influence of TRP measurement grid	B.2.2.22
14	Influence of beam peak search grid	B.2.2.23
15	Multiple measurement antenna uncertainty	B.2.2.25
16	DUT repositioning	B.2.2.26
17	Influence of spherical coverage grid	B.2.2.29
	Stage 1: Calibration measurement	
18	Mismatch	B.2.2.4
19	Amplifier Uncertainties	B.2.2.8
20	Misalignment of positioning System	B.2.2.13
21	Uncertainty of the Network Analyzer	B.2.2.14
22	Uncertainty of the absolute gain of the calibration antenna	B.2.2.15
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	B.2.2.16
24	Phase centre offset of calibration antenna	B.2.2.18
25	Quality of quiet zone for calibration process	B.2.2.19
26	Standing wave between reference calibration antenna and measurement antenna	B.2.2.20
27	Influence of the calibration antenna feed cable	B.2.2.21
28	Insertion Loss Variation	B.2.1.11
	Systematic uncertainties	
29	Systematic error due to TRP calculation/quadrature	B.2.2.24
30	Influence of noise	B.2.1.27
31	Systematic error related to beam peak search	B.2.2.28
32	Influence of ETC on EIRP/EIS	B.2.2.34

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size ≤ [30 cm], f = {23.45GHz, 32.125GHz, 40.8GHz}, [P = maximum output power].

72

- The uncertainty assessment for EIRP and TRP is provided in Table B.3.2-2 for PC3 UEs and in Table B.3.2-6 for PC1 UEs.
- The uncertainty assessment for Spherical coverage is provided in Table B.3.2-4 for PC3 UEs in Table B.3.2-7 for PC1 UEs.

Table B.3.2-2: Uncertainty assessment for EIRP and TRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs and normal temperature condition

74

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
		e 2: DUT meas	surement	_	-
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 1)	0.6	Actual	1.00	0.6
4	Mismatch	1.30	Actual	1.00	1.30
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00
6	Uncertainty of the RF power measurement equipment (NOTE	2.16	Normal	2.00	1.08
7	3)	0.00	l l ala a a al	1 11	0.00
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.10	Normal	2.00	1.05
9	Random uncertainty	0.50	Normal	2.00	0.25
10	Influence of the XPD	0.01	U-shaped	1.41	0.00
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00
13	Influence of TRP measurement grid (NOTE 4)	0.25	Actual	1	0.25
14	Influence of beam peak search grid (NOTE 5)	0.00	Actual	1	0.00
15	Multiple measurement antenna uncertainty (NOTE 9)	0.15	Actual	1	0.15
16		0.00 (NOTE	Rectangular	1.73	0.00 (NOTE
	DUT repositioning	4) 0.08 (NOTE	, i i i i i i i i i i i i i i i i i i i		4) 0.05 (NOTE
		5)			5)
		Calibration m		1	
17	Mismatch	0.00	U-shaped	1.41	0.00
18	Amplifier Uncertainties	0.00	Normal	2.00	0.00
19	Misalignment of positioning System	0.00	Normal	2.00	0.00
20	Uncertainty of the Network Analyzer	0.73	Normal	2.00	0.37
21	Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30
22	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.01	Rectangular	1.73	0.00
23	Phase centre offset of calibration	0.00	Rectangular	1.73	0.00
	antenna				
24	Quality of quiet zone for calibration process (NOTE 1)	0.4	Actual	1.00	0.4
25	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
26	Influence of the calibration antenna feed cable	0.14	Normal	2.00	0.07
27	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
		uncertainties (Value
28	Systematic error due to T			4)	0.00
29	Influence of noise (2				0.1
29	Influence of noise				0.3
30	Systematic error relate				0.5
		ement uncertair			Value
EIRF	P Expanded uncertainty (23.45GHz <=			nce interval	4.89
EIRF	P Expanded uncertainty (32.125GHz <	< f <= 40.8GHz %) [dB]) (1.96σ - confidence	e interval of	5.09
TRP	Expanded uncertainty (23.45GHz <= 1		z) (1.96σ - confidenc	e interval of	4.42

3GPP

Table B.3.2-3: Void

Table B.3.2-4: Uncertainty assessment for Spherical coverage measurement (f=23.45GHz, 32.125GHz,40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs and normal temperature condition

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty
	Stag	e 2: DUT meas	surement		(σ) [dB]
L	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 1)	0.6	Actual	1.00	0.6
1	Mismatch	1.30	Actual	1.00	1.30
5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00
	and measurement antenna				
6	Uncertainty of the RF power	2.16	Normal	2.00	1.08
	measurement equipment (NOTE				
	3)				
7	Phase curvature	0.00	U-shaped	1.41	0.00
3	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.50	Normal	2.00	0.25
LO	Influence of the XPD	0.01	U-shaped	1.41	0.00
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement	0.00	Actual	1.00	0.00
	antenna to the receiver/transmitter)				
13	Multiple measurement antenna	0.15	Actual	1	0.15
	uncertainty (NOTE 5)				
14	DUT repositioning	0.00	Rectangular	1.73	0.00
15	Influence of spherical coverage	0.12	Actual	1	0.12
	grid				
		Calibration m		1	1
16	Mismatch	0.00	U-shaped	1.41	0.00
17	Amplifier Uncertainties	0.00	Normal	2.00	0.00
18	Misalignment of positioning	0.00	Normal	2.00	0.00
10	System	0.70	NUMBER		0.07
19	Uncertainty of the Network	0.73	Normal	2.00	0.37
	Analyzer	0.00	Normal	2.00	0.20
20	Uncertainty of the absolute gain of	0.60	Normal	2.00	0.30
21	the calibration antenna	0.01	Destaurular	1 70	0.00
21	Positioning and pointing	0.01	Rectangular	1.73	0.00
	misalignment between the				
	reference antenna and the				
	measurement antenna				
22	Phase centre offset of calibration	0.00	Rectangular	1.73	0.00
	antenna				
23	Quality of quiet zone for calibration	0.4	Actual	1.00	0.4
	process (NOTE 1)				
24	Standing wave between reference	0.00	U-shaped	1.41	0.00
	calibration antenna and				
	measurement antenna				
25	Influence of the calibration antenna	0.14	Normal	2.00	0.07
	feed cable				
26	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
~ ~		uncertainties (Value
27	Influence of noise (2				0.3
27	Influence of noise		/		0.9
<u> </u>	Total measure			(1.06 -	Value
Sp	pherical coverage Expanded uncertain			(т.аод -	4.60
		erval of 95 %) [1.00-	Г 10
5	Spherical coverage Expanded uncerta			τ.900 -	5.19
	contidence inte	erval of 95 %) [abl		1

78

NOTE 2: The analysis was done only for the case of operating at max output power, in-band, non-CA.

NOTE 3: The assessment assumes maximum DUT output power.

NOTE 4: In order to obtain the total measurement uncertainty, systematic uncertainties have to be added to the expanded root sum square of the standard deviations of the Stage 1 and Stage 2 contributors.

NOTE 5: Applies to the system which has a structure of mechanical feed antenna positioning.

3GPP

Table B.3.2-5: Void

Table B.3.2-6: Uncertainty assessment for EIRP and TRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs and normal temperature condition

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
		e 2: DUT meas	surement		
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 1)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT and measurement antenna	FFS	U-shaped	1.41	FFS
6	Uncertainty of the RF power measurement equipment (NOTE	FFS	Normal	2.00	FFS
7	3) Phase curvature		Llabapad	1.41	
-		FFS FFS	U-shaped Normal	2.00	FFS FFS
<u>8</u> 9	Amplifier uncertainties	FFS	Normal	-	FFS
9 10	Random uncertainty Influence of the XPD			2.00	
10	Insertion Loss Variation	FFS	U-shaped	1.41	FFS
12		FFS	Rectangular	1.73	FFS
τζ	RF leakage (from measurement antenna to the receiver/transmitter)	FFS	Actual	1.00	FFS
13	Influence of TRP measurement	FFS	Actual	1	FFS
1.6	grid (NOTE 4)				
14	Influence of beam peak search grid (NOTE 5)	FFS	Actual	1	FFS
15	Multiple measurement antenna uncertainty (NOTE 9)	FFS	Actual	1	FFS
16		FFS (NOTE	Rectangular	1.73	FFS (NOTE
		4)	0		4)
	DUT repositioning	FFS (NOTE			FFS (NOTE
		5)			5)
	Stage 1:	Calibration m	easurement		5)
17	Mismatch	FFS	U-shaped	1.41	FFS
18	Amplifier Uncertainties	FFS	Normal	2.00	FFS
19	Misalignment of positioning	FFS	Normal	2.00	FFS
10	System		Norma	2.00	
20	Uncertainty of the Network	FFS	Normal	2.00	FFS
21	Analyzer Uncertainty of the absolute gain of	FFS	Normal	2.00	FFS
21	the calibration antenna	115	Normai	2.00	
22	Positioning and pointing misalignment between the reference antenna and the measurement antenna	FFS	Rectangular	1.73	FFS
23	Phase centre offset of calibration	FFS	Rectangular	1.73	FFS
	antenna		Ŭ		
24	Quality of quiet zone for calibration process (NOTE 1)	FFS	Actual	1.00	FFS
25	Standing wave between reference calibration antenna and	FFS	U-shaped	1.41	FFS
26	measurement antenna Influence of the calibration antenna feed cable	FFS	Normal	2.00	FFS
27	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
		uncertainties (Value
28	Systematic error due to T			4)	FFS
29	Influence of noise (2				FFS
29	Influence of noise				FFS
30	Systematic error relate				FFS
	Total measure	ement uncertair	nty		Value
EIRF	P Expanded uncertainty (23.45GHz <=	= f <= 32.125G	Hz) (1.96σ - confider	nce interval	FFS
EIRF	P Expanded uncertainty (32.125GHz <	< f <= 40.8GHz %) [dB]) (1.96σ - confidence	e interval of	FFS
TRP	Expanded uncertainty (23.45GHz <= 1		z) (1.96σ - confidenc	e interval of	FFS

3GPP

Table B.3.2-7: Uncertainty assessment for Spherical coverage measurement (f=23.45GHz, 32.125GHz,40.8GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs and normal temperature condition

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stage	e 2: DUT meas	surement		(0)[0]
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 1)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT and measurement antenna	FFS	U-shaped	1.41	FFS
6	Uncertainty of the RF power measurement equipment (NOTE 3)	FFS	Normal	2.00	FFS
7	Phase curvature	FFS	U-shaped	1.41	FFS
3	Amplifier uncertainties	FFS	Normal	2.00	FFS
<u>)</u>	Random uncertainty	FFS	Normal	2.00	FFS
, LO	Influence of the XPD	FFS	U-shaped	1.41	FFS
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
12	RF leakage (from measurement antenna to the receiver/transmitter)	FFS	Actual	1.00	FFS
13	Multiple measurement antenna uncertainty (NOTE 5)	FFS	Actual	1	FFS
14	DUT repositioning	FFS	Rectangular	1.73	FFS
15	Influence of spherical coverage grid	FFS	Actual	1	FFS
		Calibration m	easurement		-
.6	Mismatch	FFS	U-shaped	1.41	FFS
17	Amplifier Uncertainties	FFS	Normal	2.00	FFS
18	Misalignment of positioning System	FFS	Normal	2.00	FFS
19	Uncertainty of the Network Analyzer	FFS	Normal	2.00	FFS
20	Uncertainty of the absolute gain of the calibration antenna	FFS	Normal	2.00	FFS
21	Positioning and pointing misalignment between the reference antenna and the measurement antenna	FFS	Rectangular	1.73	FFS
22	Phase centre offset of calibration antenna	FFS	Rectangular	1.73	FFS
23	Quality of quiet zone for calibration process (NOTE 1)	FFS	Actual	1.00	FFS
24	Standing wave between reference calibration antenna and measurement antenna	FFS	U-shaped	1.41	FFS
25	Influence of the calibration antenna feed cable	FFS	Normal	2.00	FFS
26	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
		incertainties (Value
27	Influence of noise (2				FFS FFS
27 Influence of noise (32.125GHz < f <= 40.8GHz)					
Total measurement uncertainty					
-		erval of 95 %) [dB]	-	FFS
confidence interval of 95 %) [dB] Spherical coverage Expanded uncertainty (32.125GHz < f <= 40.8GHz) (1.96σ - confidence interval of 95 %) [dB]					

NOTE 2: The analysis was done only for the case of operating at max output power, in-band, non-CA.

NOTE 3: The assessment assumes maximum DUT output power.

NOTE 4: In order to obtain the total measurement uncertainty, systematic uncertainties have to be added to the expanded root sum square of the standard deviations of the Stage 1 and Stage 2 contributors.

NOTE 5: Applies to the system which has a structure of mechanical feed antenna positioning.

Table B.3.2-8: Uncertainty assessment for EIRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs and extreme temperature condition

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]	
	Stag	e 2: DUT meas	surement		(0)[ub]	
1	Positioning misalignment	0.00	Normal	2.00	0.00	
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00	
3	Quality of Quiet Zone (NOTE 1)	[0.7]	Actual	1.00	[0.7]	
4	Mismatch	1.30	Actual	1.00	1.30	
5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00	
	and measurement antenna					
6	Uncertainty of the RF power measurement equipment (NOTE 3)	2.16	Normal	2.00	1.08	
7	Phase curvature	0.00	U-shaped	1.41	0.00	
3	Amplifier uncertainties	2.10	Normal	2.00	1.05	
		Amplifier uncertainties2.10Normal2.00Random uncertainty0.50Normal2.00				
9						
LO		0.01	U-shaped	1.41	0.00	
1	Insertion Loss Variation	0.00	Rectangular	1.73	0.00	
L2	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00	
L3	Influence of TRP measurement grid (NOTE 4)	0.25	Actual	1	0.25	
14	Influence of beam peak search grid (NOTE 5)	0.00	Actual	1	0.00	
15	Multiple measurement antenna uncertainty (NOTE 7)	0.15	Actual	1	0.15	
L6	DUT repositioning	0.00 (NOTE 4) 0.08 (NOTE 5)	Rectangular	1.73	0.00 (NOTE 4) 0.05 (NOTE 5)	
	Stage 1:	Calibration m	easurement		5)	
L7	Mismatch	0.00	U-shaped	1.41	0.00	
L8	Amplifier Uncertainties	0.00	Normal	2.00	0.00	
19	Misalignment of positioning System	0.00	Normal	2.00	0.00	
20	Uncertainty of the Network Analyzer	0.73	Normal	2.00	0.37	
21	Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30	
22	Positioning and pointing misalignment between the reference antenna and the	0.01	Rectangular	1.73	0.00	
23	measurement antenna Phase centre offset of calibration	0.00	Rectangular	1.73	0.00	
24	antenna Quality of quiet zone for calibration	[0.4]	Actual	1.00	[0.4]	
25	process (NOTE 1) Standing wave between reference calibration antenna and	0.00	U-shaped	1.41	0.00	
26	measurement antenna Influence of the calibration antenna feed cable	0.14	Normal	2.00	0.07	
27	Insertion Loss Variation	0.00 Incertainties (Rectangular	1.73	0.00 Value	
28	Systematic error due to T			1)	0.00	
28 29				*/		
	Influence of noise (2				0.1	
29	Influence of noise				0.3	
30	Systematic error relate				0.5	
31	Influence of ET		<i>ii</i>		[0.4]	
EIRF	P Expanded uncertainty (23.45GHz <=			nce interval	Value [5.35]	
EIRF	P Expanded uncertainty (32.125GHz <	5 %) [dB] < f <= 40.8GHz] %) [dB]) (1.96σ - confidence	e interval of	[5.55]	

Uncertainty budget format and assessment for NFTF **B.3.3**

The uncertainty contributions that may impact the overall MU value are listed in Table B.3.3-1.

Table B.3.3-1: Uncertainty contributions for EIRP and TRP measurement

UI D	Description of uncertainty contribution	Details in paragraph				
	Stage 2: EIRP Near Field Radiation Pattern Measurement and EIRP Ne					
	measurement					
1	Axis Alignment	B.2.3.1				
2	Measurement Distance Uncertainty	B.2.3.2				
3	Quality of the Quiet Zone	B.2.3.3				
4	Mismatch	B.2.3.4				
5	Multiple Reflections: Coupling between Measurement Antenna and DUT	B.2.3.5				
6	Uncertainty of the RF power measurement equipment	B.2.3.6				
7	Phase curvature	B.2.3.7				
8	Amplifier uncertainties	B.2.3.8				
9	Random uncertainty	B.2.3.9				
10	Influence of the XPD	B.2.3.10				
11	NF to FF truncation	B.2.3.11				
12	Probe Polarization Amplitude and Phase	B.2.3.12				
13	Probe Array Uniformity (for multi-probe systems only)	B.2.3.13				
14	Phase Recovery Non-Linearity over signal bandwidth	B.2.3.16				
15	Probe Pattern Effect	B.2.3.17				
16	Phase Drift and Noise	B.2.3.20				
17	Leakage and Crosstalk	B.2.3.25				
	Stage 1: Calibration measurement					
18	Mismatch	B.2.3.4				
19	Amplifier uncertainties	B.2.3.8				
20	Uncertainty of the Network Analyzer	B.2.3.14				
21	Uncertainty of the absolute gain of the calibration antenna	B.2.3.15				
22	Phase centre offset of calibration	B.2.3.18				
23	Quality of the Quiet Zone for Calibration Process	B.2.3.19				
24	Mismatch in the connection of the calibration antenna	B.2.3.21				

The uncertainty assessment table is organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D _
- The uncertainty assessment has been derived for the case of D = [5 cm], f = {22.65GHz, 31.1GHz, 45.1GHz}, P = [maximum output power].
- The uncertainty assessment for EIRP and TRP is provided in Table B.3.1-2. -

88

UI D	Description of uncertainty contribution	Uncertainty Value	Distribution of the probability	Divisor	Standard uncertainty (σ)
					[dB]
	Stage 2: EIRP Near Field Rac	liation Pattern M measu		RP Near Fiel	ld DUT power
1	Axis Alignment				
2	Measurement Distance				
	Uncertainty				
3	Quality of the Quiet Zone				
4	Mismatch				
5	Multiple Reflections: Coupling				
	between Measurement Antenna				
	and DUT				
6	Uncertainty of the RF power				
	measurement equipment				
7	Phase curvature				
8	Amplifier uncertainties				
9	Random uncertainty				
10	Influence of the XPD				
11	NF to FF truncation				
12	Probe Polarization Amplitude and				
	Phase				
13	Probe Array Uniformity (for multi-				
	probe systems only)				
14	Phase Recovery Non-Linearity				
	over signal bandwidth				
15	Probe Pattern Effect				
16	Phase Drift and Noise				
17	Leakage and Crosstalk				
		Stage 1: Calibrati	on measurement		
18	Mismatch				
19	Amplifier uncertainties				
20	Uncertainty of the Network				
	Analyzer				
21	Uncertainty of the absolute gain of				
	the calibration antenna				
22	Phase centre offset of calibration				
23	Quality of the Quiet Zone for				
	Calibration Process				
24	Mismatch in the connection of the				
	calibration antenna				
	EIRP Expanded uncertainty (1.9				
NOT	TRP Expanded uncertainty (1.9			no first t	definition for the
NOF	E 1: The impact of phase variation of	n EIRP shall be ta	aken into account duri	ng tinal MU	definition for the
	test method.				
NOT	E 2: The quality of quiet zone is diffe	rent for EIRP and	IRP. For TRP, the sta	andard unce	ertainty is FFS; for
	EIRP FFS.				
	E 3: The analysis was done only for			wer, in-band	, non-CA
	E 4: The assessment assumes maxi				
NOT	E 5: The Phase Recovery Non-Linea		andwidth is shall be ta	iken into aco	count during final
	MU definition for the test metho	d.			

Table B.3.3-2: Uncertainty assessment for EIRP and TRP measurement (f=TBD, D=TBD)

89

B.4 UE maximum output power for modulation / channel bandwidth

Following tables summarize the MU threshold for EIRP measurements for UE maximum output power for modulation / channel bandwidth (a.k.a Maximum Power Reduction/MPR). The origin MU values for different test setups with varies parameters can be found in following clauses.

Table B.4-1: MU threshold for EIRP measurement for UE maximum output power for modulation / channel bandwidth

Power Class	Frequency	MBW	Power (NOTE2)	Threshold MU value
Ciass				[dB]
				(NOTE1)
PC3	23.45GHz	BW <=	P = Max	4.92
	<= f <=	400MHz	Output	
	32.125GHz		Power –	
			MBR - MPR	
			– T(MPR)	
	32.125GHz			5.10
	< f <=			0.20
	40.8GHz			
PC1	23.45GHz	BW <=	P = Max	FFS
	<= f <=	400MHz	Output	
	32.125GHz		Power –	
			MBR - MPR	
			– T(MPR)	
	32.125GHz			FFS
	< f <=			
	40.8GHz			
NOTE 1:	Total EIRP Expan		-	
	in Table B.4.2-2 fo			
NOTE 2:	Max output power	level for device	e with correspo	nding power
	class.			

B.4.1 Uncertainty budget format and assessment for DFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.4.1-1.

Table B.4.1-1: Uncertainty contributions for EIRP measurement

UID	Description of uncertainty contribution	Details in annex		
	Same as Table 3.1-1 for EIRP			

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of D = 5 cm, f = {22.65GHz, 31.1GHz, 45.1GHz}, P = maximum output power MBR MPR T(MPR).

- The uncertainty assessment for EIRP is provided in Table B.4.1-2.

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty		
		Fuido			(σ) [dB]		
· · · ·	Stage	2: DUT meas	urement	•			
1 to 17	Same as Stage 2 of Table 3 1-2 for FIRP						
!	Stage 1: Calibration measurement						
18							
to	Same as Stage 1 of Table 3.1-2 for EIRP						
28							
	Systematic uncertainties				Value		
29	Systematic error due	to TRP calcula	ation/quadrature		N/A		
30	Influ	ence of noise					
31	Sustamatia arrar r	olotod to boom	naal aaarab		Same as		
	Systematic error re	elated to beam	реак search		Table 3.1-2		
	Total measurement uncertainty						
	EIRP Expanded uncertainty (1.96	σ - confidence	interval of 95 %) [d	B]	TBD		
	TRP Expanded uncertainty (1.96	σ - confidence	interval of 95 %) [d	B]	TBD		
NOTE 1	1: The assessment assumes maxir	mum DUT outp	ut power - MBR - M	/PR – T(MPI	R)		

Table B.4.1-2: Uncertainty assessment for EIRP measurement (f=TBD, D=TBD)

B.4.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.4.2-1.

Table B.4.2-1: Uncertainty contributions for EIRP and TRP measurement

UID	JID Description of uncertainty contribution			
	Same as Stage 2 of Table 3.2-1 for EIRP			

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size \leq 30 cm, f = {23.45GHz, 32.125GHz, 40.8GHz}, P = maximum output power MPR T(MPR).
- The uncertainty assessment for EIRP and TRP is provided in Table B.3.2-2 for PC3 UEs and in Table B.4.2-x for PC1 UEs.

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]			
	Stage 2: DUT measurement							
1 to	Samo	os Stago 2 of T	ble 3.2-2 for EIRP					
16	Saille a	as Slaye 2 01 10						
	Stage 1:	Calibration m	easurement					
17								
to	Same as Stage 1 of Table 3.2-2 for EIRP							
27								
	Systematic uncertainties							
28	8 Systematic error due to TRP calculation/quadrature							
29	Influence of noise (2	23.45GHz <= f	<= 32.125GHz)		0.13			
29	Influence of noise	(32.125GHz <	f <= 40.8GHz)		0.31			
30	Systematic arror	rolated to been	nook coorob		Same as			
	Systematic error	related to bear	i peak search		Table 3.2-2			
	Total measure	ement uncertair	nty		Value			
EIRP	Expanded uncertainty (23.45GHz <=	= f <= 32.125G	Hz) (1.96σ - confider	nce interval	4.92			
	of 95 %) [dB]							
EIRP	Expanded uncertainty (32.125GHz <	< f <= 40.8GHz) (1.96σ - confidence	interval of	5.10			
	95 %) [dB]							
NOTE	1: The assessment assumes maxir	mum DUT outp	ut power – MBR - MI	PR – T(MPR)				

Table B.4.2-2: Uncertainty assessment for EIRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

92

B.4.3 Uncertainty budget format and assessment for NFTF

FFS

B.5 to B6

B.7 Minimum Output power

Following tables summarize the MU threshold for EIRP measurements for Minimum Output Power. The origin MU values for different test setups can be found in following clauses.

Frequency	MBW	Power	Threshold MU value [dB] (NOTE1)
23.45GHz <= f <= 32.125GHz	BW <= 400MHz	P = Minimum Output Power	PC1: FFS
			<u>PC2:</u> FFS
			<u>PC3:</u> [6.15]
			PC4: FFS
32.125GHz < f <= 40.8GHz			PC1: FFS
			<u>PC2:</u> FFS
			<u>PC3:</u> [6.15]
			<u>PC4:</u> FFS
NOTE 1: Total Ex B.7.2-2	panded MU for IFF	for Quiet Zone size :	≤ 30cm in Table

Table B.7-1: MU threshold for EIRP measurement for Minimum output power

B.7.1 Uncertainty budget format and assessment for DFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.7.1-1.

UID	Description of uncertainty contribution	Details in annex			
	Stage 2: DUT measurement				
1	Positioning misalignment	B.2.1.1			
2	Measure distance uncertainty	B.2.1.2			
3	Quality of quiet zone	B.2.1.3			
4	Mismatch	B.2.1.4			
5	Standing Wave Between the DUT and measurement antenna	B.2.1.5			
6	Uncertainty of the RF power measurement equipment	B.2.1.6			
7	Phase curvature	B.2.1.7			
8	Amplifier uncertainties	B.2.1.8			
9	Random uncertainty	B.2.1.9			
10	Influence of the XPD	B.2.1.10			
11	Insertion Loss Variation	B.2.1.11			
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.1.12			
13	Influence of beam peak search grid	B.2.1.23			
14	Multiple measurement antenna uncertainty	B.2.1.25			
15	DUT repositioning	B.2.1.26			
	Stage 1: Calibration measurement				
16	Mismatch	B.2.1.4			
17	Amplifier uncertainties	B.2.1.8			
18	Misalignment of positioning System	B.2.1.13			
19	Uncertainty of the Network Analyzer	B.2.1.14			
20	Uncertainty of the absolute gain of the calibration antenna	B.2.1.15			
21	Positioning and pointing misalignment between the reference antenna and	B.2.1.16			
	the measurement antenna				
22	Phase centre offset of calibration antenna	B.2.1.18			
23	Quality of quiet zone for calibration process	B.2.1.19			
24	Standing wave between reference calibration antenna and measurement	B.2.1.20			
	antenna				
25	Influence of the calibration antenna feed cable	B.2.1.21			
26	Insertion Loss Variation	B.2.1.11			
	Systematic uncertainties	•			
27	Systematic error related to beam peak search	B.2.1.28			
28	Influence of noise	B.2.1.27			

Table B.7.1-1: Uncertainty	contributions for	or EIRP	measurement
----------------------------	-------------------	---------	-------------

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of D = [5 cm], f = {23.45 GHz, 32.125 GHz, 40.8 GHz}, P = [Minimum output power].
- The uncertainty assessment for EIRP is provided in Table B.7.1-2.

Table B.7.1-2: Uncertainty assessment for EIRP measurement (f=TBD, D=TBD)

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
	Oncertainty source	value	the probability	Divisor	uncertainty
					(σ) [dB]
		2: DUT meas	urement		
1	Positioning misalignment				
2	Measure distance uncertainty				
3	Quality of quiet zone (NOTE 2)				
4 5	Mismatch (NOTE 3)				
5	Standing Wave Between the DUT and measurement antenna				
6	Uncertainty of the RF power				
0	measurement equipment (NOTE				
	4)				
7	Phase curvature				
8	Amplifier uncertainties				
9	Random uncertainty				
10	Influence of the XPD				
11	Insertion Loss Variation				1
12	RF leakage (from measurement				
	antenna to the receiver/transmitter)				
13	Influence of beam peak search				
	grid (NOTE 6)				
14	Multiple measurement antenna				
	uncertainty				
15	DUT repositioning		Actual	1	
10		Calibration m	easurement	i	1
16	Mismatch				
17 18	Amplifier uncertainties Misalignment of positioning				
10	System				
19	Uncertainty of the Network				
19	Analyzer				
20	Uncertainty of the absolute gain of				
20	the calibration antenna				
21	Positioning and pointing				
	misalignment between the				
	reference antenna and the				
	measurement antenna				
22	Phase centre offset of calibration				1
	antenna				
23	Quality of quiet zone for calibration				1
	process (NOTE 2)				
24	Standing wave between reference				
	calibration antenna and				
	measurement antenna				
25	Influence of the calibration antenna				
	feed cable				1
26	Insertion Loss Variation	<u> </u>			ļ
EIRP	Expanded uncertainty (1.96o - confid				
27	Systematic unce		IE /)		Value
27 28	Systematic error related to beam pea Influence of noise	an staili			+
20	•	easurement u	ncertainty		!
	EIRP total measure				
NOTE				output powe	r, in-band,
	non-CA.	I.	-		-
NOTE	2: The assessment assumes DUT	Minimum outp	ut power.		
	E 3: This contributor shall only be cor		•		
	E 4: Void				
NOTE		urement uncer	tainty, systematic u	ncertainties	have to be
	added to the expanded root sum				
	2 contributors.				
NOTE	E 6: Void.				
1					

B.7.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.7.2-1.

UID	Description of uncertainty contribution	Details in annex				
	Stage 2: DUT measurement					
1	Positioning misalignment	B.2.2.1				
2	Measure distance uncertainty	B.2.2.2				
3	Quality of Quiet Zone	B.2.2.3				
4	Mismatch	B.2.2.4				
5	Standing wave between the DUT and measurement antenna	B.2.2.5				
6	Uncertainty of the RF power measurement equipment	B.2.2.6				
7	Phase curvature	B.2.2.7				
8	Amplifier uncertainties	B.2.2.8				
9	Random uncertainty	B.2.2.9				
10	Influence of the XPD	B.2.2.10				
11	Insertion Loss Variation	B.2.2.11				
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.2.12				
13	Influence of beam peak search grid	B.2.2.23				
14	Multiple measurement antenna uncertainty	B.2.2.25				
15	DUT repositioning	B.2.2.26				
	Stage 1: Calibration measurement					
16	Mismatch	B.2.2.4				
17	Amplifier Uncertainties	B.2.2.8				
18	Misalignment of positioning System	B.2.2.13				
19	Uncertainty of the Network Analyzer	B.2.2.14				
20	Uncertainty of the absolute gain of the calibration antenna	B.2.2.15				
21	Positioning and pointing misalignment between the reference antenna and	B.2.2.16				
22	the measurement antenna Phase centre offset of calibration antenna	B.2.2.18				
23	Quality of quiet zone for calibration process	B.2.2.10 B.2.2.19				
24	Standing wave between reference calibration antenna and measurement	B.2.2.10 B.2.2.20				
	antenna	D.2.2.20				
25	Influence of the calibration antenna feed cable	B.2.2.21				
26	Insertion Loss Variation	B.2.2.11				
	Systematic uncertainties					
27	Systematic error related to beam peak search	B.2.2.28				
28	Influence of noise	B.2.2.27				

Table B.7.2-1: Uncertainty	contributions for El	DD measurement
Table D.7.2-1: Uncertainty		RP measurement

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size ≤ 30 cm, f = {23.45GHz, 32.125GHz, 40.8GHz}, P = Minimum output power.
- The uncertainty assessment for EIRP is provided in Table B.7.2-2 for PC3 UEs and in Table B.7.2-3 for PC1 UEs.

Table B.7.2-2: Uncertainty assessment for EIRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
		value	the probability		uncertainty
			-		(σ) [dB]
1		e 2: DUT meas		2.00	0.00
<u>L</u>	Positioning misalignment Measure distance uncertainty	0.00	Normal	2.00	0.00
2	Quality of Quiet Zone (NOTE 8)	0.00	Rectangular Actual	1.73 1.00	0.00
5 1	Mismatch (NOTE 1)	1.30	Actual	1.00	1.30
+ 5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00
,	and measurement antenna	0.00	0-Shapeu	1.41	0.00
3	Uncertainty of the RF power	2.50	Normal	2.00	1.25
	measurement equipment (NOTE				
	2)				
7	Phase curvature	0.00	U-shaped	1.41	0.00
3	Amplifier uncertainties	2.10	Normal	2.00	1.05
)	Random uncertainty	0.50	Normal	2.00	0.25
.0	Influence of the XPD	0.01	U-shaped	1.41	0.00
_1	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
L2	RF leakage (from measurement	0.00	Actual	1.00	0.00
	antenna to the receiver/transmitter)				
13	Influence of beam peak search grid (NOTE 3)	0.00	Actual	1	0.00
L4	Multiple measurement antenna uncertainty (NOTE 9)	0.15	Actual	1	0.15
L5	DUT repositioning (NOTE 3)	0.08	Rectangular	1.73	0.05
	Stage 1:	Calibration m	neasurement		
.6	Mismatch	0.00	U-shaped	1.41	0.00
.7	Amplifier Uncertainties	0.00	Normal	2.00	0.00
.8	Misalignment of positioning System	0.00	Normal	2.00	0.00
9	Uncertainty of the Network Analyzer	[1.50]	Normal	2.00	[0.75]
20	Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30
21	Positioning and pointing	0.01	Rectangular	1.73	0.00
	misalignment between the				
	reference antenna and the				
	measurement antenna				
22	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
23	Quality of quiet zone for calibration process (NOTE 8)	0.4	Actual	1.00	0.4
24	Standing wave between reference	0.00	U-shaped	1.41	0.00
	calibration antenna and				
	measurement antenna				
25	Influence of the calibration antenna	0.14	Normal	2.00	0.07
	feed cable				
26	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
		uncertainties (·	Value
27	Systematic error r	elated to beam	n peak search		0.5
28	Influence of noise (2	23.45GHz <= f	<= 32.125GHz)		1.0
9	Influence of noise				1.0
	Total measure				Value
		5 %) [dB]			[6.15]
EIRF	P Expanded uncertainty (32.125GHz <	< f <= 40.8GHz %) [dB]) (1.960 - confidence	e interval of	[6.15]
NOTE	E 1: The analysis was done only for t		rating at Minimum o	utput power,	in-band, non-
	 E 2: The assessment assumes DUT E 3: This contributor shall only be contributor. 	•	•		

NOTE 3: This contributor shall only be considered for EIRP measurements.

NOTE 4: Void

NOTE 5: In order to obtain the total measurement uncertainty, systematic uncertainties have to be

Table B.7.2-3: Uncertainty assessment for EIRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
		value	the probability		uncertainty
					(σ) [dB]
L	Positioning misalignment	e 2: DUT meas	Normal	2.00	FFS
<u>2</u>	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 8)	FFS	Actual	1.00	FFS
5 1	Mismatch (NOTE 1)	FFS	Actual	1.00	FFS
5	Standing wave between the DUT	FFS	U-shaped	1.41	FFS
	and measurement antenna		,		
6	Uncertainty of the RF power	FFS	Normal	2.00	FFS
	measurement equipment (NOTE 2)				
7	Phase curvature	FFS	U-shaped	1.41	FFS
3	Amplifier uncertainties	FFS	Normal	2.00	FFS
)	Random uncertainty	FFS	Normal	2.00	FFS
LO	Influence of the XPD	FFS	U-shaped	1.41	FFS
1	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
2	RF leakage (from measurement antenna to the receiver/transmitter)	FFS	Actual	1.00	FFS
13	Influence of beam peak search	FFS	Actual	1	FFS
10	grid (NOTE 3)	113	Actual		
L4	Multiple measurement antenna	FFS	Actual	1	FFS
L5	uncertainty (NOTE 9) DUT repositioning (NOTE 3)	FFS	Rectangular	1.73	FFS
15		Calibration m		1.75	
.6	Mismatch	FFS	U-shaped	1.41	FFS
.7	Amplifier Uncertainties	FFS	Normal	2.00	FFS
.8	Misalignment of positioning System	FFS	Normal	2.00	FFS
9	Uncertainty of the Network	FFS	Normal	2.00	FFS
20	Analyzer Uncertainty of the absolute gain of	FFS	Normal	2.00	FFS
	the calibration antenna				ļ
21	Positioning and pointing	FFS	Rectangular	1.73	FFS
	misalignment between the				
	reference antenna and the				
	measurement antenna				
22	Phase centre offset of calibration	FFS	Rectangular	1.73	FFS
23	antenna Quality of quiet zone for calibration	FFS	Actual	1.00	FFS
	process (NOTE 8)		การเมนเ	1.00	
24	Standing wave between reference	FFS	U-shaped	1.41	FFS
	calibration antenna and				-
	measurement antenna				
25	Influence of the calibration antenna	FFS	Normal	2.00	FFS
	feed cable				
26	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
		uncertainties (Value
27	Systematic error r				FFS
28	Influence of noise (2				FFS
29	Influence of noise				FFS
	Total measure				Value
EIRF	Expanded uncertainty (23.45GHz <=		Hz) (1.96σ - confider	nce interval	FFS
		5 %) [dB]	(1.00 11)	linkow set of	
EIRF	P Expanded uncertainty (32.125GHz < 95)	< f <= 40.8GHz <u>)</u> %) [dB]) (1.96σ - confidence	e interval of	FFS
IOTE	E 1: The analysis was done only for t CA.		rating at Minimum o	utput power,	in-band, non-
JULE	E 2: The assessment assumes DUT	Minimum outou	it nower		
	E 3: This contributor shall only be cor		•		
	 This contributor shall only be con A: Moid 		ง เกิดสรมเติกิเติกิเริ่ง		

NOTE 4: Void

NOTE 5: In order to obtain the total measurement uncertainty, systematic uncertainties have to be

NOTE: MU assessment in Table B.7.2-2 and Table B7.2-3 is based on the following relaxations for 400MHz BW:

Table B.7.2-4: Minimum output power requirement relaxation considered in MU assessment for 400 MHz EIRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm)

Frequency	Power Class	Relaxation
23.45GHz <= f	PC1	FFS
<= 32.125GHz	PC2, PC3, PC4	8.4 dB
32.125GHz < f	PC1	FFS
<= 40.8GHz		
	PC2, PC3, PC4	13.5 dB

B.8 Transmit OFF power

Following tables summarize the MU threshold for TRP and EIRP measurements for Transmit OFF power. The origin MU values for different test setups can be found in following clauses.

Table B.8-1: MU threshold for TRP measurement for Transmit OFF power

Power Class	Frequency	MBW	Power	Threshold MU value (NOTE1)		
PC3	23.45GHz <= f <= 32.125GHz	BW <= 400MHz	P = Off Power	5.49		
	32.125GHz < f <= 40.8GHz			N/A		
NOTE 1: Total TRP Expanded MU for IFF for Quiet Zone size ≤ 30cm in Table B.8.2-2 for PC3 UEs						

Table B.8-2: MU threshold for EIRP measurement for Transmit OFF power

Frequency	CBW	Power	Threshold MU value (NOTE1)		
23.45GHz <= f	50MHz	P = Off Power	6.15		
<= 32.125GHz	100MHz				
	200MHz				
	400MHz				
32.125GHz < f	50MHz	P = Off Power	6.15		
<= 40.8GHz	100MHz				
	200MHz				
	400MHz				
NOTE 1: Total Expanded MU for IFF for Quiet Zone size ≤ 30cm in Table					
B.8.2-4	for PC3 UEs				

B.8.1 Uncertainty budget format and assessment for DFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.8.1-1.

UID	Description of uncertainty contribution	Details in annex
	Stage 2: DUT measurement	
1	Positioning misalignment	B.2.1.1
2	Measure distance uncertainty	B.2.1.2
3	Quality of quiet zone	B.2.1.3
4	Mismatch	B.2.1.4
5	Standing Wave Between the DUT and measurement antenna	B.2.1.5
6	Uncertainty of the RF power measurement equipment	B.2.1.6
7	Phase curvature	B.2.1.7
8	Amplifier uncertainties	B.2.1.8
9	Random uncertainty	B.2.1.9
10	Influence of the XPD	B.2.1.10
11	Insertion Loss Variation	B.2.1.11
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.1.12
13	Influence of TRP measurement grid	B.2.1.22
14	Influence of beam peak search grid	B.2.1.23
15	Multiple measurement antenna uncertainty	B.2.1.25
16	DUT repositioning	B.2.1.26
	Stage 1: Calibration measurement	
17	Mismatch	B.2.1.4
18	Amplifier uncertainties	B.2.1.8
19	Misalignment of positioning System	B.2.1.13
20	Uncertainty of the Network Analyzer	B.2.1.14
21	Uncertainty of the absolute gain of the calibration antenna	B.2.1.15
22	Positioning and pointing misalignment between the reference antenna and	B.2.1.16
	the measurement antenna	
23	Phase centre offset of calibration antenna	B.2.1.18
24	Quality of quiet zone for calibration process	B.2.1.19
25	Standing wave between reference calibration antenna and measurement	B.2.1.20
	antenna	
26	Influence of the calibration antenna feed cable	B.2.1.21
27	Insertion Loss Variation	B.2.1.11
	Systematic uncertainties	
28	Systematic error due to TRP calculation/quadrature	B.2.1.24
29	Influence of noise	B.2.1.27

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of D = [5 cm], f = {23.45 GHz, 32.125 GHz, 40.8 GHz}, P = [Off power].
- The uncertainty assessment for TRP is provided in Table B.8.1-2.

Table B.8.1-2: Uncertainty assessment for TRP measurement (f=TBD, D=TBD)

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
		value	the probability		uncertainty (σ) [dB]
		2: DUT meas	urement	1	
1	Positioning misalignment				
2	Measure distance uncertainty				
3 4	Quality of quiet zone (NOTE 2)				
4 5	Mismatch (NOTE 3) Standing Wave Between the DUT				
5	and measurement antenna				
6	Uncertainty of the RF power				
0	measurement equipment (NOTE				
	4)				
7	Phase curvature				
8	Amplifier uncertainties				
9	Random uncertainty				
10	Influence of the XPD				
11	Insertion Loss Variation				
12	RF leakage (from measurement				
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement				
	grid (NOTE 5)				_
14	Influence of beam peak search				
	grid (NOTE 6)				_
15	Multiple measurement antenna				
10	uncertainty		Astual	1	
16	DUT repositioning	Calibration m	Actual	1	
17	Mismatch		easurement		
18	Amplifier uncertainties				
<u>19</u>	Misalignment of positioning				
	System				
20	Uncertainty of the Network				
	Analyzer				
21	Uncertainty of the absolute gain of				
	the calibration antenna				
22	Positioning and pointing				
	misalignment between the				
	reference antenna and the				
	measurement antenna				
23	Phase centre offset of calibration				
	antenna				
24	Quality of quiet zone for calibration				
	process (NOTE 2)				
25	Standing wave between reference				
	calibration antenna and				
26	measurement antenna				
26	Influence of the calibration antenna				
27	feed cable Insertion Loss Variation				
	Insertion Loss variation Expanded uncertainty (1.96σ - confide	nce interval of	95 %) [dB]	1	+
- I XI ⁼	Systematic uncertainty (1.900 - connue Systematic unce				Value
28	Systematic error due to TRP calculation				
29	Influence of noise				
	Total me	easurement u			
	TRP total measure		nty [dB]		
	E 1: The impact of phase variation or				
NOTE	E 2: The quality of quiet zone is differ			ne standard	uncertainty is
	FFS; for EIRP, the standard unce				
	E 3: The analysis was done only for t			ut power, in-	band, non-CA.
	E 4: The assessment assumes maxir		•		
	E 5: This contributor shall only be cor				
UOT	= 6. This contributor shall only be cor	acidorad for El			

NOTE 6: This contributor shall only be considered for EIRP measurements.

NOTE 7: In order to obtain the total measurement uncertainty, systematic uncertainties have to be

B.8.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.8.2-1.

UID	Description of uncertainty contribution	Details in annex			
Stage 2: DUT measurement					
1	Positioning misalignment	B.2.2.1			
2	Measure distance uncertainty	B.2.2.2			
3	Quality of Quiet Zone	B.2.2.3			
4	Mismatch	B.2.2.4			
5	Standing wave between the DUT and measurement antenna	B.2.2.5			
6	Uncertainty of the RF power measurement equipment	B.2.2.6			
7	Phase curvature	B.2.2.7			
8	Amplifier uncertainties	B.2.2.8			
9	Random uncertainty	B.2.2.9			
10	Influence of the XPD	B.2.2.10			
11	Insertion Loss Variation	B.2.2.11			
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.2.12			
13	Influence of TRP measurement grid	B.2.2.22			
14	Influence of beam peak search grid	B.2.2.23			
15	Multiple measurement antenna uncertainty	B.2.2.25			
16	DUT repositioning	B.2.2.26			
	Stage 1: Calibration measurement				
17	Mismatch	B.2.2.4			
18	Amplifier Uncertainties	B.2.2.8			
19	Misalignment of positioning System	B.2.2.13			
20	Uncertainty of the Network Analyzer	B.2.2.14			
21	Uncertainty of the absolute gain of the calibration antenna	B.2.2.15			
22	Positioning and pointing misalignment between the reference antenna and	B.2.2.16			
	the measurement antenna				
23	Phase centre offset of calibration antenna	B.2.2.18			
24	Quality of quiet zone for calibration process	B.2.2.19			
25	Standing wave between reference calibration antenna and measurement	B.2.2.20			
	antenna				
26	Influence of the calibration antenna feed cable	B.2.2.21			
27	Insertion Loss Variation	B.2.2.11			
	Systematic uncertainties				
28	Systematic error due to TRP calculation/quadrature	B.2.2.24			
29	Influence of noise	B.2.2.27			

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size \leq 30 cm, f = {23.45GHz, 32.125GHz, 40.8GHz}, P = Off power.
- The uncertainty assessment for TRP is provided in Table B.8.2-2.

Table B.8.2-2: Uncertainty assessment for TRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
		value	the probability		uncertainty
					(σ) [dB]
L	Positioning misalignment	e 2: DUT meas	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 8)	0.6	Actual	1.00	0.6
1	Mismatch (NOTE 1)	1.30	Actual	1.00	1.30
5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00
	and measurement antenna		·		
6	Uncertainty of the RF power measurement equipment (NOTE 2)	2.50	Normal	2.00	1.25
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.10	Normal	2.00	1.05
9	Random uncertainty	0.50	Normal	2.00	0.25
10	Influence of the XPD	0.01	U-shaped	1.41	0.00
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00
13	Influence of TRP measurement grid (NOTE 3)	0.25	Actual	1	0.25
14	Influence of beam peak search grid	0.00	Actual	1	0.00
15	Multiple measurement antenna uncertainty (NOTE 9)	0.15	Actual	1	0.15
16	DUT repositioning	0.00	Rectangular	1.73	0.00
		Calibration m			0.00
L7	Mismatch	0.00	U-shaped	1.41	0.00
18 19	Amplifier Uncertainties Misalignment of positioning	0.00	<u>Normal</u> Normal	2.00	0.00
20	System Uncertainty of the Network	0.73	Normal	2.00	0.37
	Analyzer Uncertainty of the absolute gain of		Normal	2.00	0.30
21	the calibration antenna	0.60			
22	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.01	Rectangular	1.73	0.00
23	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
24	Quality of quiet zone for calibration process (NOTE 8)	0.4	Actual	1.00	0.4
25	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
26	Influence of the calibration antenna feed cable	0.14	Normal	2.00	0.07
27	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
		incertainties (<u> </u>	Value
28	Systematic error due to TRP calculat	ion/quadrature			0.0
29	Influence of noise (23.45GHz <= f <=				1.0
30	Influence of noise (32.125GHz < f <=				N/A
	Total measure				Value
trp e	Expanded uncertainty (23.45GHz <= f	<= 32.125GHz %) [dB]	z) (1.96σ - confidenc	e interval of	5.49
TRP	Expanded uncertainty (32.125GHz <		(1.96σ - confidence	interval of	N/A
NOTE NOTE	1: The analysis was done only for t	he case of ope Off power.		wer, in-band,	non-CA.

NOTE 5: In order to obtain the total measurement uncertainty, systematic uncertainties have to be

NOTE: MU assessment in Table B.8.2-2 for FR2a is based on the relaxation of 30.4dB for 400MHz BW.

Table B.8.2-3: Void

Table B.8.2-4: Uncertainty assessment for EIRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
	value	the probability		uncertainty (σ) [dB]
Stag	e 2: DUT meas	surement	l	
Positioning misalignment	0.00	Normal	2.00	0.00
<u> </u>	0.00	Rectangular	1.73	0.00
Quality of Quiet Zone (NOTE 8)	0.6	Actual	1.00	0.6
Mismatch (NOTE 1)	1.30	Actual	1.00	1.30
Standing wave between the DUT	0.00	U-shaped	1.41	0.00
	2.50	Normal	2.00	1.25
	0.00	11.1		0.00
				0.00
				1.05
				0.25
				0.00
				0.00
	0.00	rotaal	1.00	
	0.00	Actual	1	0.00
	0.15	Actual	1	0.15
	0.08	Rectangular	1.73	0.08
	Calibration m		•	•
Mismatch	0.00	U-shaped	1.41	0.00
Amplifier Uncertainties	0.00	Normal	2.00	0.00
Misalignment of positioning System	0.00	Normal	2.00	0.00
Uncertainty of the Network Analyzer	1.5	Normal	2.00	0.75
Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30
	0.01	Rectangular	1.73	0.00
		5		
reference antenna and the				
	0.00	Rectangular	1.73	0.00
antenna		-		
Quality of quiet zone for calibration process (NOTE 8)	0.4	Actual	1.00	0.4
	0.00	U-shaped	1.41	0.00
	0.14	Normal	2.00	0.07
feed cable				
Insertion Loss Variation	0.00	Rectangular	1.73	0.00
Systematic u	uncertainties (NOTE 5)	•	Value
				0.5
				1
				1
			· · · ·	Value
		⊣z) (1.96σ - confider	ice interval	6.15
		(1.00	inton al af	0.15
95	%) [dB]	-		6.15
		rating at TX OFF po	wer, in-band,	, non-CA.
3: This contributor shall only be co	nsidered for EI	RP measurements.		
4: Void				
	Stage Positioning misalignment Measure distance uncertainty Quality of Quiet Zone (NOTE 8) Mismatch (NOTE 1) Standing wave between the DUT and measurement antenna Uncertainty of the RF power measurement equipment (NOTE 2) Phase curvature Amplifier uncertainties Random uncertainty Influence of the XPD Insertion Loss Variation RF leakage (from measurement antenna to the receiver/transmitter) Influence of beam peak search grid (NOTE 3) Multiple measurement antenna uncertainty (NOTE 9) DUT repositioning (NOTE 3) Stage 1: Mismatch Amplifier Uncertainties Misalignment of positioning System Uncertainty of the Network Analyzer Uncertainty of the absolute gain of the calibration antenna Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 8) Standing wave between reference calibration antenna and measurement antenna Influence of noise (2 Influence of noise (2 Influenc	Stage 2: DUT measStage 2: DUT measPositioning misalignment0.00Measure distance uncertainty0.00Quality of Quiet Zone (NOTE 8)0.6Mismatch (NOTE 1)1.30Standing wave between the DUT0.00and measurement antenna0.00Uncertainty of the RF power2.50measurement equipment (NOTE2)Phase curvature0.00Random uncertainty0.50Influence of the XPD0.01Insertion Loss Variation0.00RF leakage (from measurement antenna to the receiver/transmitter)0.00Influence of beam peak search grid (NOTE 3)0.08DUT repositioning (NOTE 3)0.08Multiple measurement antenna uncertainty (NOTE 9)0.00DUT repositioning Misalignment of positioning Misalignment of positioning misalignment of positioning positioning and pointing misalignment between the reference antenna and the measurement antenna0.01Phase centre offset of calibration notes (20.000.00Autipy of quiet zone for calibration process (NOTE 8)0.00Standing wave between reference antenna0.00Phase centre offset of calibration neasurement antenna0.14Phase centre offset of calibration notes (23.45GHz <= f Influence of noise (23.45GH	Value the probability Stage 2: DUT measurement Positioning misalignment 0.00 Normal Quality of Quiet Zone (NOTE 8) 0.6 Actual Mismatch (NOTE 1) 1.30 Actual Standing wave between the DUT 0.00 U-shaped and measurement antenna Uncertainty of the RF power 2.50 Normal Phase curvature 0.00 U-shaped Amplifier uncertainty 0.50 Random uncertainty 0.50 Normal Influence of the XPD 0.01 U-shaped Insertion Loss Variation 0.00 Actual Influence of beam peak search 0.00 Actual Influence of beam peak search 0.00 Actual Incertainty (NOTE 3) 0.08 Rectangular Multiple measurement antenna 0.15 Actual Incertainty (NOTE 9) DUT repositioning (NOTE 3) 0.08 Rectangular Misalignment of positioning 0.00 Normal Normal Analyzer Uncertainty of the absolute gain of the calibration antenna 0.60 Normal	value the probability Stage 2: DUT measurement 2.00 Measure distance uncertainty 0.00 Rectangular 1.73 Quality of Quiet Zone (NOTE 8) 0.6 Actual 1.00 Mismatch (NOTE 1) 1.30 Actual 1.00 Standing wave between the DUT 0.00 U-shaped 1.41 and measurement antenna 0.00 U-shaped 1.41 Uncertainty of the RF power 2.50 Normal 2.00 Phase curvature 0.00 U-shaped 1.41 Amplifier uncertainties 2.10 Normal 2.00 Random uncertainty 0.50 Normal 2.00 Ratege (from measurement 0.00 Rectangular 1.73 RF leakage (from measurement 0.00 Actual 1 Influence of beam peak search 0.00 Actual 1 Uncertainty (NOTE 9) 0.08 Rectangular 1.73 Stage 1: Calibration measurement 1.41 Amplifier Uncertainties 0.00 Normal 2.00 </td

NOTE 5: In order to obtain the total measurement uncertainty, systematic uncertainties have to be added to the expanded root sum square of the standard deviations of the Stage 1 and Stage 2

113

B.9

B.10 Frequency error

Following tables summarize the MU threshold for EIRP measurements for Frequency error. The origin MU values for different test setups can be found in following subclauses.

Table B.10-1: MU threshold for beam peak measurement for Frequency error

Power Class	Frequency	MBW	Power	Threshold MU value (NOTE1)
PC3	23.45GHz <= f	BW <= 400MHz	P = Max Output	+/- 0.01 ppm
	<= 32.125GHz		Power	
	32.125GHz < f			+/- 0.01 ppm
	<= 40.8GHz			
PC1	23.45GHz <= f	BW <= 400MHz	P = Max Output	FFS
	<= 32.125GHz		Power	
	32.125GHz < f			FFS
	<= 40.8GHz			
NOTE 1: Total Ex	panded MU for IFF 1	⊦ for Quiet Zone size ≤	≤ 30cm in section B.1	10.2

B.10.1 Uncertainty budget format and assessment for DFF

+/- 0.01 ppm

- The uncertainty assessment has been derived for the case of D = [5 cm], f = {23.45 GHz, 32.125 GHz, 40.8 GHz}, P = [Maximum output power].

B.10.2 Uncertainty budget format and assessment for IFF

+/- 0.01 ppm

- The uncertainty assessment has been derived for the case of Quiet zone size ≤ [30 cm], f = {23.45GHz, 32.125GHz, 40.8GHz}, P = [Maximum output power].

B.11 to B.14

B.15 Occupied bandwidth

Following tables summarize the MU threshold for EIRP measurements for Occupied bandwidth. The origin MU values for different test setups can be found in following subclauses.

Power Class	Frequency	MBW	Power	Threshold MU value (NOTE1)
PC3	23.45GHz <= f	BW <= 400MHz	P = Max Output	TBD
	<= 32.125GHz		Power	
	32.125GHz < f			TBD
	<= 40.8GHz			
PC1	23.45GHz <= f	BW <= 400MHz	P = Max Output	TBD
	<= 32.125GHz		Power	
	32.125GHz < f			TBD
	<= 40.8GHz			
NOTE 1: Total Ex	panded MU for IFF I	or Quiet Zone size ≤	30cm in Table B.15	.2

Table B.15-1: MU threshold for beam peak measurement for Occupied bandwidth

B.15.1 Uncertainty budget format and assessment for DFF

FFS

- The uncertainty assessment has been derived for the case of D = [5 cm], f = {23.45 GHz, 32.125 GHz, 40.8 GHz}, P = [Maximum output power].

B.15.2 Uncertainty budget format and assessment for IFF

FFS

The uncertainty assessment has been derived for the case of Quiet Zone size ≤ 30 cm, f = {23.45GHz, 32.125GHz, 40.8GHz}, P = Maximum output power.

B.16 Spectrum emission mask

Following tables summarize the MU threshold for TRP measurements for Spectrum emission mask. The origin MU values for different test setups can be found in following subclauses.

Power Class	Frequency	MBW	Power	Threshold MU value (NOTE 1)				
PC3	23.45GHz <= f <= 32.125GHz	BW <= 400MHz	P = Max Output Power	4.94				
	32.125GHz < f <= 40.8GHz			5.32				
PC1	23.45GHz <= f <= 32.125GHz	BW <= 400MHz	P = Max Output Power	FFS				
	32.125GHz < f <= 40.8GHz	1		FFS				
	NOTE 1: Total Expanded MU for IFF for Quiet Zone size ≤ 30cm in Table B.16.2-2 for PC3 UEs and in Table B.16.2-4 for PC1 UEs							

B.16.1 Uncertainty budget format and assessment for DFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.16.1-1.

UID	Description of uncertainty contribution	Details in annex				
	Stage 2: DUT measurement					
1	Positioning misalignment	B.2.1.1				
2	Measure distance uncertainty	B.2.1.2				
3	Quality of quiet zone	B.2.1.3				
4	Mismatch	B.2.1.4				
5	Standing Wave Between the DUT and measurement antenna	B.2.1.5				
6	Uncertainty of the RF power measurement equipment	B.2.1.6				
7	Phase curvature	B.2.1.7				
8	Amplifier uncertainties	B.2.1.8				
9	Random uncertainty	B.2.1.9				
10	Influence of the XPD	B.2.1.10				
11	Insertion Loss Variation	B.2.1.11				
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.1.12				
13	Influence of TRP measurement grid	B.2.1.22				
14	Influence of beam peak search grid	B.2.1.23				
15	Multiple measurement antenna uncertainty	B.2.1.25				
16	DUT repositioning	B.2.1.26				
	Stage 1: Calibration measurement					
17	Mismatch	B.2.1.4				
18	Amplifier uncertainties	B.2.1.8				
19	Misalignment of positioning System	B.2.1.13				
20	Uncertainty of the Network Analyzer	B.2.1.14				
21	Uncertainty of the absolute gain of the calibration antenna	B.2.1.15				
22	Positioning and pointing misalignment between the reference antenna and	B.2.1.16				
	the measurement antenna					
23	Phase centre offset of calibration antenna	B.2.1.18				
24	Quality of quiet zone for calibration process	B.2.1.19				
25	Standing wave between reference calibration antenna and measurement	B.2.1.20				
	antenna					
26	Influence of the calibration antenna feed cable	B.2.1.21				
27	Insertion Loss Variation	B.2.1.11				
	Systematic uncertainties	÷				
28	Systematic error due to TRP calculation/quadrature	B.2.1.24				
29	Influence of noise	B.2.1.27				

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of D = [5 cm], f = {23.45 GHz, 32.125 GHz, 40.8 GHz}, P = [Maximum output power].
- The uncertainty assessment for TRP is provided in Table B.16.1-2.

Table B.16.1-2: Uncertainty assessment for TRP measurement (f=TBD, D=TBD)

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
		value	the probability		uncertainty (σ) [dB]
		2: DUT meas	urement		
1	Positioning misalignment				
2	Measure distance uncertainty				
3	Quality of quiet zone (NOTE 2)				
4	Mismatch (NOTE 3)				
5	Standing Wave Between the DUT				
	and measurement antenna				
6	Uncertainty of the RF power				
	measurement equipment (NOTE				
	4)				_
7	Phase curvature				
8	Amplifier uncertainties				
9	Random uncertainty				
10	Influence of the XPD				
11	Insertion Loss Variation				
12	RF leakage (from measurement				
10	antenna to the receiver/transmitter)				
13	Influence of TRP measurement				
14	grid (NOTE 5)				
14	Influence of beam peak search				
1 Г	grid (NOTE 6)				
15	Multiple measurement antenna				
16	Uncertainty				-
16	DUT repositioning	Calibration m	acurament		
17	Mismatch		easurement	1	
18	Amplifier uncertainties				
19	Misalignment of positioning				
10	System				
20	Uncertainty of the Network			1	
20	Analyzer				
21	Uncertainty of the absolute gain of				
	the calibration antenna				
22	Positioning and pointing				
	misalignment between the				
	reference antenna and the				
	measurement antenna				
23	Phase centre offset of calibration				
_0	antenna				
24	Quality of quiet zone for calibration				
	process (NOTE 2)				
25	Standing wave between reference				1
_0	calibration antenna and				
	measurement antenna				
26	Influence of the calibration antenna				
_0	feed cable				
27	Insertion Loss Variation				
	Expanded uncertainty (1.960 - confide	nce interval of	[95 %) [dB]	1	
	Systematic unce				Value
28	Systematic error due to TRP calculation				
29	Influence of noise				1
-		easurement u	ncertainty		
	TRP total measure				
NOTE	E 1: The impact of phase variation or				
	E 2: The quality of quiet zone is differ		nd TRP. For TRP. th	ne standard	uncertaintv is
	FFS; for EIRP, the standard unce			-	
NOT	E 3: The analysis was done only for t			It power, in-	band, non-CA
	E 4: The assessment assumes maxir	-			
	E 5: This contributor shall only be cor		•		
	= 5. This contributor shall only be contributor shall only be contributor shall only be contributor.				

NOTE 6: This contributor shall only be considered for EIRP measurements.

NOTE 7: In order to obtain the total measurement uncertainty, systematic uncertainties have to be

B.16.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.16.2-1.

2 Mea	Stage 2: DUT measurement tioning misalignment sure distance uncertainty lity of Quiet Zone natch	B.2.2.1 B.2.2.2 B.2.2.3
2 Mea	sure distance uncertainty lity of Quiet Zone natch	B.2.2.2
	lity of Quiet Zone natch	
3 Qua	natch	B.2.2.3
		B.2.2.4
5 Star	nding wave between the DUT and measurement antenna	B.2.2.5
6 Unc	ertainty of the RF power measurement equipment	B.2.2.6
	se curvature	B.2.2.7
	lifier uncertainties	B.2.2.8
	dom uncertainty	B.2.2.9
	ence of the XPD	B.2.2.10
	rtion Loss Variation	B.2.2.11
12 RF I	eakage (from measurement antenna to the receiver/transmitter)	B.2.2.12
13 Influ	ence of TRP measurement grid	B.2.2.22
14 Influ	ence of beam peak search grid	B.2.2.23
15 Mult	iple measurement antenna uncertainty	B.2.2.25
16 DUT	repositioning	B.2.2.26
	Stage 1: Calibration measurement	
	natch	B.2.2.4
18 Amp	lifier Uncertainties	B.2.2.8
19 Misa	alignment of positioning System	B.2.2.13
	ertainty of the Network Analyzer	B.2.2.14
	ertainty of the absolute gain of the calibration antenna	B.2.2.15
22 Posi	tioning and pointing misalignment between the reference antenna and	B.2.2.16
the r	neasurement antenna	
23 Pha	se centre offset of calibration antenna	B.2.2.18
24 Qua	lity of quiet zone for calibration process	B.2.2.19
25 Star	ding wave between reference calibration antenna and measurement	B.2.2.20
ante	nna	
26 Influ	ence of the calibration antenna feed cable	B.2.2.21
27 Inse	rtion Loss Variation	B.2.2.11
	Systematic uncertainties	
	ematic error due to TRP calculation/quadrature	B.2.2.24
29 Influ	ence of noise	B.2.2.27

Table B.16.2-1: Uncertainty contributions for TRP measurement

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size ≤ [30 cm], f = {23.45GHz, 32.125GHz, 40.8GHz}, P = [Maximum output power].
- The uncertainty assessment for TRP is provided in Table B.16.2-2 for PC3 UEs and in Table B.16.2-4 for PC1 UEs.

Table B.16.2-2: Uncertainty assessment for TRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Distribution of	Divisor	Standard		
		value	the probability		uncertainty	
					(σ) [dB]	
	Positioning misalignment	e 2: DUT meas	Normal	2.00	0.00	
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00	
 }	Quality of Quiet Zone (NOTE 9)	0.6	Actual	1.00	0.6	
, 1	Mismatch (NOTE 1)	1.30	Actual	1.00	1.30	
5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00	
	and measurement antenna	0.00	e enapea			
3	Uncertainty of the RF power	2.16	Normal	2.00	1.08	
	measurement equipment (NOTE				2.00	
,	2) Phase curvature	0.00	U-shaped	1.41	0.00	
}	Amplifier uncertainties	2.1	Normal	2.00	1.05	
)	Random uncertainty	0.50	Normal	2.00	0.25	
.0	Influence of the XPD	0.01	U-shaped	1.41	0.23	
.1	Insertion Loss Variation	0.01	Rectangular	1.73	0.00	
.2	RF leakage (from measurement	0.00	Actual	1.00	0.00	
-	antenna to the receiver/transmitter)	0.00	riotaai	1.00	0.00	
.3	Influence of TRP measurement	0.25	Actual	1	0.25	
4	grid (NOTE 3)	0.00	Actual	1	0.00	
_4	Influence of beam peak search	0.00	Actual	L T	0.00	
F	grid (NOTE 4)	0.15	Actual	1	0.15	
L5	Multiple measurement antenna	0.15	Actual	L 1	0.15	
.6	uncertainty (NOTE 8)	0.00	Destangular	1.73	0.00	
.0	DUT repositioning (NOTE 3)	Calibration m	Rectangular	1.73	0.00	
.7	Mismatch	0.00	U-shaped	1.41	0.00	
.8	Amplifier Uncertainties	0.00	Normal	2.00	0.00	
.9	Misalignment of positioning	0.00	Normal	2.00	0.00	
	System	0.00	Normal	2.00	0.00	
0	Uncertainty of the Network	0.73	Normal	2.00	0.37	
	Analyzer					
21	Uncertainty of the absolute gain of	0.60	Normal	2.00	0.30	
	the calibration antenna					
22	Positioning and pointing	0.01	Rectangular	1.73	0.00	
	misalignment between the					
	reference antenna and the					
	measurement antenna					
23	Phase centre offset of calibration	0.00	Rectangular	1.73	0.00	
	antenna					
24	Quality of quiet zone for calibration	0.4	Actual	1.00	0.4	
	process (NOTE 9)					
25	Standing wave between reference	0.00	U-shaped	1.41	0.00	
	calibration antenna and					
	measurement antenna					
26	Influence of the calibration antenna	0.14	Normal	2.00	0.07	
	feed cable					
27	Insertion Loss Variation	0.00	Rectangular	1.73	0.00	
	Systematic u	incertainties (NOTE 5)		Value	
8	Systematic error due to TRP calculat		(NOTE 3)		0.00	
9	Influence of noise (23.45GHz <= f <=				0.62	
29 Influence of noise (32.125GHz < f <= 40.8GHz)						
	Total measure				Value	
TRP	total measurement uncertainty (23.45		2.125GHz) (1.96σ -	confidence	4.94	
		of 95 %) [dB]	40.0011 \ /1.55			
TRI	P total measurement uncertainty (32.1)		40.8GHz) (1.96σ - c	onfidence	5.32	
		of 95 %) [dB]			<u> </u>	
	1: The analysis was done only for t			power, in-ba	nd, non-CA.	
OTE OTE		•				
	 3: This contributor shall only be cor 4: This contributor shall only be cor 					

NOTE 4: This contributor shall only be considered for EIRP measurements.

NOTE 5: In order to obtain the total measurement uncertainty, systematic uncertainties have to be

3GPP

Table B.16.2-3: Void

Table B.16.2-4: Uncertainty assessment for TRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard	
		value	the probability		uncertainty	
					(σ) [dB]	
1		e 2: DUT meas	Normal	2.00		
1 2	Positioning misalignment	FFS FFS		2.00 1.73	FFS FFS	
<u>~</u> 3	Measure distance uncertainty Quality of Quiet Zone (NOTE 9)	FFS	Rectangular Actual	1.73	FFS	
5 4	Mismatch (NOTE 1)	FFS	Actual	1.00	FFS	
+ 5	Standing wave between the DUT	FFS	U-shaped	1.41	FFS	
,	and measurement antenna	110	0 Shaped	1.41		
6	Uncertainty of the RF power	FFS	Normal	2.00	FFS	
0	measurement equipment (NOTE		Norma	2.00	110	
	2)					
7	Phase curvature	FFS	U-shaped	1.41	FFS	
3	Amplifier uncertainties	FFS	Normal	2.00	FFS	
)	Random uncertainty	FFS	Normal	2.00	FFS	
LO	Influence of the XPD	FFS	U-shaped	1.41	FFS	
1	Insertion Loss Variation	FFS	Rectangular	1.73	FFS	
L2	RF leakage (from measurement	FFS	Actual	1.00	FFS	
	antenna to the receiver/transmitter)					
13	Influence of TRP measurement	FFS	Actual	1	FFS	
	grid (NOTE 3)					
14	Influence of beam peak search	FFS	Actual	1	FFS	
	grid (NOTE 4)					
15	Multiple measurement antenna	FFS	Actual	1	FFS	
	uncertainty (NOTE 8)					
16	DUT repositioning (NOTE 3)	FFS	Rectangular	1.73	FFS	
		Calibration m				
.7	Mismatch	FFS	U-shaped	1.41	FFS	
.8	Amplifier Uncertainties	FFS	Normal	2.00	FFS	
9	Misalignment of positioning	FFS	Normal	2.00	FFS	
	System					
20	Uncertainty of the Network	FFS	Normal	2.00	FFS	
	Analyzer					
21	Uncertainty of the absolute gain of	FFS	Normal	2.00	FFS	
	the calibration antenna					
22	Positioning and pointing	FFS	Rectangular	1.73	FFS	
	misalignment between the					
	reference antenna and the					
	measurement antenna					
23	Phase centre offset of calibration	FFS	Rectangular	1.73	FFS	
	antenna					
24	Quality of quiet zone for calibration	FFS	Actual	1.00	FFS	
	process (NOTE 9)					
25	Standing wave between reference	FFS	U-shaped	1.41	FFS	
	calibration antenna and					
	measurement antenna					
26	Influence of the calibration antenna	FFS	Normal	2.00	FFS	
	feed cable					
27	Insertion Loss Variation	FFS	Rectangular	1.73	FFS	
		uncertainties (Value	
28	Systematic error due to TRP calculate				FFS	
29	Influence of noise (23.45GHz <= f <=	= 32.125GHz)			FFS	
29	Influence of noise		f <= 40.8GHz)		FFS	
	Total measure				Value	
TRP	total measurement uncertainty (23.45		2.125GHz) (1.96σ -	confidence	FFS	
	interval c	of 95 %) [dB]			ļ	
TR	P total measurement uncertainty (32.1	L25GHz < f <=	40.8GHz) (1.96σ - c	onfidence	FFS	
		of 95 %) [dB]				
VOTE	1: The analysis was done only for t		rating at max output	power, in-ba	nd, non-CA.	
NOTE	2: The assessment assumes maxir	num DUT outp	ut power.			
	E 3: This contributor shall only be cor		•			
	E 4: This contributor shall only be cor					
	5: In order to obtain the total measu			oortointioo ha	wa ta ha	

NOTE 5: In order to obtain the total measurement uncertainty, systematic uncertainties have to be

B.17 Adjacent Channel Leakage Ratio

Editor's Note: MU value analysis for PC1, 2 and 4 are not complete.

Following tables summarize the MU threshold for EIRP measurements for Adjacent Channel Leakage Ratio. The origin MU values for different test setups can be found in following subclauses.

Power Class	Frequency	MBW	Power	Threshold MU value (NOTE 1)	
PC3	23.45GHz <= f	BW <= 400MHz	P = Max Output	TBD	
	<= 32.125GHz		Power		
	32.125GHz < f			TBD	
	<= 40.8GHz				
PC1	23.45GHz <= f	BW <= 400MHz	P = Max Output	TBD	
	<= 32.125GHz		Power		
	32.125GHz < f			TBD	
	<= 40.8GHz				
NOTE 1: Total Ex	NOTE 1: Total Expanded MU for IFF for a Quiet Zone size \leq 30 cm in Table B.17.2-2 for PC3				
UEs and B.17.2-3 for PC1 UEs.					

Table B.17-1: MU threshold for TRP measurement for Spectrum emission mask

Frequency	CBW	Power	Threshold MU	
			value (NOTE 1)	
23.45GHz <= f	50MHz	P = Max Output	5.63	
<= 32.125GHz		Power		
	100MHz		6.09	
	200MHz		6.09(NOTE5)	
	400MHz		6.09 (NOTE2)	
32.125GHz < f	50MHz	P = Max Output	6.09	
<= 40.8GHz		Power		
	100MHz		6.09(NOTE6)	
	200MHz		6.09(NOTE3)	
	400MHz		6.09(NOTE4)	
NOTE 1: Total Ex	<pre>cpanded MU for IFF</pre>	for a Quiet Zone size	e ≤ 30 cm in Table	
B.17.2-	2			
NOTE 2: This va	lue is based on the r	elaxation of (MPR –	3.0) dB for MPR >	
3.0dB.				
NOTE 3: Not app	Not applicable for MPR > 3.5dB			
NOTE 4: Not app	Not applicable for MPR > 2.0 dB			
	This value is based on the relaxation of (MPR $-$ 5.0) dB for MPR $>$			
5.0dB.	· · · · · · · · · · · · · · · · · · ·			

B.17.1 Uncertainty budget format and assessment for DFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.17.1-1.

UID	Description of uncertainty contribution	Details in annex			
	Stage 2: DUT measurement				
1	Positioning misalignment	B.2.1.1			
2	Measure distance uncertainty	B.2.1.2			
3	Quality of quiet zone	B.2.1.3			
4	Mismatch	B.2.1.4			
5	Standing Wave Between the DUT and measurement antenna	B.2.1.5			
6	Uncertainty of the RF power measurement equipment	B.2.1.6			
7	Phase curvature	B.2.1.7			
8	Amplifier uncertainties	B.2.1.8			
9	Random uncertainty	B.2.1.9			
10	Influence of the XPD	B.2.1.10			
11	Insertion Loss Variation	B.2.1.11			
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.1.12			
13	Influence of TRP measurement grid	B.2.1.22			
14	Influence of beam peak search grid	B.2.1.23			
15	Multiple measurement antenna uncertainty	B.2.1.25			
16	DUT repositioning	B.2.1.26			
	Stage 1: Calibration measurement				
17	Mismatch	B.2.1.4			
18	Amplifier uncertainties	B.2.1.8			
19	Misalignment of positioning System	B.2.1.13			
20	Uncertainty of the Network Analyzer	B.2.1.14			
21	Uncertainty of the absolute gain of the calibration antenna	B.2.1.15			
22	Positioning and pointing misalignment between the reference antenna and	B.2.1.16			
	the measurement antenna				
23	Phase centre offset of calibration antenna	B.2.1.18			
24	Quality of quiet zone for calibration process	B.2.1.19			
25	Standing wave between reference calibration antenna and measurement	B.2.1.20			
	antenna				
26	Influence of the calibration antenna feed cable	B.2.1.21			
27	Insertion Loss Variation	B.2.1.11			
	Systematic uncertainties				
28	Systematic error due to TRP calculation/quadrature	B.2.1.24			
29	Influence of noise	B.2.1.27			

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of D = [5 cm], f = {23.45 GHz, 32.125 GHz, 40.8 GHz}, P = [Maximum output power].
- The uncertainty assessment for TRP is provided in Table B.17.1-2.

Table B.17.1-2: Uncertainty assessment for EIRP measurement (f=TBD, D=TBD)

	value	the probability		uncertainty (σ) [dB]
Stage	2: DUT meas	urement	1	<u> (•) []</u>
Positioning misalignment				
Measure distance uncertainty				
Quality of quiet zone (NOTE 2)				
Mismatch (NOTE 3)				
Standing Wave Between the DUT				
and measurement antenna				
Uncertainty of the RF power				
measurement equipment (NOTE				
4)				
Phase curvature	1			
Amplifier uncertainties	1			
	1			
Influence of the XPD	1			
	1			
	1			1
	1			+
	+			+
	<u> </u>			
				-
	Colibration m			
	Calibration m	easurement	1	1
	+			-
	<u> </u>			
-				
	ļ			
Positioning and pointing				
misalignment between the				
reference antenna and the				
	+			+
	<u> </u>			+
	+		<u> </u>	+
	+	<u> </u>		+
	<u> </u>			+
	<u> </u>		L	+
				+
				Value
	tion/quadrature	e (NOTE 5)		
				_
				
			ne standard	uncertainty is
FFS; for EIRP, the standard unce	ertainty of quie	t zone is FFS.		
E 3: The analysis was done only for t	the case of ope	erating at max outpu	ut power, in-l	band, non-CA
	-			
4: The assessment assumes maxir	mum DUT outc	ut power.		
E 4: The assessment assumes maxirE 5: This contributor shall only be cor	-			
	Positioning misalignment Measure distance uncertainty Quality of quiet zone (NOTE 2) Mismatch (NOTE 3) Standing Wave Between the DUT and measurement antenna Uncertainty of the RF power measurement equipment (NOTE 4) Phase curvature Amplifier uncertainties Random uncertainty Influence of the XPD Insertion Loss Variation RF leakage (from measurement antenna to the receiver/transmitter) Influence of TRP measurement grid (NOTE 5) Influence of beam peak search grid (NOTE 6) Multiple measurement antenna uncertainty DUT repositioning Stage 1: Mismatch Amplifier uncertainties Misalignment of positioning System Uncertainty of the Network Analyzer Uncertainty of the absolute gain of the calibration antenna Phase centre offset of calibration process (NOTE 2) Standing wave between reference calibration antenna Phase centre offset of calibration process (NOTE 2) Standing wave between reference calibration antenna Influence of the calibration antenna feed cable <t< td=""><td>Positioning misalignment Measure distance uncertainty Quality of quiet zone (NOTE 2) Mismatch (NOTE 3) Standing Wave Between the DUT and measurement antenna Uncertainty of the RF power measurement equipment (NOTE 4) Phase curvature Amplifier uncertainties Random uncertainty Influence of the XPD Insertion Loss Variation RF leakage (from measurement antenna to the receiver/transmitter) Influence of TRP measurement grid (NOTE 5) Influence of beam peak search grid (NOTE 6) Multiple measurement antenna uncertainty DUT repositioning Stage 1: Calibration m Mismatch Amplifier uncertainties Misalignment of positioning System Uncertainty of the Network Analyzer Uncertainty of the absolute gain of the calibration antenna Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 2) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna f</td><td>Measure distance uncertainty </td><td>Positioning misalignment Image: Constrainty Measure distance uncertainty Image: Constrainty Quality of quiet zone (NOTE 2) Image: Constrainty Standing Wave Between the DUT Image: Constrainty And measurement antenna Image: Constrainty Uncertainty of the RF power Image: Constrainty Mamber Constraints Image: Constraints Amplifier uncertainties Image: Constraints Random uncertainty Image: Constraints Influence of the XPD Image: Constraints Influence of the XPD Image: Constraints Influence of TRP measurement Image: Constraints Influence of beam peak search Image: Constraints grid (NOTE 5) Image: Constraints Influence of beam peak search Image: Constraints Multiple measurement antenna Image: Constraints Multiple measurement antenna Image: Constraints Mismatch Constraints Misalignment of positioning Image: Constraints System Image: Constraints Image: Constraints Uncertainty of the absolute gain of the calibration antenna Image: Constraints Positioning and pointing</td></t<>	Positioning misalignment Measure distance uncertainty Quality of quiet zone (NOTE 2) Mismatch (NOTE 3) Standing Wave Between the DUT and measurement antenna Uncertainty of the RF power measurement equipment (NOTE 4) Phase curvature Amplifier uncertainties Random uncertainty Influence of the XPD Insertion Loss Variation RF leakage (from measurement antenna to the receiver/transmitter) Influence of TRP measurement grid (NOTE 5) Influence of beam peak search grid (NOTE 6) Multiple measurement antenna uncertainty DUT repositioning Stage 1: Calibration m Mismatch Amplifier uncertainties Misalignment of positioning System Uncertainty of the Network Analyzer Uncertainty of the absolute gain of the calibration antenna Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 2) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna f	Measure distance uncertainty	Positioning misalignment Image: Constrainty Measure distance uncertainty Image: Constrainty Quality of quiet zone (NOTE 2) Image: Constrainty Standing Wave Between the DUT Image: Constrainty And measurement antenna Image: Constrainty Uncertainty of the RF power Image: Constrainty Mamber Constraints Image: Constraints Amplifier uncertainties Image: Constraints Random uncertainty Image: Constraints Influence of the XPD Image: Constraints Influence of the XPD Image: Constraints Influence of TRP measurement Image: Constraints Influence of beam peak search Image: Constraints grid (NOTE 5) Image: Constraints Influence of beam peak search Image: Constraints Multiple measurement antenna Image: Constraints Multiple measurement antenna Image: Constraints Mismatch Constraints Misalignment of positioning Image: Constraints System Image: Constraints Image: Constraints Uncertainty of the absolute gain of the calibration antenna Image: Constraints Positioning and pointing

B.17.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.17.2-1.

UID	Description of uncertainty contribution	Details in clause			
Stage 2: DUT measurement					
1	Positioning misalignment	B.2.2.1			
2	Measure distance uncertainty	B.2.2.2			
3	Quality of Quiet Zone	B.2.2.3			
4	Mismatch	B.2.2.4			
5	Standing wave between the DUT and measurement antenna	B.2.2.5			
6	Uncertainty of the RF power measurement equipment	B.2.2.6			
7	Phase curvature	B.2.2.7			
8	Amplifier uncertainties	B.2.2.8			
9	Random uncertainty	B.2.2.9			
10	Influence of the XPD	B.2.2.10			
11	Insertion Loss Variation	B.2.2.11			
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.2.12			
13	Influence of TRP measurement grid	B.2.2.22			
14	Influence of beam peak search grid	B.2.2.23			
15	Multiple measurement antenna uncertainty	B.2.2.25			
16	DUT repositioning	B.2.2.26			
	Stage 1: Calibration measurement				
17	Mismatch	B.2.2.4			
18	Amplifier Uncertainties	B.2.2.8			
19	Misalignment of positioning System	B.2.2.13			
20	Uncertainty of the Network Analyzer	B.2.2.14			
21	Uncertainty of the absolute gain of the calibration antenna	B.2.2.15			
22	Positioning and pointing misalignment between the reference antenna and	B.2.2.16			
	the measurement antenna				
23	Phase centre offset of calibration antenna	B.2.2.18			
24	Quality of quiet zone for calibration process	B.2.2.19			
25	Standing wave between reference calibration antenna and measurement	B.2.2.20			
	antenna				
26	Influence of the calibration antenna feed cable	B.2.2.21			
27	Insertion Loss Variation	B.2.2.11			
	Systematic uncertainties				
28	Systematic error due to TRP calculation/quadrature	B.2.2.24			
29	Influence of noise	B.2.2.27			

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size ≤ 30 cm, f = {23.45GHz, 32.125GHz, 40.8GHz}, P = Maximum output power MPR MBR(Multi-band relaxation).
- The uncertainty assessment for EIRP is provided in Table B.17.2-2 for PC3 UEs and Table B.17.2-3 for PC1 UEs.

Table B.17.2-2: Uncertainty assessment for EIRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
		value	the probability		uncertainty
					(σ) [dB]
	Positioning misalignment	e 2: DUT meas	Normal	2.00	0.00
L 2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
<u>-</u> 3	Quality of Quiet Zone (NOTE 10)	0.52	Actual	1.00	0.52
5 4	Mismatch (NOTE 2)	1.84	Actual	1.00	1.84
5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00
•	and measurement antenna		e enapea		
6	Uncertainty of the RF power measurement equipment (NOTE 3, 7)	2.16	Normal	2.00	1.08
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.50	Normal	2.00	0.25
10	Influence of the XPD	0.00	U-shaped	1.41	0.00
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00
13	Influence of TRP measurement grid (NOTE 4)	0.0	Actual	1	0.0
14	Influence of beam peak search grid (NOTE 5)	0.00	Actual	1	0.00
15	Multiple measurement antenna uncertainty (NOTE 9)	0.0	Actual	1	0.0
16	DUT repositioning (NOTE 4)	0.00 Calibration m	Rectangular	1.73	0.00
L7	Mismatch	0.00	U-shaped	1.41	0.00
18	Amplifier Uncertainties	0.00	Normal	2.00	0.00
19	Misalignment of positioning System	0.00	Normal	2.00	0.00
20	Uncertainty of the Network Analyzer	1.5	Normal	2.00	0.75
21	Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30
22	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.00	Normal	2.00	0.00
23	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
24	Quality of quiet zone for calibration process (NOTE 10)	0.32	Actual	1.00	0.32
25	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
26	Influence of the calibration antenna feed cable	0.00	Normal	2.00	0.00
27	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
EIRP	Expanded uncertainty (1.96o - confid		f 95 %) [dB]		5.09
		uncertainties (Value
28	Systematic error due to TRP calculat	tion/quadrature	(NOTE 4)		0.00 Table B.17.2
29	Influence of noise				
30 Beam peak search					0.00
Total measurement uncertainty					Value
	EIRP total measure	ement uncertai	nty [dB]		5.09 + Influence of
	E 1: Void				Noise

NOTE 2: The analysis was done only for the case of operating at max output power – MPR – MBR(Multi-band relaxation)., in-band, non-CA.

3GPP

Table B.17.2-3: Uncertainty assessment for TRP measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
		value	the probability		uncertainty (σ) [dB]
		e 2: DUT meas	surement		
-	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 10)	FFS	Actual	1.00	FFS
1	Mismatch (NOTE 2, NOTE 7)	FFS	Actual	1.00	FFS
5	Standing wave between the DUT and measurement antenna	FFS	U-shaped	1.41	FFS
6	Uncertainty of the RF power measurement equipment (NOTE 3, 7)	FFS	Normal	2.00	FFS
7	Phase curvature	FFS	U-shaped	1.41	FFS
}	Amplifier uncertainties	FFS	Normal	2.00	FFS
)	Random uncertainty	FFS	Normal	2.00	FFS
.0	Influence of the XPD	FFS	U-shaped	1.41	FFS
.1	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
2	RF leakage (from measurement antenna to the receiver/transmitter)	FFS	Actual	1.00	FFS
.3	Influence of TRP measurement grid (NOTE 4)	FFS	Actual	1	FFS
4	Influence of beam peak search grid (NOTE 5)	FFS	Actual	1	FFS
.5	Multiple measurement antenna uncertainty (NOTE 9)	FFS	Actual	1	FFS
.6	DUT repositioning (NOTE 4)	FFS	Rectangular	1.73	FFS
		Calibration m			1
7	Mismatch	FFS	U-shaped	1.41	FFS
.8	Amplifier Uncertainties	FFS	Normal	2.00	FFS
.9	Misalignment of positioning System	FFS	Normal	2.00	FFS
20	Uncertainty of the Network Analyzer	FFS	Normal	2.00	FFS
21	Uncertainty of the absolute gain of the calibration antenna	FFS	Normal	2.00	FFS
22	Positioning and pointing misalignment between the reference antenna and the measurement antenna	FFS	Normal	2.00	FFS
23	Phase centre offset of calibration antenna	FFS	Rectangular	1.73	FFS
24	Quality of quiet zone for calibration process (NOTE 10)	FFS	Actual	1.00	FFS
25	Standing wave between reference calibration antenna and measurement antenna	FFS	U-shaped	1.41	FFS
26	Influence of the calibration antenna feed cable	FFS	Normal	2.00	FFS
27	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
TRP Expanded uncertainty (1.96 σ - confidence interval of 95 %) [dB]					
		incertainties (FFS Value
28	Systematic error due to TRP calculate				FFS
29 Influence of noise					FFS
30	Beam peak search				FFS
-	Total measure	ment uncertai	nty		Value
	TRP total measure				FFS
NOTE	E 1: VoidE 2: The analysis was done only for tE 3: The assessment assumes maxir	he case of ope	rating at max output	power, in-ba	and, non-CA.

NOTE 4: This contributor shall only be considered for TRP measurements.

NOTE 5: Void

NOTE 6: In order to obtain the total measurement uncertainty, systematic uncertainties have to be added to the expanded root sum square of the standard deviations of the Stage 1 and Stage 2

Table B.17.2-4: Influence of noise measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤
30 cm) for PC3 UEs

	FR2a	FR2b				
ChBW (50MHz)	0.54	1.0				
ChBW (100MHz)	1.0	1.0 (NOTE5)				
ChBW (200MHz)	1.0 (NOTE 4)	1.0 (NOTE2)				
ChBW (400MHz)	ChBW (400MHz) 1.0 (NOTE1) 1.0 (NOTE3)					
NOTE 1: This value is based on the relaxation of (MPR -						
3.0) dB for MPR > 3.0dB.						
NOTE 2: Not applicable for MPR > 3.5dB						
NOTE 3 : Not applicable for MPR > 2.0dB						
NOTE 4: This value is based on the relaxation of (MPR –						
5.0) dB for MPR > 5.0dB.						
NOTE 5: Not applicable for MPR > 5.0dB						

B.18 Spurious emissions

Editor's Note:

- MU value analysis and offset value analysis for PC1, 2 and 4 are not complete.
- MU value analysis for various test setups in clause B.18.x is not complete for above 66GHz.
- Offset value analysis is not complete as it is derived from MU value analysis for above 66GHz.

Test procedure of general spurious emission comprises 2 stages: coarse TRP measurement and fine TRP measurement BW. Coarse TRP measurement is introduced to reduce the measurement time by applying sparser grids and/or wider measurement BW than fine TRP measurement while having offset dB more stringent test requirement in order not to cause additional misjudgement risk. For the frequency ranges for which coarse TRP measurement does not PASS, the measurement is continued with fine TRP measurement procedure.

Tables B.18-1, B.18-1a, B.18-1b summarizes the MU threshold for fine TRP measurements for General spurious emissions, spurious emission band UE co-existence and additional spurious emission, respectively. The origin MU values for fine TRP measurement for different test setups can be found in following subclauses.

Power Class	Frequency	In-band BW	In-band Power (NOTE2)	Threshold MU value [dB] (NOTE1)
PC3	6 GHz <= f	BW <= 400MHz	P = Max Output	5.14
	<=12.75 GHz		Power	
	12.75 GHz <= f			5.11
	<= 23.45 GHz			
	23.45 GHz <= f			5.41
	<= 40.8 GHz			
	40.8 GHz <= f			7.42
	<= 66 GHz			
	66 GHz <= f <=			[7.72]
	80 GHz			
PC1	6 GHz <= f	BW <= 400MHz	P = Max Output	FFS
	<=12.75 GHz		Power	
	12.75 GHz <= f			FFS
	<= 23.45 GHz			
	23.45 GHz <= f			FFS
	<= 40.8 GHz			
	40.8 GHz <= f			FFS
	<= 66 GHz			
	66 GHz <= f <=			FFS
	80 GHz			
NOTE 1: Total EI	RP Expanded MU fo	r IFF for Quiet Zone	size \leq 30cm in Table	e B.18.2-3 to Table
B.18.2-3	11 for PC3 UEs and	in Table B.18.2.12 to	o Table B.18.2.16 for	PC1 UEs.
NOTE 2: Max out	tput power level for c	levice with correspo	nding power class.	

Table B.18-1: MU threshold for TRP	measurement for a	neneral si	nurious emission
	mousarement for g	jonorai oj	

Table B.18-1a: MU threshold for TRP measurement for spurious emission band UE co-existence

Power Class	Frequency	In-band BW	In-band Power (NOTE2)	Threshold MU value [dB] (NOTE1)
PC3	n257, n260,	BW <= 400MHz	P = Max Output	6.00
	n261		Power	
	36 GHz <= f <=			6.00
	37 GHz			
	57 GHz <= f <=			8.01
	66 GHz			
PC1	n257, n261	BW <= 400MHz	P = Max Output	FFS
			Power	
	n260			FFS
	36 GHz <= f <=			FFS
				ггэ
	37 GHz			
	57 GHz <= f <=			FFS
	66 GHz			
NOTE 1: Total El	RP Expanded MU fo	r IFF for Quiet Zone	size \leq 30cm in Table	e B.18.2-3 to Table
B.18.2-2	11 for PC3 UEs and	in Table B.18.2.12 to	Table B.18.2.16 for	PC1 UEs.
NOTE 2: Max out	tput power level for c	levice with correspo	nding power class.	

Power Class	Frequency	In-band BW	In-band Power (NOTE2)	Threshold MU value [dB] (NOTE1)
PC3	6 GHz <= f	BW <= 400MHz	P = Max Output	[5.14]
	<=12.75 GHz		Power	
	NS_202			
	12.75 GHz <= f			[5.70]
	<= 23.45 GHz			
	NS_202			
	23.45 GHz <= f			[6.00]
	<= 40.8 GHz			
	40.8 GHz <= f			[8.01]
	<= 66 GHz			
	66 GHz <= f <=			FFS
	80 GHz			
PC1	6 GHz <= f	BW <= 400MHz	P = Max Output	FFS
	<=12.75 GHz		Power	
	12.75 GHz <= f			FFS
	<= 23.45 GHz			
	23.45 GHz <= f			FFS
	<= 40.8 GHz			
	40.8 GHz <= f			FFS
	<= 66 GHz			
	66 GHz <= f <=			FFS
	80 GHz			
			size \leq 30cm in Table	
			Table B.18.2.16 for	PC1 UEs.
NOTE 2: Max out	put power level for c	levice with correspo	nding power class.	

Table B.18-1b: MU threshold for TRP measurement for additional spurious emission

Table B.18-2 provides valid coarse TRP measurement grids and corresponding offset dB value that may be used for UE general spurious emission test case. The offset value is derived as 95%-tile TRP measurement uncertainty including the effect from uncertainty due to Coarse TRP measurement grid, excluding influence of noise.

Power Class	Coarse TRP measurement	Frequency	Min Number of	Influence of coarse TRP	Systematic error due to coarse TRP	Offset value
	grid		measureme nt points on the grid	measurement grid (dB)	calculation/quadratu re (dB)	(dB)
PC3	Constant	6 GHz <= f	35	0.94	0.09	5.13
	density grid	<=12.75 GHz				
	(charged	12.75 GHz <=				5.09
	particle based)	f <= 23.45				
		GHz				
		23.45 GHz <=				5.38
		f <= 40.8 GHz				7.04
		40.8 GHz <= f				7.31
		<= 66 GHz				[7 61]
		66 GHz <= f				[7.61]
	Constant step	<= 80 GHz 6 GHz <= f	62	0.97	0.2	5.26
	size grid		02	0.97	0.2	5.20
	size griu	<=12.75 GHz 12.75 GHz <=				5.23
		f <= 23.45				5.25
		GHz				
		23.45 GHz <=				5.52
		f <= 40.8 GHz				0.02
		40.8 GHz <= f				7.43
		<= 66 GHz				
		66 GHz <= f				[7.73]
		<= 80 GHz				L - J
PC1	Constant	6 GHz <= f	FFS	FFS	FFS	FFS
	density grid	<=12.75 GHz				
	(charged	12.75 GHz <=				FFS
	particle based)	f <= 23.45				
		GHz				
		23.45 GHz <=				FFS
		f <= 40.8 GHz				
		40.8 GHz <= f				FFS
		<= 66 GHz				
		66 GHz <= f				FFS
	O a set a start	<= 80 GHz	550			550
	Constant step	6 GHz <= f	FFS	FFS	FFS	FFS
	size grid	<=12.75 GHz				ГГС
		12.75 GHz <=				FFS
		f <= 23.45				
		GHz 23.45 GHz <=				FFS
		f <= 40.8 GHz				FF3
		40.8 GHz <= f				FFS
		<= 66 GHz				115
		66 GHz <= f				FFS
		<= 80 GHz				
NOTE 1:	Based on Total		IU for IFF for Oui	et Zone size ≤ 30cm	n in Table B.18.2-3 to Table	B.18.2-11
		•			eplacing "Influence of TRP	
					rature" by the values for co	oarse TRP
	-	ling "Influence of n				
NOTE 2:	-	er level for device		ing nower class		

Table B.18-2: Coarse TRP measurement grids and offset values for UE Tx spurious emission

B.18.1 Uncertainty budget format and assessment for DFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.18.1-1.

UID	Description of uncertainty contribution	Details in annex
	Stage 2: DUT measurement	
1	Positioning misalignment	B.2.1.1
2	Measure distance uncertainty	B.2.1.2
3	Quality of quiet zone	B.2.1.3
4	Mismatch	B.2.1.4
5	Standing Wave Between the DUT and measurement antenna	B.2.1.5
6	Uncertainty of the RF power measurement equipment	B.2.1.6
7	Phase curvature	B.2.1.7
8	Amplifier uncertainties	B.2.1.8
9	Random uncertainty	B.2.1.9
10	Influence of the XPD	B.2.1.10
11	Insertion Loss Variation	B.2.1.11
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.1.12
13	Influence of TRP measurement grid	B.2.1.22
14	Influence of beam peak search grid	B.2.1.23
15	Multiple measurement antenna uncertainty	B.2.1.25
16	DUT repositioning	B.2.1.26
	Stage 1: Calibration measurement	
17	Mismatch	B.2.1.4
18	Amplifier uncertainties	B.2.1.8
19	Misalignment of positioning System	B.2.1.13
20	Uncertainty of the Network Analyzer	B.2.1.14
21	Uncertainty of the absolute gain of the calibration antenna	B.2.1.15
22	Positioning and pointing misalignment between the reference antenna and	B.2.1.16
	the measurement antenna	
23	Phase centre offset of calibration antenna	B.2.1.18
24	Quality of quiet zone for calibration process	B.2.1.19
25	Standing wave between reference calibration antenna and measurement	B.2.1.20
	antenna	
26	Influence of the calibration antenna feed cable	B.2.1.21
27	Insertion Loss Variation	B.2.1.11
	Systematic uncertainties	
28	Systematic error due to TRP calculation/quadrature	B.2.1.24
29	Influence of noise	B.2.1.27

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of D = [5 cm], f = {6 GHz to 80 GHz}, P = [Maximum output power].
- The uncertainty assessment for TRP is provided in Table B.18.1-2 to B.18.1-xx

Table B.18.1-2: Uncertainty assessment for TRP measurement (f=TBD, D=TBD)

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
		2: DUT meas	urement		
1	Positioning misalignment				
2	Measure distance uncertainty				
3	Quality of quiet zone (NOTE 2)				
4	Mismatch (NOTE 3)				
5	Standing Wave Between the DUT				
	and measurement antenna				
6	Uncertainty of the RF power				
	measurement equipment (NOTE				
	4)				
7	Phase curvature				
8 9	Amplifier uncertainties Random uncertainty				+
9 10	Influence of the XPD	I			
10	Insertion Loss Variation				
12	RF leakage (from measurement				
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement				
	grid (NOTE 5)				
14	Influence of beam peak search	1			1
	grid (NOTE 6)				
15	Multiple measurement antenna				
-	uncertainty				
16	DUT repositioning				
-		Calibration m	easurement	Į.	-
17	Mismatch				
18	Amplifier uncertainties				
19	Misalignment of positioning				
	System				
20	Uncertainty of the Network				
	Analyzer				
21	Uncertainty of the absolute gain of				
	the calibration antenna				
22	Positioning and pointing				
	misalignment between the				
	reference antenna and the				
	measurement antenna				
23	Phase centre offset of calibration				
	antenna				
24	Quality of quiet zone for calibration				
	process (NOTE 2)			ļ	
25	Standing wave between reference				
	calibration antenna and				
	measurement antenna	ļ	ļ	ļ	ļ
26	Influence of the calibration antenna				
	feed cable	ļ	ļ	ļ	
27	Insertion Loss Variation				
<u>IRP E</u>	Expanded uncertainty (1.96o - confide)/-l-
20	Systematic unce				Value
28 29	Systematic error due to TRP calcula	tion/quadrature	e (NOTE 5)		
23	Influence of noise	easurement u	ncertainty		
	TRP total measure				
NOTE	E 1: The impact of phase variation or				<u> </u>
	= 2: The quality of quiet zone is different to the second seco			he standard	uncertainty is
	-2. The quality of quiet 20the is utilet			ic stanualu	uncertainty is
	EES: for EIDD the standard upor		L ZUHE IS FFS.		
NOTE	FFS; for EIRP, the standard unce			it now in	hand non CA
NOTE NOTE	E 3: The analysis was done only for t	he case of ope	erating at max outpu	ut power, in-	band, non-CA.
NOTE NOTE NOTE	E 3: The analysis was done only for tE 4: The assessment assumes maxim	he case of ope num DUT outp	erating at max outpu out power.	ut power, in-	band, non-CA.
NOTE NOTE NOTE NOTE	E 3: The analysis was done only for t	he case of ope num DUT outp nsidered for TF	erating at max outpu out power. RP measurements.	-	band, non-CA.

B.18.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.18.2-1.

UID	Description of uncertainty contribution	Details in clause
	Stage 2: DUT measurement	
1	Positioning misalignment	B.2.2.1
2	Measure distance uncertainty	B.2.2.2
3	Quality of Quiet Zone	B.2.2.3
4	Mismatch	B.2.2.4
5	Standing wave between the DUT and measurement antenna	B.2.2.5
6	Uncertainty of the RF power measurement equipment	B.2.2.6
7	Phase curvature	B.2.2.7
8	Amplifier uncertainties	B.2.2.8
9	Random uncertainty	B.2.2.9
10	Influence of the XPD	B.2.2.10
11	Insertion Loss Variation	B.2.2.11
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.2.12
13	Influence of TRP measurement grid	B.2.2.22
14	Influence of beam peak search grid	B.2.2.23
15	Multiple measurement antenna uncertainty	B.2.2.25
16	DUT repositioning	B.2.2.26
17	Misalignment of DUT due to change of DUT orientation	B.2.2.31
	Stage 1: Calibration measurement	
18	Mismatch	B.2.2.4
19	Amplifier Uncertainties	B.2.2.8
20	Misalignment of positioning System	B.2.2.13
21	Uncertainty of the Network Analyzer	B.2.2.14
22	Uncertainty of the absolute gain of the calibration antenna	B.2.2.15
23	Positioning and pointing misalignment between the reference antenna and	B.2.2.16
	the measurement antenna	
24	Phase centre offset of calibration antenna	B.2.2.18
25	Quality of quiet zone for calibration process	B.2.2.19
26	Standing wave between reference calibration antenna and measurement	B.2.2.20
	antenna	
27	Influence of the calibration antenna feed cable	B.2.2.21
28	Insertion Loss Variation	B.2.2.11
	Systematic uncertainties	
29	Systematic error due to TRP calculation/quadrature	B.2.2.24
30	Influence of noise	B.2.2.27

Table B.18.2-1: Uncertainty contributions for TRP measurement

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet zone size ≤ 30 cm, f = {6 GHz to 80 GHz}, P
 = Maximum output power.
- The uncertainty assessment for TRP is provided from Table B.18.2-2 to Table B.18.2-11 for PC3 UEs and from Table B.18.2.12 to Table B.18.2.16 for PC1 UEs.

Table B.18.2-2: Void

Table B.18.2-3: Uncertainty assessment for TRP measurement (f=6 GHz to 12.75GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	' Stag	je 2: DUT mea	surement	<u>ı</u>	1
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.70	Actual	1.00	0.70
4	Mismatch	1.50	Actual	1.00	1.50
5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00
-	and measurement antenna				
6	Uncertainty of the RF power	2.00	Normal	2.00	1.00
U	measurement equipment	2.00	Norman	2.00	1.00
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.5	Normal	2.00	0.25
10	Influence of the XPD	0.09	U-shaped	1.41	0.25
11	Insertion Loss Variation	0.09	Rectangular	1.41	0.004
12	RF leakage (from measurement	0.00	Actual	1.73	0.00
12		0.00	Actual	1.00	0.00
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement	0.32	Actual	1	0.32
	grid (NOTE 1)			ļ	ļ
14	Influence of beam peak search	N/A	Actual	1	N/A
	grid (NOTE 2)				
15	Multiple measurement antenna	0.15	Actual	1	0.15
	uncertainty (NOTE 5)				
16	DUT repositioning	0.00	Rectangular	1.73	0.00
17	Misalignment of DUT due to	0.10	Actual	1	0.10
	change of DUT orientation				
	· · · · · · · · · · · · · · · · · · ·	: Calibration n	neasurement	1	1
	_				
18	Mismatch	0.00	U-shaped	1.41	0.00
19	Amplifier Uncertainties	0.00	Normal	2.00	0.00
20	Misalignment of positioning System	0.00	Normal	2.00	0.00
21	Uncertainty of the Network Analyzer	0.90	Normal	2.00	0.45
22	Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30
23	Positioning and pointing misalignment between the reference antenna and the	0.05	Rectangular	1.73	0.03
	measurement antenna				
24	Phase centre offset of calibration	0.00	Rectangular	1.73	0.00
24 25	Phase centre offset of calibration antenna Quality of quiet zone for calibration	0.00	Rectangular Actual	1.73 1.00	0.00
	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and				
25	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna	0.70	Actual	1.00	0.70
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable	0.70 0.00 0.14	Actual U-shaped Normal	1.00 1.41 2.00	0.70 0.00 0.07
25 26	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation	0.70 0.00 0.14 0.00	Actual U-shaped Normal Rectangular	1.00 1.41 2.00 1.73	0.70 0.00 0.07 0.00
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1	0.70 0.00 0.14 0.00 .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 %	1.00 1.41 2.00 1.73 6)	0.70 0.00 0.07
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertaint	0.70 0.00 0.14 0.00 .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 % = 12.75 GHz) [dB] (a	1.00 1.41 2.00 1.73 6)	0.70 0.00 0.07 0.00
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertaint	0.70 0.00 0.14 0.00 .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 % = 12.75 GHz) [dB] (a	1.00 1.41 2.00 1.73 6)	0.70 0.00 0.07 0.00 Value
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertaint	0.70 0.00 0.14 0.00 .960 - confide ty (6 GHz < f <= uncertainties (Actual U-shaped Normal Rectangular nce interval of 95 % = 12.75 GHz) [dB] (a NOTE 3)	1.00 1.41 2.00 1.73 6)	0.70 0.00 0.07 0.00 Value 4.73

Table B.18.2-4: Void

Table B.18.2-5: Uncertainty assessment for TRP measurement (f=12.75 GHz to 23.45 GHz, Quiet Zone size \leq 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]	
	Stag	e 2: DUT mea	surement	1		
1	Positioning misalignment	0.00	Normal	2.00	0.00	
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00	
3	Quality of Quiet Zone (NOTE 4)	0.60	Actual	1.00	0.60	
4	Mismatch	1.50	Actual	1.00	1.50	
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00	
6	Uncertainty of the RF power measurement equipment	2.16	Normal	2.00	1.08	
7	Phase curvature	0.00	U-shaped	1.41	0.00	
8	Amplifier uncertainties	2.1	Normal	2.00	1.05	
<u> </u>		0.5		2.00	0.25	
	Random uncertainty		Normal			
10	Influence of the XPD	0.09	U-shaped	1.41	0.064	
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00	
12	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00	
13	Influence of TRP measurement grid (NOTE 1)	0.32	Actual	1	0.32	
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A	
15	Multiple measurement antenna uncertainty (NOTE 5)	0.15	Actual	1	0.15	
16	DUT repositioning	0.00	Rectangular	1.73	0.00	
17	Misalignment of DUT due to change of DUT orientation	0.10	Actual	1	0.10	
	· · · · · · · · · · · · · · · · · · ·	: Calibration n	neasurement	I		
10				1 4 4 4	0.00	
18	Mismatch	0.00	U-shaped	1.41	0.00	
19 20	Amplifier Uncertainties Misalignment of positioning	0.00 0.00	Normal Normal	2.00 2.00	0.00	
21	System Uncertainty of the Network	0.90	Normal	2.00	0.45	
22	Analyzer Uncertainty of the absolute gain of	0.60	Normal	2.00	0.30	
23	the calibration antenna Positioning and pointing	0.05	Rectangular	1.73	0.03	
	misalignment between the reference antenna and the					
24	measurement antenna Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00	
25	Quality of quiet zone for calibration	0.60	Actual	1.00	0.60	
26	process (NOTE 4) Standing wave between reference calibration antenna and	0.00	U-shaped	1.41	0.00	
07	measurement antenna	0.14	Nerwood	0.00	0.07	
27	Influence of the calibration antenna feed cable	0.14	Normal	2.00	0.07	
28	Insertion Loss Variation	0.00	Rectangular	1.73	0.00	
	Expanded uncertainty (1			-	Value	
	TRP Expanded uncertainty	-		(a)	4.70	
		incertainties (Value	
29		-		(b)	0.0	
30	Systematic error due to TRP calculation/quadrature (NOTE 1) (b) General spurious emissions Influence of noise (c ₁)					

Table B.18.2-6: Void

Table B.18.2-7: Uncertainty assessment for TRP measurement (f=23.45 GHz to 40.8 GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	1	
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.6	Actual	1.00	0.6
4	Mismatch	1.40	Actual	1.00	1.40
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00
6	Uncertainty of the RF power measurement equipment	2.73	Normal	2.00	1.37
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.5	Normal	2.00	0.25
10	Influence of the XPD	0.01	U-shaped	1.41	0.0071
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement	0.00	Actual	1.00	0.00
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement grid (NOTE 1)	0.32	Actual	1	0.32
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A
15	Multiple measurement antenna uncertainty (NOTE 5)	0.15	Actual	1	0.15
16	DUT repositioning	0.00	Rectangular	1.73	0.00
17	Misalignment of DUT due to	0.10	Actual	1.75	0.10
	change of DUT orientation	0.10	Actual		0.10
	Stage 1	: Calibration n	neasurement		
18	Mismatch	0.00	U-shaped	1.41	0.00
19	Amplifier Uncertainties	0.00	Normal	2.00	0.00
20	Misalignment of positioning System	0.00	Normal	2.00	0.00
21	Uncertainty of the Network Analyzer	1.5	Normal	2.00	0.75
22	Uncertainty of the absolute gain of the calibration antenna	0.6	Normal	2.00	0.3
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.05	Rectangular	1.73	0.03
24	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
25	Quality of quiet zone for calibration process (NOTE 4)	0.6	Actual	1.00	0.6
26	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
27	Influence of the calibration antenna feed cable	0.14	Normal	2.00	0.07
28	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
	Expanded uncertainty (1	•		•	Value
	TRP Expanded uncertainty	(23.45 GHz <	f <= 40.8 GHz) [dB]	(a)	5.00
	Systematic u	uncertainties (NOTE 3)		Value
29	Systematic error due to TR	P calculation/q	uadrature (NOTE 1)	(b)	0.0
30	General spurious er	nissions Influer	nce of noise (c1)		0.41
		3GPP			

Table B.18.2-8: Void

Table B.18.2-9: Uncertainty assessment for TRP measurement (f= 40.8 GHz to 66 GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	1	
1	Positioning misalignment	0.0	Normal	2.00	0.0
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.6	Actual	1.00	0.6
4	Mismatch	2.30	Actual	1.00	2.30
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00
6	Uncertainty of the RF power measurement equipment	4.0	Normal	2.00	2.00
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.5	Normal	2.00	0.25
10	Influence of the XPD	0.09	U-shaped	1.41	0.064
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement	0.00	Actual	1.00	0.00
12	antenna to the receiver/transmitter)	0.00	/ lotadi	1.00	0.00
13	Influence of TRP measurement	0.32	Actual	1	0.32
10	grid (NOTE 1)	0.52	Actual	1 1	0.52
14	Influence of beam peak search	N/A	Actual	1	N/A
	grid (NOTE 2)				
15	Multiple measurement antenna uncertainty (NOTE 5)	0.15	Actual	1	0.15
16	DUT repositioning	0.00	Rectangular	1.73	0.00
17	Misalignment of DUT due to change of DUT orientation	0.10	Actual	1	0.10
	· · · · · · · · · · · · · · · · · · ·	: Calibration n	neasurement	•	•
18	Mismatch	0.00	U-shaped	1.41	0.00
19	Amplifier Uncertainties	0.00	Normal	2.00	0.00
20	Misalignment of positioning System	0.00	Normal	2.00	0.00
21	Uncertainty of the Network Analyzer	1.7	Normal	2.00	0.85
22	Uncertainty of the absolute gain of	1.70	Normal	2.00	0.85
23	the calibration antenna Positioning and pointing misalignment between the	0.05	Rectangular	1.73	0.03
	reference antenna and the measurement antenna				
24	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
25	Quality of quiet zone for calibration process (NOTE 4)	0.6	Actual	1.00	0.6
26	Standing wave between reference calibration antenna and	0.00	U-shaped	1.41	0.00
27	measurement antenna Influence of the calibration antenna	0.28	Normal	2.00	0.14
	feed cable				ļ
28	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
	Expanded uncertainty (1			-	Value
	TRP Expanded uncertaint			a)	7.01
	-	uncertainties (-		Value
29	Systematic error due to TR	-		(b)	0.00
30	General spurious en	nissions Influer	nce of noise (C1)		0.41

Table B.18.2-10: Void

Table B.18.2-11: Uncertainty assessment for TRP measurement (f= 66 GHz to 80 GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	1	
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.6	Actual	1.00	0.6
4	Mismatch	2.30	Actual	1.00	2.30
5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00
	and measurement antenna				
6	Uncertainty of the RF power	[4.00]	Normal	2.00	[2.00]
7	measurement equipment	0.00	Lichanod	1.41	0.00
7 8	Phase curvature Amplifier uncertainties	3.0	U-shaped Normal	2.00	1.50
<u>8</u> 9	Random uncertainty	0.5	Normal	2.00	0.25
9 10	Influence of the XPD		U-shaped		0.25
10	Insertion Loss Variation	0.09 0.00		1.41 1.73	0.004
12	RF leakage (from measurement	0.00	Rectangular Actual	1.73	0.00
12		0.00	Actual	1.00	0.00
13	antenna to the receiver/transmitter) Influence of TRP measurement	0.32	Actual	1	0.32
тą		0.32	Actual	1	0.32
14	grid (NOTE 1)	N1/A	Actual	1	N/A
14	Influence of beam peak search	N/A	Actual	1	IN/A
15	grid (NOTE 2)	0.15	Actual	1	0.15
15	Multiple measurement antenna	0.15	Actual	1	0.15
16	uncertainty (NOTE 5)	0.00	Doctongular	1 70	- 0.00
16	DUT repositioning	0.00	Rectangular	1.73	0.00
17	Misalignment of DUT due to	0.10	Actual	1	0.10
	change of DUT orientation				
	Stage 1	: Calibration n	neasurement		
18	Mismatch	0.00	U-shaped	1.41	0.00
19	Amplifier Uncertainties	0.00	Normal	2.00	0.00
20	Misalignment of positioning	0.00	Normal	2.00	0.00
	System				
21	Uncertainty of the Network	[1.70]	Normal	2.00	[0.85]
	Analyzer				
22	Uncertainty of the absolute gain of	1.70	Normal	2.00	0.85
	the calibration antenna				
23	the calibration antenna Positioning and pointing	0.05	Rectangular	1.73	0.03
23	Positioning and pointing	0.05	Rectangular	1.73	0.03
23	Positioning and pointing misalignment between the	0.05	Rectangular	1.73	0.03
23	Positioning and pointing misalignment between the reference antenna and the	0.05	Rectangular	1.73	0.03
23	Positioning and pointing misalignment between the				
	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration	0.05	Rectangular Rectangular	1.73	0.03
24	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration				
24 25	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4)	0.00	Rectangular	1.73	0.00
24	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration	0.00	Rectangular	1.73	0.00
24 25	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and	0.00	Rectangular	1.73	0.00
24 25	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antenna	0.00 0.60 0.00	Rectangular Actual U-shaped	1.73 1.00 1.41	0.00
24 25 26	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna	0.00	Rectangular	1.73	0.00 0.60 0.00
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna feed cable	0.00 0.60 0.00	Rectangular Actual U-shaped Normal	1.73 1.00 1.41 2.00	0.00 0.60 0.00 0.14
24 25 26	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna feed cableInsertion Loss Variation	0.00 0.60 0.00 0.28 0.00	Rectangular Actual U-shaped Normal Rectangular	1.73 1.00 1.41 2.00 1.73	0.00 0.60 0.00 0.14 0.00
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna feed cable	0.00 0.60 0.00 0.28 0.00	Rectangular Actual U-shaped Normal Rectangular	1.73 1.00 1.41 2.00 1.73	0.00 0.60 0.00 0.14
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna feed cableInsertion Loss Variation	0.00 0.60 0.00 0.28 0.00 .96σ - confide	Rectangular Actual U-shaped Normal Rectangular nce interval of 95 9	1.73 1.00 1.41 2.00 1.73 6)	0.00 0.60 0.00 0.14 0.00
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertainty	0.00 0.60 0.00 0.28 0.00 .96σ - confide	Rectangular Actual U-shaped Normal Rectangular nce interval of 95 9 <= 80 GHz) [dB] (a)	1.73 1.00 1.41 2.00 1.73 6)	0.00 0.60 0.00 0.14 0.00 Value
24 25 26 27 28	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertair Systematic u	0.00 0.60 0.00 0.28 0.00 .96σ - confide nty (66 GHz < f	Rectangular Actual U-shaped Normal Rectangular nce interval of 95 9 <= 80 GHz) [dB] (a) NOTE 3)	1.73 1.00 1.41 2.00 1.73 6)	0.00 0.60 0.00 0.14 0.00 Value [7.31] Value
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertainty	0.00 0.60 0.00 0.28 0.00 .960 - confide nty (66 GHz < f uncertainties (P calculation/qu	Rectangular Actual U-shaped Normal Rectangular nce interval of 95 9 <= 80 GHz) [dB] (a) NOTE 3) Judrature (NOTE 1)	1.73 1.00 1.41 2.00 1.73 6)	0.00 0.60 0.00 0.14 0.00 Value [7.31]

Table B.18.2-12: Uncertainty assessment for TRP measurement (f=6 GHz to 12.75GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement		
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT	FFS	U-shaped	1.41	FFS
6	and measurement antenna		Marmal	2.00	
0	Uncertainty of the RF power measurement equipment	FFS	Normal	2.00	FFS
7	Phase curvature	FFS	U-shaped	1.41	FFS
8	Amplifier uncertainties	FFS	Normal	2.00	FFS
9	Random uncertainty	FFS	Normal	2.00	FFS
10	Influence of the XPD	FFS	U-shaped	1.41	FFS
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
12	RF leakage (from measurement	FFS	Actual	1.00	FFS
	antenna to the receiver/transmitter)		, lotadi	1.00	
13	Influence of TRP measurement	FFS	Actual	1	FFS
10			Actual	¹	
14	grid (NOTE 1) Influence of beam peak search	FFS	Actual	1	FFS
14	-	3	Actual	<u> </u>	
15	grid (NOTE 2)		Actual	1	
15	Multiple measurement antenna	FFS	Actual	1	FFS
10	uncertainty (NOTE 5)		Destaurau	4 70	
16	DUT repositioning	FFS	Rectangular	1.73	FFS
17	Misalignment of DUT due to	FFS	Actual	1	FFS
	change of DUT orientation				
	Stage 1	: Calibration n	neasurement		
18	Mismatch	FFS	U-shaped	1.41	FFS
19	Amplifier Uncertainties	FFS	Normal	2.00	FFS
20	Misalignment of positioning	FFS	Normal	2.00	FFS
20	System	115	Normal	2.00	
21	Uncertainty of the Network	FFS	Normal	2.00	FFS
22	Analyzer Uncertainty of the absolute gain of	FFS	Normal	2.00	FFS
22	, , , , , , , , , , , , , , , , , , , ,	FFS	Normal	2.00	FFS
23	the calibration antenna Positioning and pointing	550	Destensionles	1 70	
	Positioning and pointing	FFS	Rectangular	1.73	FFS
23				1	1
23	misalignment between the				
23	misalignment between the reference antenna and the				
23	misalignment between the reference antenna and the measurement antenna				
23	misalignment between the reference antenna and the	FFS	Rectangular	1.73	FFS
-	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna	FFS	Rectangular	1.73	FFS
-	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration	FFS	Rectangular	1.73	FFS
24	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna			_	
24	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration			_	
24 25	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4)	FFS	Actual	1.00	FFS
24 25	misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference	FFS	Actual	1.00	FFS
24 25	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna	FFS	Actual	1.00	FFS
24 25 26	misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna	FFS FFS	Actual U-shaped	1.00	FFS FFS
24 25 26 27	 misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable 	FFS FFS FFS	Actual U-shaped Normal	1.00 1.41 2.00	FFS FFS FFS
24 25 26	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation	FFS FFS FFS FFS	Actual U-shaped Normal Rectangular	1.00 1.41 2.00 1.73	FFS FFS
24 25 26 27	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 %	1.00 1.41 2.00 1.73 6)	FFS FFS FFS Value
24 25 26 27	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 %	1.00 1.41 2.00 1.73 6)	FFS FFS FFS FFS
24 25 26 27	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertainty	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 % = 12.75 GHz) [dB] (a	1.00 1.41 2.00 1.73 6)	FFS FFS FFS Value
24 25 26 27 28	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertaint	FFS FFS FFS .96σ - confide ty (6 GHz < f <= uncertainties (Actual U-shaped Normal Rectangular nce interval of 95 % = 12.75 GHz) [dB] (a NOTE 3)	1.00 1.41 2.00 1.73 6)	FFS FFS FFS Value FFS Value
24 25 26 27	misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertainty	FFS FFS FFS .96σ - confide ty (6 GHz < f <= uncertainties (P calculation/qu	Actual U-shaped Normal Rectangular nce interval of 95 % = 12.75 GHz) [dB] (a NOTE 3) Jadrature (NOTE 1)	1.00 1.41 2.00 1.73 6)	FFS FFS FFS Value FFS

Table B.18.2-13: Uncertainty assessment for TRP measurement (f=12.75 GHz to 23.45 GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	1	
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT	FFS	U-shaped	1.41	FFS
	and measurement antenna				
6	Uncertainty of the RF power	FFS	Normal	2.00	FFS
	measurement equipment				
7	Phase curvature	FFS	U-shaped	1.41	FFS
8	Amplifier uncertainties	FFS	Normal	2.00	FFS
9	Random uncertainty	FFS	Normal	2.00	FFS
10	Influence of the XPD	FFS	U-shaped	1.41	FFS
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
12	RF leakage (from measurement	FFS	Actual	1.00	FFS
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement	FFS	Actual	1	FFS
	grid (NOTE 1)				
14	Influence of beam peak search	FFS	Actual	1	FFS
	grid (NOTE 2)				
15	Multiple measurement antenna	FFS	Actual	1	FFS
	uncertainty (NOTE 5)				
16	DUT repositioning	FFS	Rectangular	1.73	FFS
17	Misalignment of DUT due to	FFS	Actual	1	FFS
	change of DUT orientation				
		: Calibration n	neasurement	1	_
	-			i	
18	Mismatch	FFS	U-shaped	1.41	FFS
19	Amplifier Uncertainties	FFS	Normal	2.00	FFS
20	Misalignment of positioning System	FFS	Normal	2.00	FFS
21	Uncertainty of the Network Analyzer	FFS	Normal	2.00	FFS
22	Uncertainty of the absolute gain of the calibration antenna	FFS	Normal	2.00	FFS
23	Positioning and pointing misalignment between the	FFS	Rectangular	1.73	FFS
	reference antenna and the				
24		FFS	Rectangular	1.73	FFS
24	reference antenna and the measurement antenna	FFS	Rectangular	1.73	FFS
24 25	reference antenna and the measurement antenna Phase centre offset of calibration	FFS	Rectangular	1.73	FFS FFS
	reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration			_	
	reference antenna and the measurement antenna Phase centre offset of calibration antenna			_	
25	reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference	FFS FFS	Actual	1.00	FFS
25	reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and	FFS	Actual	1.00	FFS
25 26	reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna	FFS FFS	Actual U-shaped	1.00	FFS FFS
25 26	reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna	FFS FFS	Actual U-shaped	1.00	FFS FFS
25 26 27	reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable	FFS FFS FFS FFS	Actual U-shaped Normal Rectangular	1.00 1.41 2.00 1.73	FFS FFS FFS
25 26 27	reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 9	1.00 1.41 2.00 1.73 6)	FFS FFS FFS FFS
25 26 27	reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertainty	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 9 <= 23.45 GHz) [dB]	1.00 1.41 2.00 1.73 6)	FFS FFS FFS Value
25 26 27	reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertainty	FFS FFS FFS .96σ - confide (12.75 GHz < f	Actual U-shaped Normal Rectangular nce interval of 95 9 <= 23.45 GHz) [dB] NOTE 3)	1.00 1.41 2.00 1.73 6) (a)	FFS FFS FFS Value FFS

Table B.18.2-14: Uncertainty assessment for TRP measurement (f=23.45 GHz to 40.8 GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	1	
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT	FFS	U-shaped	1.41	FFS
	and measurement antenna				
6	Uncertainty of the RF power	FFS	Normal	2.00	FFS
_	measurement equipment		11.1		
7	Phase curvature	FFS	U-shaped	1.41	FFS
8	Amplifier uncertainties	FFS	Normal	2.00	FFS
9	Random uncertainty	FFS	Normal	2.00	FFS
10	Influence of the XPD	FFS	U-shaped	1.41	FFS
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
12	RF leakage (from measurement	FFS	Actual	1.00	FFS
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement	FFS	Actual	1	FFS
	grid (NOTE 1)				
14	Influence of beam peak search	FFS	Actual	1	FFS
	grid (NOTE 2)				ļ
15	Multiple measurement antenna	FFS	Actual	1	FFS
	uncertainty (NOTE 5)				
16	DUT repositioning	FFS	Rectangular	1.73	FFS
17	Misalignment of DUT due to	FFS	Actual	1	FFS
	change of DUT orientation				
	Stage 1	: Calibration n	neasurement		
10	Mismatch	FFS	Llabanad	1.41	FFS
18			U-shaped		
19 20	Amplifier Uncertainties Misalignment of positioning	FFS FFS	Normal	2.00	FFS FFS
	System		Normal		
21	Uncertainty of the Network Analyzer	FFS	Normal	2.00	FFS
22	Uncertainty of the absolute gain of	FFS	Normal	2.00	FFS
22		115	Normai	2.00	113
	the collibration optoppo			1 70	FFS
22	the calibration antenna	ГГС	Doctongular		
23	Positioning and pointing	FFS	Rectangular	1.73	
23	Positioning and pointing misalignment between the	FFS	Rectangular	1.73	
23	Positioning and pointing misalignment between the reference antenna and the	FFS	Rectangular	1.73	
	Positioning and pointing misalignment between the reference antenna and the measurement antenna				
23	Positioning and pointing misalignment between the reference antenna and the	FFS FFS	Rectangular Rectangular	1.73	FFS
24	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna	FFS	Rectangular	1.73	FFS
	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration				
24 25	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)	FFS	Rectangular	1.73	FFS
24	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference	FFS	Rectangular	1.73	FFS
24 25	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)	FFS	Rectangular	1.73	FFS
24 25	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference	FFS FFS FFS	Rectangular	1.73	FFS
24 25	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and	FFS	Rectangular	1.73	FFS
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna feed cable	FFS FFS FFS FFS	Rectangular Actual U-shaped Normal	1.73 1.00 1.41 2.00	FFS FFS FFS FFS
24 25 26	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna	FFS FFS FFS	Rectangular Actual U-shaped	1.73 1.00 1.41	FFS FFS FFS
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna feed cable	FFS FFS FFS FFS	Rectangular Actual U-shaped Normal Rectangular	1.73 1.00 1.41 2.00 1.73	FFS FFS FFS FFS
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation	FFS FFS FFS FFS FFS .96σ - confide	Rectangular Actual U-shaped Normal Rectangular nce interval of 95 9	1.73 1.00 1.41 2.00 1.73 6)	FFS FFS FFS FFS Value
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antennaPhase centre offset of calibration antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna feed cableInsertion Loss Variation	FFS FFS FFS FFS FFS .96σ - confide	Rectangular Actual U-shaped Normal Rectangular nce interval of 95 9	1.73 1.00 1.41 2.00 1.73 6)	FFS FFS FFS FFS FFS
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertainty	FFS FFS FFS FFS FFS .96σ - confide	Rectangular Actual U-shaped Normal Rectangular nce interval of 95 9 f <= 40.8 GHz) [dB]	1.73 1.00 1.41 2.00 1.73 6)	FFS FFS FFS FFS Value
24 25 26 27	Positioning and pointing misalignment between the reference antenna and the measurement antenna Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertainty	FFS FFS FFS FFS .96σ - confide (23.45 GHz < uncertainties (Rectangular Actual U-shaped Normal Rectangular nce interval of 95 9 f <= 40.8 GHz) [dB] NOTE 3)	1.73 1.00 1.41 2.00 1.73 6) (a)	FFS FFS FFS FFS Value FFS

Table B.18.2-15: Uncertainty assessment for TRP measurement (f= 40.8 GHz to 66 GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	1	
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT	FFS	U-shaped	1.41	FFS
6	and measurement antenna	FFS	Normal	2.00	FFS
0	Uncertainty of the RF power measurement equipment	FFS	nonnai	2.00	FF3
7	Phase curvature	FFS	U-shaped	1.41	FFS
8	Amplifier uncertainties	FFS	Normal	2.00	FFS
9	Random uncertainty	FFS	Normal	2.00	FFS
10	Influence of the XPD	FFS	U-shaped	1.41	FFS
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
12	RF leakage (from measurement	FFS	Actual	1.00	FFS
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement	FFS	Actual	1	FFS
-0	grid (NOTE 1)		, 1010401	-	
14	Influence of beam peak search	FFS	Actual	1	FFS
			mulu	L _	
15	grid (NOTE 2) Multiple measurement antenna	FFS	Actual	1	FFS
12		FF3	Actual	1 ¹	
10	uncertainty (NOTE 5)		Destaura la s	4 70	
16	DUT repositioning	FFS	Rectangular	1.73	FFS
17	Misalignment of DUT due to change of DUT orientation	FFS	Actual	1	FFS
		: Calibration n	neasurement		_
			leasurement	•	
18	Mismatch	FFS	U-shaped	1.41	FFS
19	Amplifier Uncertainties	FFS	Normal	2.00	FFS
20	Misalignment of positioning System	FFS	Normal	2.00	FFS
21	Uncertainty of the Network	FFS	Normal	2.00	FFS
	Analyzer				
22	Uncertainty of the absolute gain of	FFS	Normal	2.00	FFS
22	the calibration antenna		Destangular	1 72	
23	Positioning and pointing	FFS	Rectangular	1.73	FFS
	misalignment between the				
	reference antenna and the				
	measurement antenna			-	1
		FFS	Rectangular	1.73	FFS
24	Phase centre offset of calibration		0		
	antenna				
24 25		FFS	Actual	1.00	FFS
	antenna Quality of quiet zone for calibration process (NOTE 4)				
	antenna Quality of quiet zone for calibration			1.00	FFS FFS
25	antenna Quality of quiet zone for calibration process (NOTE 4)	FFS	Actual		
25	antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference	FFS	Actual		
25	antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and	FFS	Actual		
25 26	antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna	FFS FFS	Actual U-shaped	1.41	FFS
25 26 27	antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna feed cable	FFS FFS FFS	Actual U-shaped Normal	1.41 2.00	FFS FFS
25 26	antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna	FFS FFS FFS FFS	Actual U-shaped Normal Rectangular	1.41 2.00 1.73	FFS
25 26 27	antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 9	1.41 2.00 1.73 6)	FFS FFS Value
25 26 27	antennaQuality of quiet zone for calibration process (NOTE 4)Standing wave between reference calibration antenna and measurement antennaInfluence of the calibration antenna feed cableInsertion Loss Variation	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 9	1.41 2.00 1.73 6)	FFS FFS FFS
25 26 27	antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertaint	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 9 f <= 66 GHz) [dB] (a	1.41 2.00 1.73 6)	FFS FFS Value
25 26 27	antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertaint	FFS FFS FFS .960 - confide y (40.8 GHz < uncertainties (Actual U-shaped Normal Rectangular nce interval of 95 9 f <= 66 GHz) [dB] (a	1.41 2.00 1.73 6)	FFS FFS Value FFS

Table B.18.2-16: Uncertainty assessment for TRP measurement (f= 66 GHz to 80 GHz, Quiet Zone size \leq 30 cm) for PC1 UEs

	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Staç	je 2: DUT mea	surement	1	
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT	FFS	U-shaped	1.41	FFS
	and measurement antenna				
6	Uncertainty of the RF power	FFS	Normal	2.00	FFS
	measurement equipment				
7	Phase curvature	FFS	U-shaped	1.41	FFS
8	Amplifier uncertainties	FFS	Normal	2.00	FFS
9	Random uncertainty	FFS	Normal	2.00	FFS
10	Influence of the XPD	FFS	U-shaped	1.41	FFS
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
12	RF leakage (from measurement	FFS	Actual	1.00	FFS
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement	FFS	Actual	1	FFS
	grid (NOTE 1)		.		L
14	Influence of beam peak search	N/A	Actual	1	N/A
	grid (NOTE 2)				
15	Multiple measurement antenna	FFS	Actual	1	FFS
	uncertainty (NOTE 5)			ļ	
16	DUT repositioning	FFS	Rectangular	1.73	FFS
17	Misalignment of DUT due to	FFS	Actual	1	FFS
	change of DUT orientation				
	Stage 1	: Calibration n	neasurement		
18	Mismatch	FFS	U-shaped	1.41	FFS
19	Amplifier Uncertainties	FFS	Normal	2.00	FFS
20	Misalignment of positioning	FFS	Normal	2.00	FFS
20	System		Normal	2.00	
21	Uncertainty of the Network	FFS	Normal	2.00	FFS
	Analyzer		. Torritar		
22	Uncertainty of the absolute gain of	FFS	Normal	2.00	FFS
	the calibration antenna		Normal	2.00	
23	Positioning and pointing	FFS	Rectangular	1.73	FFS
20	misalignment between the		rtootangulai	1.10	
	reference antenna and the				
	massurement antonno				1
24	Phase centre offset of calibration	EEC	Portangular	1 70	EEC
24	Phase centre offset of calibration	FFS	Rectangular	1.73	FFS
	Phase centre offset of calibration antenna				
24 25	Phase centre offset of calibration antenna Quality of quiet zone for calibration	FFS FFS	Rectangular Actual	1.73 1.00	FFS FFS
25	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4)	FFS	Actual	1.00	FFS
	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference				
25	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and	FFS	Actual	1.00	FFS
25 26	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna	FFS FFS	Actual U-shaped	1.00	FFS FFS
25	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna	FFS	Actual	1.00	FFS
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable	FFS FFS FFS	Actual U-shaped Normal	1.00 1.41 2.00	FFS FFS FFS
25 26	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna	FFS FFS	Actual U-shaped	1.00	FFS FFS
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable	FFS FFS FFS FFS	Actual U-shaped Normal Rectangular	1.00 1.41 2.00 1.73	FFS FFS FFS
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 %	1.00 1.41 2.00 1.73 6)	FFS FFS FFS Value
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 %	1.00 1.41 2.00 1.73 6)	FFS FFS FFS FFS
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertaint	FFS FFS FFS FFS .96σ - confide	Actual U-shaped Normal Rectangular nce interval of 95 %	1.00 1.41 2.00 1.73 6)	FFS FFS FFS Value
25 26 27	Phase centre offset of calibration antenna Quality of quiet zone for calibration process (NOTE 4) Standing wave between reference calibration antenna and measurement antenna Influence of the calibration antenna feed cable Insertion Loss Variation Expanded uncertainty (1 TRP Expanded uncertaint	FFS FFS FFS .96σ - confide nty (66 GHz < f	Actual U-shaped Normal Rectangular nce interval of 95 9 <= 80 GHz) [dB] (a) NOTE 3)	1.00 1.41 2.00 1.73 6)	FFS FFS FFS Value FFS

B.18.3 Uncertainty budget format and assessment for NFTF

FFS

B.19 Reference Sensitivity

Following tables summarize the MU threshold for EIS measurements for Reference Sensitivity. The origin MU values for different test setups with varies parameters can be found in following subclauses.

Power Class	Frequenc y	MBW	Power	Threshol d MU value for NTC (NOTE 1)	Threshol d MU value for ETC (NOTE 1)
PC3	23.45GHz	BW <=	P = Max	5.19	[5.65]
	<= f <=	400MHz	Output		
	32.125GH		Power		
	Z				
	32.125GH			5.19	[5.65]
	z < f <=				
	40.8GHz				
PC1	23.45GHz	BW <=	P = Max	FFS	FFS
	<= f <=	400MHz	Output		
	32.125GH		Power		
	z				
	32.125GH			FFS	FFS
	z < f <=				
	40.8GHz				
NOTE 1:	Table B.19.2	-2 for PC3 I	UEs (NTC),	et Zone size ≤ in Table B.19 3 for PC1 UE	0.2-4 for

Table B.19-1: MU threshold for EIS for Reference Sensitivity

Table B.19-2: MU threshold for Spherical coverage measurement for Reference Sensitivity

Power Class	Frequency	MBW	Power	Threshold MU
				value (NOTE 1)
PC3	23.45GHz <= f	BW <= 400MHz	P = Max Output	4.90
	<= 32.125GHz		Power	
	32.125GHz < f			4.90
	<= 40.8GHz			
PC1	23.45GHz <= f	BW <= 400MHz	P = Max Output	FFS
	<= 32.125GHz		Power	
	32.125GHz < f			FFS
	<= 40.8GHz			
NOTE 1: Total Ex	panded MU for IFF 1	for Quiet Zone size ≤	≤ 30cm in Table B.19	.2-2 for PC3 UEs
and Tab	le B.19.2-3 for PC1	UEs		

B.19.1 Uncertainty budget format and assessment for DFF

FFS

B.19.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.19.2-1.

UID	Description of uncertainty contribution	Details in clause
	Stage 2: DUT measurement	
1	Positioning misalignment	B.2.2.1
2	Measure distance uncertainty	B.2.2.2
3	Quality of Quiet Zone	B.2.2.3
4	Mismatch	B.2.2.4
5	Standing wave between the DUT and measurement antenna	B.2.2.5
6	gNB emulator uncertainty	B.2.2.17
7	Phase curvature	B.2.2.7
8	Amplifier uncertainties	B.2.2.8
9	Random uncertainty	B.2.2.9
10	Influence of the XPD	B.2.2.10
11	Insertion Loss Variation	B.2.2.11
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.2.12
13	Multiple measurement antenna uncertainty	B.2.2.25
14	DUT repositioning	B.2.2.26
15	Influence of spherical coverage grid	B.2.2.29
	Stage 1: Calibration measurement	
16	Mismatch	B.2.2.4
17	Amplifier Uncertainties	B.2.2.8
18	Misalignment of positioning System	B.2.2.13
19	Uncertainty of the Network Analyzer	B.2.2.14
20	Uncertainty of the absolute gain of the calibration antenna	B.2.2.15
21	Positioning and pointing misalignment between the reference antenna and the measurement antenna	B.2.2.16
22	Phase centre offset of calibration antenna	B.2.2.18
23	Quality of quiet zone for calibration process	B.2.2.19
24	Standing wave between reference calibration antenna and measurement antenna	B.2.2.20
25	Influence of the calibration antenna feed cable	B.2.2.21
26	Insertion Loss Variation	B.2.2.11
	Systematic uncertainties	
27	Systematic error related to beam peak search	B.2.2.28
28	Systematic error related to EIS spherical coverage	B.2.2.30
29	Influence of ETC on EIRP/EIS	B.2.2.34

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size ≤ [30 cm], f = {23.45GHz, 32.125GHz, 40.8GHz}, [P = maximum output power].
- The uncertainty assessment for EIS is provided in Table B.19.2-2 for PC3 UEs and Table B.19.2-3 for PC1 UEs.

Table B.19.2-2: Uncertainty assessment for EIS measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs and normal temperature condition

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard					
		value	the probability		uncertainty					
					(σ) [dB]					
Stage 2: DUT measurement										
1	Positioning misalignment	0.00	Normal	2.00	0.00					
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00					
3	Quality of Quiet Zone (NOTE 7)	0.6	Actual	1.00	0.6					
4	Mismatch	1.30	Actual	1.00	1.30					
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00					
6	gNB uncertainty on absolute level	2.9	Normal	2.00	1.45					
7	Phase curvature	0.00	U-shaped	1.41	0.00					
8	Amplifier uncertainties	2.1	Normal	2.00	1.05					
9	Random uncertainty	0.50	Normal	2.00	0.25					
10	Influence of the XPD	0.01	U-shaped	1.41	0.00					
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00					
12	RF leakage (from measurement	0.00	Actual	1.00	0.00					
	antenna to the receiver/transmitter)									
13	Multiple measurement antenna uncertainty (NOTE 6)	0.15	Actual	1.00	0.15					
14		0.00 (NOTE	Rectangular	1.73	0.00 (NOTE					
	DUT repositioning	4)	rtootariguiai	1.10	4)					
		0.08			0.05					
15	Influence of spherical coverage	0.12	Actual	1	0.12					
10	grid (NOTE 4)	0.12	Actual		0.12					
		Calibration m			•					
16	Mismatch	0.00	U-shaped	1.41	0.00					
17	Amplifier Uncertainties	0.00	Normal	2.00	0.00					
18	Misalignment of positioning System	0.00	Normal	2.00	0.00					
19	Uncertainty of the Network	0.73	Normal	2.00	0.37					
	Analyzer									
20	Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30					
21	Positioning and pointing	0.01	Rectangular	1.73	0.00					
	misalignment between the		0							
	reference antenna and the									
	measurement antenna									
22	Phase centre offset of calibration	0.00	Rectangular	1.73	0.00					
	antenna		J	_						
23	Quality of quiet zone for calibration	0.4	Actual	1.00	0.4					
	process (NOTE 7)									
24	Standing wave between reference	0.00	U-shaped	1.41	0.00					
	calibration antenna and									
	measurement antenna									
25	Influence of the calibration antenna	0.14	Normal	2.00	0.07					
	feed cable									
26	Insertion Loss Variation	0.00	Rectangular	1.73	0.00					
		ncertainties (·	Value					
27	Systematic error related to beam pe		0.5							
28	Systematic error related to EIS sphe		DL power							
		step size, 0.2								
	Value									
	5.19									
EIS S	4.90									
NOTE 1: The analysis was done only for the case of operating at max output power, in-band, non-CA.										
NOTE 2: Void.										
NOTE 3: In order to obtain the total measurement uncertainty, systematic uncertainties have to be										
added to the expanded root sum square of the standard deviations of the Stage 1 and Stage										

added to the expanded root sum square of the standard deviations of the Stage 1 and Stage 2 contributors.

NOTE 4: This contributor shall only be considered for spherical EIS measurements.

NOTE 5: This contributor shall only be considered for EIS measurements.

NOTE 6: Applies to the system which has a structure of mechanical feed antenna positioning.

Table B.19.2-3: Uncertainty assessment for EIS measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs and normal temperature condition

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard				
	-	value	the probability		uncertainty				
					(σ) [dB]				
Stage 2: DUT measurement									
1	Positioning misalignment	FFS	Normal	2.00	FFS				
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS				
3	Quality of Quiet Zone (NOTE 7)	FFS	Actual	1.00	FFS				
4	Mismatch	FFS	Actual	1.00	FFS				
5	Standing wave between the DUT	FFS	U-shaped	1.41	FFS				
<u> </u>	and measurement antenna		Namaal	2.00					
6 7	gNB uncertainty on absolute level Phase curvature	FFS FFS	Normal U-shaped	2.00 1.41	FFS FFS				
8	Amplifier uncertainties	FFS	Normal	2.00	FFS FFS				
9	Random uncertainty	FFS	Normal	2.00	FFS FFS				
<u> </u>	Influence of the XPD	FFS	U-shaped	1.41	FFS				
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS				
12	RF leakage (from measurement	FFS	Actual	1.00	FFS				
	antenna to the receiver/transmitter)		, lotaal	1.00					
13	Multiple measurement antenna	FFS	Actual	1.00	FFS				
10	uncertainty (NOTE 6)		, lotaal	1.00					
14		FFS (NOTE	Rectangular	1.73	FFS (NOTE				
- ·	DUT repositioning	4)			4)				
		FFS			FFS				
15	Influence of spherical coverage	FFS	Actual	1	FFS				
10	grid (NOTE 4)		, lotaal	-					
		Calibration m	easurement						
16	Mismatch	FFS	U-shaped	1.41	FFS				
17	Amplifier Uncertainties	FFS	Normal	2.00	FFS				
18	Misalignment of positioning	FFS	Normal	2.00	FFS				
10	System	_			_				
19	Uncertainty of the Network	FFS	Normal	2.00	FFS				
	Analyzer								
20	Uncertainty of the absolute gain of	FFS	Normal	2.00	FFS				
	the calibration antenna								
21	Positioning and pointing	FFS	Rectangular	1.73	FFS				
	misalignment between the								
	reference antenna and the								
	measurement antenna								
22	Phase centre offset of calibration	FFS	Rectangular	1.73	FFS				
	antenna								
23	Quality of quiet zone for calibration	FFS	Actual	1.00	FFS				
	process (NOTE 7)								
24	Standing wave between reference	FFS	U-shaped	1.41	FFS				
	calibration antenna and								
	measurement antenna								
25	Influence of the calibration antenna	FFS	Normal	2.00	FFS				
	feed cable								
26	Insertion Loss Variation	FFS	Rectangular	1.73	FFS				
		ncertainties (Value				
27	Systematic error related to beam pe	ak search (NO	TE 5)		FFS				
28	Systematic error related to EIS sphe				DL power				
	Systematic error related to EIS Spile				step size, 0.2				
	Total measure				Value FFS				
EIS Expanded uncertainty (1.96σ - confidence interval of 95 %) [dB] EIS Spherical coverage Expanded uncertainty (1.96σ - confidence interval of 95 %) [dB]									
	FFS								
NOTE 1: The analysis was done only for the case of operating at max output power, in-band, non-CA.									
NOTE 2: Void.									
NOTE	E 3: In order to obtain the total meas								
added to the expanded root sum square of the standard deviations of the Stage 1 and Stage									

NOTE 3: In order to obtain the total measurement uncertainty, systematic uncertainties have to be added to the expanded root sum square of the standard deviations of the Stage 1 and Stage 2 contributors.

NOTE 4: This contributor shall only be considered for spherical EIS measurements.

NOTE 5: This contributor shall only be considered for EIS measurements.

NOTE 6: Applies to the system which has a structure of mechanical feed antenna positioning.

Table B.19.2-4: Uncertainty assessment for EIS measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs and extreme temperature condition

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard
		value	the probability		uncertainty
					(σ) [dB]
1	Positioning misalignment	2: DUT meas	Normal	2.00	0.00
1 2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 7)	[0.7]	Actual	1.73	[0.7]
<u>3</u> 4	Mismatch	1.30	Actual	1.00	1.30
5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00
5	and measurement antenna	0.00	0 Shaped	1.41	0.00
6	gNB uncertainty on absolute level	2.9	Normal	2.00	1.45
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.50	Normal	2.00	0.25
10	Influence of the XPD	0.01	U-shaped	1.41	0.00
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement	0.00	Actual	1.00	0.00
	antenna to the receiver/transmitter)				
13	Multiple measurement antenna	0.15	Actual	1.00	0.15
	uncertainty (NOTE 6)				
14		0.00 (NOTE	Rectangular	1.73	0.00 (NOTE
	DUT repositioning	4)			4)
		0.08			0.05
15	Influence of spherical coverage	0.12	Actual	1	0.12
	grid (NOTE 4)				
		Calibration m	easurement		•
16	Mismatch	0.00	U-shaped	1.41	0.00
17	Amplifier Uncertainties	0.00	Normal	2.00	0.00
18	Misalignment of positioning	0.00	Normal	2.00	0.00
	System				
19	Uncertainty of the Network	0.73	Normal	2.00	0.37
	Analyzer				
20	Uncertainty of the absolute gain of	0.60	Normal	2.00	0.30
	the calibration antenna				
21	Positioning and pointing	0.01	Rectangular	1.73	0.00
	misalignment between the				
	reference antenna and the				
	measurement antenna				
22	Phase centre offset of calibration	0.00	Rectangular	1.73	0.00
	antenna				
23	Quality of quiet zone for calibration	[0.4]	Actual	1.00	[0.4]
	process (NOTE 7)				
24	Standing wave between reference	0.00	U-shaped	1.41	0.00
	calibration antenna and				
	measurement antenna				
25	Influence of the calibration antenna	0.14	Normal	2.00	0.07
	feed cable				
26	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
0-	Systematic u				Value
27	Systematic error related to beam pea	ak search (NO	TE 5)		0.5
28	Systematic error related to EIS sphe	rical coverade	(NOTE 4)		DL power
00			、 /		step size, 0.2 [0.4]
29	9 Influence of ETC on EIRP/EIS (NOTE 5) Total measurement uncertainty				
	Value				
NOT	EIS Expanded uncertainty (1.96c				[5.65]
NOTE		ne case of ope	erating at max outpl	it power, in-	uanu, non-CA.
	E 2: Void.				h
NOTE					
	added to the expanded root sum	square of the	standard deviations	s of the Stag	je i and Stage

2 contributors.

NOTE 4: This contributor shall only be considered for spherical EIS measurements.

NOTE 5: This contributor shall only be considered for EIS measurements.

NOTE 6: Applies to the system which has a structure of mechanical feed antenna positioning.

B.20

B.21 Adjacent Channel Selectivity

Following tables summarize the MU threshold for Adjacent Channel Selectivity measurement. The origin MU values for different test setups with varies parameters can be found in following subclauses.

Power Class	Frequency	MBW	Power	Threshold MU value (NOTE 1)	
PC3	23.45GHz <= f	BW <= 400MHz	P = Max Output	TBD	
	<= 32.125GHz		Power		
	32.125GHz < f			TBD	
	<= 40.8GHz				
PC1	23.45GHz <= f	BW <= 400MHz	P = Max Output	FFS	
	<= 32.125GHz		Power		
	32.125GHz < f			FFS	
	<= 40.8GHz				
NOTE 1: Total Expanded MU for IFF for Quiet Zone size \leq 30cm in Table B.21.2-2 for PC3 UEs					

Table B.19-1: MU threshold for Adjacent Channel Selectivity

B.21.1 Uncertainty budget format and assessment for DFF

FFS

B.21.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.21.2-1.

Table B.21.2-1: Total Uncertainty contributions for Adjacent Channel Selectivity measurement

FFS

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size ≤ [30 cm], f = {23.45GHz, 32.125GHz, 40.8GHz}, [P = maximum output power].
- The uncertainty assessment for ACS is provided in Table B.21.2-2 for PC3 UEs.

Table B.21.2-2: Uncertainty assessment for Adjacent Channel Selectivity measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

FFS

B.22 In-Band Blocking

Following tables summarize the MU threshold for In-band Blocking measurement. The origin MU values for different test setups with varies parameters can be found in following subclauses.

Power Class	Frequency	MBW	Power	Threshold MU value (NOTE 1)	
PC3	23.45GHz <= f	BW <= 400MHz	P = Max Output	TBD	
	<= 32.125GHz		Power		
	32.125GHz < f			TBD	
	<= 40.8GHz				
PC1	23.45GHz <= f	BW <= 400MHz	P = Max Output	FFS	
	<= 32.125GHz		Power		
	32.125GHz < f			FFS	
	<= 40.8GHz				
NOTE 1: Total Expanded MU for IFF for Quiet Zone size ≤ 30cm in Table B.22.2-2 for PC3 UEs					

B.22.1 Uncertainty budget format and assessment for DFF

FFS

B.22.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.22.2-1.

Table B.22.2-1: Total Uncertainty contributions for In-band Blocking measurement

FFS

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size ≤ [30 cm], f = {23.45GHz, 32.125GHz, 40.8GHz}, [P = maximum output power].
- The uncertainty assessment for IBB is provided in Table B.22.2-2 for PC3 UEs.

Table B.22.2-2: Uncertainty assessment for In-band Blocking measurement (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

FFS

B.23

B.24

B.25 Receiver spurious emissions

Editor's Note:

- MU value analysis and offset value analysis for PC1, 2 and 4 are not complete.
- MU value analysis for various test setups in subsection B.18.x is not complete for above 66GHz for PC3
- Offset value analysis is not complete as it is derived from MU value analysis for above 66GHz for PC3

Test procedure of general spurious emission comprises 2 stages: coarse TRP measurement and fine TRP measurement BW. Coarse TRP measurement is introduced to reduce the measurement time by applying sparser grids and/or wider measurement BW than fine TRP measurement while having offset dB more stringent test requirement in order not to cause additional misjudgement risk. For the frequency ranges for which coarse TRP measurement does not PASS, the measurement is continued with fine TRP measurement procedure.

Table B.25-1 summarizes the MU threshold for fine TRP measurements for General spurious emissions. The origin MU values for fine TRP measurement for different test setups can be found in following subclauses.

Power Class	Frequency	In-band BW	In-band Power	Threshold MU
			(NOTE2)	value [dB]
				(NOTE1)
PC3	6 GHz <= f	BW <= 400MHz	P = Max Output	5.50
	<=12.75 GHz		Power	
	12.75 GHz <= f			5.46
	<= 23.45 GHz			
	23.45 GHz <= f			6.11
	<= 40.8 GHz			
	40.8 GHz <= f			7.65
	<= 66 GHz			
	66 GHz <= f <=			[7.95]
	80 GHz			
PC1	6 GHz <= f	BW <= 400MHz	P = Max Output	FFS
	<=12.75 GHz		Power	
	12.75 GHz <= f			FFS
	<= 23.45 GHz			
	23.45 GHz <= f			FFS
	<= 40.8 GHz			
	40.8 GHz <= f			FFS
	<= 66 GHz			
	66 GHz <= f <=			FFS
	80 GHz			

NOTE 1: Total EIRP Expanded MU for IFF for Quiet Zone size ≤ 30cm in Table B.25.2-3 to Table B.25.2-11 for PC3 UEs and in Table B.25.2.12 to Table B.25.2.16 for PC1 UEs.

Table B.25-2 provides valid coarse TRP measurement grids and corresponding offset dB value that may be used for UE general spurious emission test case. The offset value is derived as 95%-tile TRP measurement uncertainty including the effect from uncertainty due to Coarse TRP measurement grid, excluding influence of noise.

Table B.25-2: Coarse TRP measurement grids and offset values for UE Rx spurious emission

Power Class	Coarse TRP measurement grid	Frequency	Min Number of measureme nt points on the grid	Influence of coarse TRP measurement grid (dB)	Systematic error due to coarse TRP calculation/quadratu re (dB)	Offset value (dB)
PC3	Constant	6 GHz <= f	35	0.94	0.09	5.25
	density grid	<=12.75 GHz 12.75 GHz <=				5.21
	(charged particle based)	f <= 23.45				5.21
	particle baseu)	GHz				
		23.45 GHz <=				5.49
		f <= 40.8 GHz				0.10
		40.8 GHz <= f				7.31
		<= 66 GHz				
		66 GHz <= f				7.61
		<= 80 GHz				
	Constant step	6 GHz <= f	62	0.97	0.2	5.38
	size grid	<=12.75 GHz				
		12.75 GHz <=				5.34
		f <= 23.45				
		GHz				
		23.45 GHz <=				5.62
		f <= 40.8 GHz				- 10
		40.8 GHz <= f				7.43
		<= 66 GHz				7 70
		66 GHz <= f				7.73
PC1	Constant	<= 80 GHz 6 GHz <= f	FFS	FFS	FFS	FFS
FCI	density grid	<=12.75 GHz	FF3	FFS	rr3	FFJ
	(charged	12.75 GHz <=				FFS
	particle based)	f <= 23.45				
		GHz				
		23.45 GHz <=				FFS
		f <= 40.8 GHz				
		40.8 GHz <= f				FFS
		<= 66 GHz				
		66 GHz <= f				FFS
	_	<= 80 GHz				
	Constant step	6 GHz <= f	FFS	FFS	FFS	FFS
	size grid	<=12.75 GHz				
		12.75 GHz <=				FFS
		f <= 23.45				
		GHz 23.45 GHz <=				FFS
		f <= 40.8 GHz <=				LL3
		40.8 GHz <= f				FFS
		<= 66 GHz				
		66 GHz <= f				FFS
		<= 80 GHz				

NOTE 1: Based on Total TRP Expanded MU for IFF for Quiet Zone size ≤ 30cm in Table B.25.2-3 to Table B.25.2-11, replacing "Influence of TRP measurement grid" and "Systematic error due to TRP calculation/quadrature" by the values for coarse TRP grid, and excluding "Influence of noise".

B.25.1 Uncertainty budget format and assessment for DFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.25.1-1.

UID	Description of uncertainty contribution	Details in annex				
	Stage 2: DUT measurement					
1	Positioning misalignment	B.2.1.1				
2	Measure distance uncertainty	B.2.1.2				
3	Quality of quiet zone	B.2.1.3				
4	Mismatch	B.2.1.4				
5	Standing Wave Between the DUT and measurement antenna	B.2.1.5				
6	Uncertainty of the RF power measurement equipment	B.2.1.6				
7	Phase curvature	B.2.1.7				
8	Amplifier uncertainties	B.2.1.8				
9	Random uncertainty	B.2.1.9				
10	Influence of the XPD	B.2.1.10				
11	Insertion Loss Variation	B.2.1.11				
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.1.12				
13	Influence of TRP measurement grid	B.2.1.22				
14	Influence of beam peak search grid	B.2.1.23				
15	Multiple measurement antenna uncertainty	B.2.1.25				
16	DUT repositioning	B.2.1.26				
	Stage 1: Calibration measurement					
17	Mismatch	B.2.1.4				
18	Amplifier uncertainties	B.2.1.8				
19	Misalignment of positioning System	B.2.1.13				
20	Uncertainty of the Network Analyzer	B.2.1.14				
21	Uncertainty of the absolute gain of the calibration antenna	B.2.1.15				
22	Positioning and pointing misalignment between the reference antenna and	B.2.1.16				
	the measurement antenna					
23	Phase centre offset of calibration antenna	B.2.1.18				
24	Quality of quiet zone for calibration process	B.2.1.19				
25	Standing wave between reference calibration antenna and measurement	B.2.1.20				
	antenna					
26	Influence of the calibration antenna feed cable	B.2.1.21				
27	Insertion Loss Variation	B.2.1.11				
	Systematic uncertainties					
28	Systematic error due to TRP calculation/quadrature	B.2.1.24				
29	Influence of noise	B.2.1.27				

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of D = [5 cm], f = {6 GHz to 80 GHz}, P = [Off power].
- The uncertainty assessment for TRP is provided in Table B.25.1-2 to B.25.1-xx

Table B.25.1-2: Uncertainty assessment for TRP measurement (f=TBD, D=TBD)

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stage	2: DUT meas	urement	Į	
1	Positioning misalignment				
2	Measure distance uncertainty				
3	Quality of quiet zone				
4	Mismatch (NOTE 1)				
5	Standing Wave Between the DUT				
	and measurement antenna				
6	Uncertainty of the RF power				
	measurement equipment (NOTE 2)				
7	Phase curvature	1			
8	Amplifier uncertainties				
9	Random uncertainty				
10	Influence of the XPD				
11	Insertion Loss Variation				
12	RF leakage (from measurement				
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement				
	grid (NOTE 3)				
14	Influence of beam peak search				
	grid (NOTE 4)				
15	Multiple measurement antenna				
	uncertainty				
16	DUT repositioning				
		Calibration m	easurement		-
17	Mismatch				
18	Amplifier uncertainties				
19	Misalignment of positioning				
	System			ļ	
20	Uncertainty of the Network				
	Analyzer				
21	Uncertainty of the absolute gain of				
	the calibration antenna				
22	Positioning and pointing				
	misalignment between the				
	reference antenna and the				
	measurement antenna	ļ			
23	Phase centre offset of calibration				
	antenna				
24	Quality of quiet zone for calibration				
	process	ļ		ļ	
25	Standing wave between reference				
	calibration antenna and				
	measurement antenna	ļ		ļ	
26	Influence of the calibration antenna				
	feed cable	ļ	ļ	ļ	
27	Insertion Loss Variation	<u> </u>			
I'RP I	Expanded uncertainty (1.96σ - confide				<u> </u>
	Systematic unce				Value
28	Systematic error due to TRP calcula	uon/quadrature	e (NUTE 3)		+
29	Influence of noise	00001100000	noortoint:		
		easurement u			1
	TRP total measure E 1: The analysis was done only for t			It nower in	hand non CA
		-		at power, m-	banu, non-CA.
	E 2: The assessment assumes maxin	-			
	E 3: This contributor shall only be co				
	E 4: This contributor shall only be co				1 I
NOTE					
	added to the expanded root sum	n square of the	standard deviation	s of the Stag	ge 1 and Stage
	2 contributors.				

.

B.25.2 Uncertainty budget format and assessment for IFF

The uncertainty contributions that may impact the overall MU value are listed in Table B.25.2-1.

UID	Description of uncertainty contribution	Details in clause				
	Stage 2: DUT measurement					
1	Positioning misalignment	B.2.2.1				
2	Measure distance uncertainty	B.2.2.2				
3	Quality of Quiet Zone	B.2.2.3				
4	Mismatch	B.2.2.4				
5	Standing wave between the DUT and measurement antenna	B.2.2.5				
6	Uncertainty of the RF power measurement equipment	B.2.2.6				
7	Phase curvature	B.2.2.7				
8	Amplifier uncertainties	B.2.2.8				
9	Random uncertainty	B.2.2.9				
10	Influence of the XPD	B.2.2.10				
11	Insertion Loss Variation	B.2.2.11				
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.2.12				
13	Influence of TRP measurement grid	B.2.2.22				
14	Influence of beam peak search grid	B.2.2.23				
15	Multiple measurement antenna uncertainty	B.2.2.25				
16	DUT repositioning	B.2.2.26				
17	Misalignment of DUT due to change of DUT orientation	B.2.2.31				
	Stage 1: Calibration measurement					
18	Mismatch	B.2.2.4				
19	Amplifier Uncertainties	B.2.2.8				
20	Misalignment of positioning System	B.2.2.13				
21	Uncertainty of the Network Analyzer	B.2.2.14				
22	Uncertainty of the absolute gain of the calibration antenna	B.2.2.15				
23	Positioning and pointing misalignment between the reference antenna and	B.2.2.16				
	the measurement antenna					
24	Phase centre offset of calibration antenna	B.2.2.18				
25	Quality of quiet zone for calibration process	B.2.2.19				
26	Standing wave between reference calibration antenna and measurement	B.2.2.20				
	antenna					
27	Influence of the calibration antenna feed cable	B.2.2.21				
28	Insertion Loss Variation	B.2.2.11				
	Systematic uncertainties					
29	Systematic error due to TRP calculation/quadrature	B.2.2.24				
30	Influence of noise	B.2.2.27				

Table B.25.2-1: Uncertainty	contributions	for TRP	measurement
-----------------------------	---------------	---------	-------------

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size \leq 30 cm, f = {6 GHz to 80 GHz}, P = Receiver Spurious Core Requirement Level + Relaxation(For n257, 10.2dB for 6GHz \leq f \leq 20GHz, 17.2 dB for 20GHz \leq f \leq 40GHz, 33.1dB for 40GHz \leq f \leq 2nd harmonic)
- The uncertainty assessment for TRP is provided from Table B.25.2-2 to Table B.25.2-11 for PC3 UEs and from Table B.25.2.12 to Table B.25.2.16 for PC1 UEs.

Table B.25.2-2: Void

Table B.25.2-3: Uncertainty assessment for TRP measurement (f=6 GHz to 12.75 GHz, Quiet Zone size \leq 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	·	·
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.70	Actual	1.00	0.70
4	Mismatch	1.60	Actual	1.00	1.60
5	Standing wave between the DUT	0.00	U-shaped	1.41	0.00
6	and measurement antenna Uncertainty of the RF power	2.00	Normal	2.00	1.00
•	measurement equipment				
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.5	Normal	2.00	0.25
10	Influence of the XPD	0.09	U-shaped	1.41	0.064
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement	0.00	Actual	1.00	0.00
10	antenna to the receiver/transmitter) Influence of TRP measurement	0.22	Actual	1	0.22
13	grid (NOTE 1)	0.32	Actual	1	0.32
14	Influence of beam peak search	N/A	Actual	1	N/A
-	grid (NOTE 2)				
15	Multiple measurement antenna	0.15	Actual	1	0.15
	uncertainty (NOTE 5)				
16	DUT repositioning	0.00	Rectangular	1.73	0.00
17	Misalignment of DUT due to	0.10	Actual	1	0.10
	change of DUT orientation				
	Stage 1	: Calibration r	neasurement		
18	Mismatch	0.00	U-shaped	1.41	0.00
19	Amplifier Uncertainties	0.00	Normal	2.00	0.00
20	Misalignment of positioning	0.00	Normal	2.00	0.00
21	System Uncertainty of the Network	0.90	Normal	2.00	0.45
21	Analyzer	0.90	Normai	2.00	0.45
22	Uncertainty of the absolute gain of	0.60	Normal	2.00	0.30
	the calibration antenna				
23	Positioning and pointing	0.05	Rectangular	1.73	0.03
	misalignment between the				
	reference antenna and the				
	measurement antenna				ļ
24	Phase centre offset of calibration	0.00	Rectangular	1.73	0.00
	antenna				
25	Quality of quiet zone for calibration	0.70	Actual	1.00	0.70
26	process (NOTE 4) Standing wave between reference	0.00	U-shaped	1.41	0.00
20	calibration antenna and	0.00	o-snapeu	1.41	0.00
27	measurement antenna Influence of the calibration antenna	0.14	Normal	2.00	0.07
	feed cable				
28	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
	Expanded uncertainty (1.96σ - confidence interval of 95 %)				
	TRP Expanded uncertainty (6 GHz < f <= 12.75 GHz) [dB] (a)				
	Systematic uncertainties (NOTE 3)				
	Systematic error due to TR	0.0			
29					

Table B.25.2-4: void

Table B.25.2-5: Uncertainty assessment for TRP measurement (f=12.75 GHz to 23.45 GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Staç	je 2: DUT mea	surement		
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.60	Actual	1.00	0.60
4	Mismatch	1.60	Actual	1.00	1.60
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00
6	Uncertainty of the RF power measurement equipment	2.16	Normal	2.00	1.08
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.5	Normal	2.00	0.25
10	Influence of the XPD	0.09	U-shaped	1.41	0.064
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00
13	Influence of TRP measurement grid (NOTE 1)	0.32	Actual	1	0.32
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A
15	Multiple measurement antenna uncertainty (NOTE 5)	0.15	Actual	1	0.15
16	DUT repositioning	0.00	Rectangular	1.73	0.00
17	Misalignment of DUT due to change of DUT orientation	0.10	Actual	1	0.10
	•	: Calibration r	neasurement	1	. I
18	Mismatch	0.00	U-shaped	1.41	0.00
19	Amplifier Uncertainties	0.00	Normal	2.00	0.00
20	Misalignment of positioning System	0.00	Normal	2.00	0.00
21	Uncertainty of the Network Analyzer	0.90	Normal	2.00	0.45
22	Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.05	Rectangular	1.73	0.03
24	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
25	Quality of quiet zone for calibration process (NOTE 4)	0.60	Actual	1.00	0.60
26	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
27	Influence of the calibration antenna feed cable	0.14	Normal	2.00	0.07
28	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
	Expanded uncertainty (1.96σ - confidence interval of 95 %)				
	TRP Expanded uncertainty ([12.75] GHz <	f <= 23.45 GHz) [dB] (a)	4.82
	Systematic uncertainties (NOTE 3)				
29	Systematic error due to TR	P calculation/q	uadrature (NOTE 1)	(b)	0.0
30	Influence of noise (1	2.75 GHz < f <	= 23.45 GHz) (c)		0.64

Table B.25.2-6: Void

Table B.25.2-7: Uncertainty assessment for TRP measurement (f=23.45 GHz to 40.8 GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	1	•
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.6	Actual	1.00	0.6
4	Mismatch	1.50	Actual	1.00	1.50
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00
6	Uncertainty of the RF power measurement equipment	2.73	Normal	2.00	1.37
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.5	Normal	2.00	0.25
10	Influence of the XPD	0.01	U-shaped	1.41	0.0071
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00
13	Influence of TRP measurement grid (NOTE 1)	0.32	Actual	1	0.32
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A
15	Multiple measurement antenna uncertainty (NOTE 5)	0.15	Actual	1	0.15
16	DUT repositioning	0.00	Rectangular	1.73	0.00
17	Misalignment of DUT due to change of DUT orientation	0.10	Actual	1	0.10
	•	: Calibration r	neasurement	Į	
18	Mismatch	0.00	U-shaped	1.41	0.00
19	Amplifier Uncertainties	0.00	Normal	2.00	0.00
20	Misalignment of positioning System	0.00	Normal	2.00	0.00
21	Uncertainty of the Network Analyzer	1.5	Normal	2.00	0.75
22	Uncertainty of the absolute gain of the calibration antenna	0.6	Normal	2.00	0.3
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.05	Rectangular	1.73	0.03
24	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
25	Quality of quiet zone for calibration process (NOTE 4)	0.6	Actual	1.00	0.6
26	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
27	Influence of the calibration antenna feed cable	0.14	Normal	2.00	0.07
28	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
	Expanded uncertainty (1.96σ - confidence interval of 95 %)				
	TRP Expanded uncertainty (23.45 GHz < f <= 40.8 GHz) [dB] (a)				
	Systematic uncertainties (NOTE 3)				
29	Systematic error due to TR	P calculation/q	uadrature (NOTE 1)	(b)	0.0
30	Influence of noise (2	3.45 GHz < f <	= 40.8 GHz) (c)		1.0

Table B.25.2-8: Void

Table B.25.2-9: Uncertainty assessment for TRP measurement (f= 40.8 GHz to 66 GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	-	-
1	Positi0.0oning misalignment		Normal	2.00	0.0
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.6	Actual	1.00	0.6
4	Mismatch	2.30	Actual	1.00	2.30
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00
6	Uncertainty of the RF power measurement equipment	4.0	Normal	2.00	2.00
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.5	Normal	2.00	0.25
10	Influence of the XPD	0.09	U-shaped	1.41	0.064
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00
13	Influence of TRP measurement grid (NOTE 1)	0.32	Actual	1	0.32
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A
15	Multiple measurement antenna uncertainty (NOTE 5)	0.15	Actual	1	0.15
16	DUT repositioning	0.00	Rectangular	1.73	0.00
17	Misalignment of DUT due to change of DUT orientation	0.10	Actual	1	0.10
18	Stage 1 Mismatch	: Calibration r	neasurement U-shaped	1.41	0.00
10	Amplifier Uncertainties	0.00	Normal	2.00	0.00
20	Misalignment of positioning	0.00	Normal	2.00	0.00
	System				
21	Uncertainty of the Network Analyzer	1.7	Normal	2.00	0.85
22	Uncertainty of the absolute gain of the calibration antenna	1.70	Normal	2.00	0.85
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.05	Rectangular	1.73	0.03
24	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
25	Quality of quiet zone for calibration process (NOTE 4)	0.6	Actual	1.00	0.6
26	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
27	Influence of the calibration antenna feed cable	0.28	Normal	2.00	0.14
28	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
	Expanded uncertainty (1	.96σ - confide		· 6)	Value
	TRP Expanded uncertaint	y (40.8 GHz <	f <= 66 GHz) [dB] (a	a)	7.01
	Systematic u		Value		
29	Systematic error due to TR	P calculation/q	uadrature (NOTE 1)	(b)	0.0
30	Influence of noise ((40.8 GHz < f	<= 66 GHz) (c)		0.64

Table B.25.2-10: Void

Table B.25.2-11: Uncertainty assessment for TRP measurement (f= 66 GHz to 80 GHz, Quiet Zone size ≤ 30 cm) for PC3 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement		•
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.6	Actual	1.00	0.6
4	Mismatch	2.30	Actual	1.00	2.30
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00
6	Uncertainty of the RF power measurement equipment	[4.0]	Normal	2.00	[2.0]
7	Phase curvature	0.00	U-shaped	1.41	0.00
8	Amplifier uncertainties	3.0	Normal	2.00	1.50
9	Random uncertainty	0.5	Normal	2.00	0.25
10	Influence of the XPD	0.09	U-shaped	1.41	0.064
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement	0.00	Actual	1.00	0.00
	antenna to the receiver/transmitter)				
13	Influence of TRP measurement grid (NOTE 1)	0.32	Actual	1	0.32
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A
15	Multiple measurement antenna uncertainty (NOTE 5)	0.15	Actual	1	0.15
16	DUT repositioning	0.00	Rectangular	1.73	0.00
17	Misalignment of DUT due to change of DUT orientation	0.10	Actual	1	0.10
	· · · · · · · · · · · · · · · · · · ·	: Calibration r	neasurement	Į	1
18	Mismatch	0.00	U-shaped	1.41	0.00
19	Amplifier Uncertainties	0.00	Normal	2.00	0.00
20	Misalignment of positioning System	0.00	Normal	2.00	0.00
21	Uncertainty of the Network Analyzer	[1.7]	Normal	2.00	[0.85]
22	Uncertainty of the absolute gain of the calibration antenna	1.70	Normal	2.00	0.85
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.05	Rectangular	1.73	0.03
24	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
25	Quality of quiet zone for calibration process (NOTE 4)	0.60	Actual	1.00	0.60
26	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
27	Influence of the calibration antenna feed cable	0.28	Normal	2.00	0.14
28	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
	Expanded uncertainty (1	•		•	Value
	TRP Expanded uncertair	nty (66 GHz < 1	f <= 80 GHz) [dB] (a))	[7.31]
	Systematic	uncertainties (s (NOTE 3)		Value
	Systematic error due to TRP calculation/quadrature (NOTE 1) (b)				
29	-	P calculation/q	uadrature (NOTE 1)	(b)	0.0

Table B.25.2-12: Uncertainty assessment for TRP measurement (f=[6] GHz to [12.75] GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement		
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT and measurement antenna	FFS	U-shaped	1.41	FFS
6	Uncertainty of the RF power measurement equipment	FFS	Normal	2.00	FFS
7	Phase curvature	FFS	U-shaped	1.41	FFS
8	Amplifier uncertainties	FFS	Normal	2.00	FFS
9	Random uncertainty	FFS	Normal	2.00	FFS
10	Influence of the XPD	FFS	U-shaped	1.41	FFS
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
12	RF leakage (from measurement	FFS	Actual	1.00	FFS
13	antenna to the receiver/transmitter) Influence of TRP measurement grid (NOTE 1)	FFS	Actual	1	FFS
14	Influence of beam peak search grid (NOTE 2)	FFS	Actual	1	FFS
15	Multiple measurement antenna uncertainty (NOTE 5)	FFS	Actual	1	FFS
16	DUT repositioning	FFS	Rectangular	1.73	FFS
17	Misalignment of DUT due to change of DUT orientation	FFS	Actual	1	FFS
18	Stage 1 Mismatch	: Calibration r	U-shaped	1.41	FFS
19	Amplifier Uncertainties	FFS	Normal	2.00	FFS
20	Misalignment of positioning System	FFS	Normal	2.00	FFS
21	Uncertainty of the Network Analyzer	FFS	Normal	2.00	FFS
22	Uncertainty of the absolute gain of the calibration antenna	FFS	Normal	2.00	FFS
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	FFS	Rectangular	1.73	FFS
24	Phase centre offset of calibration antenna	FFS	Rectangular	1.73	FFS
25	Quality of quiet zone for calibration process (NOTE 4)	FFS	Actual	1.00	FFS
26	Standing wave between reference calibration antenna and measurement antenna	FFS	U-shaped	1.41	FFS
27	Influence of the calibration antenna feed cable	FFS	Normal	2.00	FFS
28	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
	Expanded uncertainty (1			•	Value
	TRP Expanded uncertainty	r ([6] GHz < f <	= [12.75] GHz) [dB] ((a)	FFS
	Systematic u		Value		
29	Systematic error due to TR	P calculation/q	uadrature (NOTE 1)	(b)	FFS
30	Influence of noise ([6] GHz < f <= [(12 75] GHz) (c)		FFS

Table B.25.2-13: Uncertainty assessment for TRP measurement (f=[12.75] GHz to 23.45 GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement		
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT and measurement antenna	FFS	U-shaped	1.41	FFS
6	Uncertainty of the RF power measurement equipment	FFS	Normal	2.00	FFS
7	Phase curvature	FFS	U-shaped	1.41	FFS
8	Amplifier uncertainties	FFS	Normal	2.00	FFS
9	Random uncertainty	FFS	Normal	2.00	FFS
10	Influence of the XPD	FFS	U-shaped	1.41	FFS
11	Insertion Loss Variation	FFS		1.41	FFS
12			Rectangular		
	RF leakage (from measurement antenna to the receiver/transmitter)	FFS	Actual	1.00	FFS
13	Influence of TRP measurement grid (NOTE 1)	FFS	Actual	1	FFS
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A
15	Multiple measurement antenna uncertainty (NOTE 5)	FFS	Actual	1	FFS
16	DUT repositioning	FFS	Rectangular	1.73	FFS
17	Misalignment of DUT due to	FFS	Actual	1	FFS
	change of DUT orientation				
	Stage 1	: Calibration r	neasurement		
18	Mismatch	FFS	U-shaped	1.41	FFS
19	Amplifier Uncertainties	FFS	Normal	2.00	FFS
20	Misalignment of positioning	FFS	Normal	2.00	FFS
20	System	110	Norma	2.00	110
21	Uncertainty of the Network	FFS	Normal	2.00	FFS
21	Analyzer	ггэ	Normai	2.00	ГГЭ
22	Uncertainty of the absolute gain of the calibration antenna	FFS	Normal	2.00	FFS
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	FFS	Rectangular	1.73	FFS
24	Phase centre offset of calibration antenna	FFS	Rectangular	1.73	FFS
25	Quality of quiet zone for calibration process (NOTE 4)	FFS	Actual	1.00	FFS
26	Standing wave between reference calibration antenna and measurement antenna	FFS	U-shaped	1.41	FFS
27	Influence of the calibration antenna feed cable	FFS	Normal	2.00	FFS
28	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
	Expanded uncertainty (1.96σ - confidence interval of 95 %)				
	TRP Expanded uncertainty ([12.75] GHz < f <= 23.45 GHz) [dB] (a)				
	Systematic uncertainties (NOTE 3)				
29	Systematic error due to TR	P calculation/q	uadrature (NOTE 1)	(b)	FFS
	İ	FFS			

Table B.25.2-14: Uncertainty assessment for TRP measurement (f=23.45 GHz to 40.8 GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]	
	Stag	je 2: DUT mea	surement			
1	Positioning misalignment	FFS	Normal	2.00	FFS	
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS	
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS	
4	Mismatch	FFS	Actual	1.00	FFS	
5	Standing wave between the DUT and measurement antenna	FFS	U-shaped	1.41	FFS	
6	Uncertainty of the RF power measurement equipment	FFS	Normal	2.00	FFS	
7	Phase curvature	FFS	U-shaped	1.41	FFS	
8	Amplifier uncertainties	FFS	Normal	2.00	FFS	
9	Random uncertainty	FFS	Normal	2.00	FFS	
10	Influence of the XPD	FFS	U-shaped	1.41	FFS	
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS	
12	RF leakage (from measurement antenna to the receiver/transmitter)	FFS	Actual	1.00	FFS	
13	Influence of TRP measurement grid (NOTE 1)	FFS	Actual	1	FFS	
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A	
15	Multiple measurement antenna uncertainty (NOTE 5)	FFS	Actual	1	FFS	
16	DUT repositioning	FFS	Rectangular	1.73	FFS	
17	Misalignment of DUT due to	FFS	Actual	1	FFS	
11	change of DUT orientation	113	Actual			
	Stage 1	: Calibration r	neasurement			
18	Mismatch	FFS	U-shaped	1.41	FFS	
19	Amplifier Uncertainties	FFS	Normal	2.00	FFS	
20	Misalignment of positioning System	FFS	Normal	2.00	FFS	
21	Uncertainty of the Network Analyzer	FFS	Normal	2.00	FFS	
22	Uncertainty of the absolute gain of the calibration antenna	FFS	Normal	2.00	FFS	
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	FFS	Rectangular	1.73	FFS	
24	Phase centre offset of calibration antenna	FFS	Rectangular	1.73	FFS	
25	Quality of quiet zone for calibration process (NOTE 4)	FFS	Actual	1.00	FFS	
26	Standing wave between reference calibration antenna and measurement antenna	FFS	U-shaped	1.41	FFS	
27	Influence of the calibration antenna feed cable	FFS	Normal	2.00	FFS	
28	Insertion Loss Variation	FFS	Rectangular	1.73	FFS	
20	Expanded uncertainty (1			•	Value	
	TRP Expanded uncertainty	(23.45 GHz <	f <= 40.8 GHz) [dB]	(a)	FFS	
	Systematic uncertainties (NOTE 3)					
29	Systematic error due to TR	P calculation/q	uadrature (NOTE 1)	(b)	FFS	
30	Influence of noise (2	FFS				

Table B.25.2-15: Uncertainty assessment for TRP measurement (f= 40.8 GHz to 66 GHz, Quiet Zone size ≤ 30 cm) for PC1 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	·	·
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT and measurement antenna	FFS	U-shaped	1.41	FFS
6	Uncertainty of the RF power measurement equipment	FFS	Normal	2.00	FFS
7	Phase curvature	FFS	U-shaped	1.41	FFS
8	Amplifier uncertainties	FFS	Normal	2.00	FFS
9	Random uncertainty	FFS	Normal	2.00	FFS
10	Influence of the XPD	FFS	U-shaped	1.41	FFS
11	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
12	RF leakage (from measurement antenna to the receiver/transmitter)	FFS	Actual	1.00	FFS
13	Influence of TRP measurement grid (NOTE 1)	FFS	Actual	1	FFS
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A
15	Multiple measurement antenna uncertainty (NOTE 5)	FFS	Actual	1	FFS
16	DUT repositioning	FFS	Rectangular	1.73	FFS
17	Misalignment of DUT due to change of DUT orientation	FFS	Actual	1	FFS
	· · · · · · · · · · · · · · · · · · ·	: Calibration r	neasurement	•	
18	Mismatch	FFS	U-shaped	1.41	FFS
19	Amplifier Uncertainties	FFS	Normal	2.00	FFS
20	Misalignment of positioning System	FFS	Normal	2.00	FFS
21	Uncertainty of the Network Analyzer	FFS	Normal	2.00	FFS
22	Uncertainty of the absolute gain of the calibration antenna	FFS	Normal	2.00	FFS
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	FFS	Rectangular	1.73	FFS
24	Phase centre offset of calibration antenna	FFS	Rectangular	1.73	FFS
25	Quality of quiet zone for calibration process (NOTE 4)	FFS	Actual	1.00	FFS
26	Standing wave between reference calibration antenna and measurement antenna	FFS	U-shaped	1.41	FFS
27	Influence of the calibration antenna feed cable	FFS	Normal	2.00	FFS
28	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
20	Expanded uncertainty (1	Value			
	TRP Expanded uncertaint	y (40.8 GHz <	f <= 66 GHz) [dB] (a	a)	FFS
	Systematic uncertainties (NOTE 3)				
29	Systematic error due to TR	P calculation/q	uadrature (NOTE 1)	(b)	FFS
30	Influence of noise ((40.8 GHz < f	<= 66 GHz) (c)		FFS

Table B.25.2-16: Uncertainty assessment for TRP measurement (f= 66 GHz to 80 GHz, Quiet Zone size \leq 30 cm) for PC1 UEs

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stag	je 2: DUT mea	surement	•	
1	Positioning misalignment	FFS	Normal	2.00	FFS
2	Measure distance uncertainty	FFS	Rectangular	1.73	FFS
3	Quality of Quiet Zone (NOTE 4)	FFS	Actual	1.00	FFS
4	Mismatch	FFS	Actual	1.00	FFS
5	Standing wave between the DUT and measurement antenna	FFS	U-shaped	1.41	FFS
6	Uncertainty of the RF power measurement equipment	FFS	Normal	2.00	FFS
7	Phase curvature	FFS	U-shaped	2.00 1.73 1.00 1.00 1.41 2.00 2.00 1.41 1.73 1.00 1.41 1.73 1.00 1.41 1.73 1.00 1.41 1.73 1.00 2.00 1.73	FFS
8	Amplifier uncertainties	FFS	Normal		FFS
9	Random uncertainty	FFS	Normal		FFS
10	Influence of the XPD	FFS	U-shaped		FFS
11	Insertion Loss Variation	FFS	Rectangular		FFS
12		FFS			FFS
	RF leakage (from measurement antenna to the receiver/transmitter)		Actual		
13	Influence of TRP measurement grid (NOTE 1)	FFS	Actual		FFS
14	Influence of beam peak search grid (NOTE 2)	N/A	Actual	1	N/A
15	Multiple measurement antenna uncertainty (NOTE 5)	FFS	Actual	1	FFS
16	DUT repositioning	FFS	Rectangular	1.73	FFS
17	Misalignment of DUT due to change of DUT orientation	FFS	Actual	1	FFS
	•	: Calibration r	neasurement	Į	I.
18	Mismatch	FFS	U-shaped	1.41	FFS
19	Amplifier Uncertainties	FFS	Normal		FFS
20	Misalignment of positioning System	FFS	Normal	+	FFS
21	Uncertainty of the Network Analyzer	FFS	Normal	2.00	FFS
22	Uncertainty of the absolute gain of the calibration antenna	FFS	Normal	2.00	FFS
23	Positioning and pointing misalignment between the reference antenna and the measurement antenna	FFS	Rectangular	1.73	FFS
24	Phase centre offset of calibration antenna	FFS	Rectangular	1.73	FFS
25	Quality of quiet zone for calibration process (NOTE 4)	FFS	Actual	1.00	FFS
26	Standing wave between reference calibration antenna and measurement antenna	FFS	U-shaped	1.41	FFS
27	Influence of the calibration antenna feed cable	FFS	Normal	2.00	FFS
28	Insertion Loss Variation	FFS	Rectangular	1.73	FFS
	Expanded uncertainty (1	•		•	Value
	TRP Expanded uncertair	nty (66 GHz < 1	f <= 80 GHz) [dB] (a))	FFS
	Systematic u	uncertainties ((NOTE 3)		Value
29	Systematic error due to TR	P calculation/q	uadrature (NOTE 1)	(b)	FFS
30	Influence of noise		FFS		

3GPP

Annex C: Acceptable uncertainty of test system for test cases defined in TS 38.521-3 for radiative testing

FFS

Annex D: Acceptable uncertainty of test system for test cases defined in TS 38.521-4 for radiative testing

Editor's note: The MU tables in D-1, D-2, and D-3 serve as sample, consolidated baseline tables for demodulation test cases and can be removed once the MU tables customized for each TS 38.521-4 test case have been finalized.

This annex contains suggested uncertainties for each test case in TS 38.521-4.

The baseline MU table for Mode 1 (conditions with external noise) is shown in Table D-1 for baseband-combining implementation and in Table D-2 for external-combining implementation.

Table D-1: Uncertainty Contributions for Mode 1 Demodulation Test Cases (Baseband-Combining Implementation)

UID	Uncertainty source	Uncertaint y value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Si	gnal-to-noise	ratio uncertainty		
		Stage 2: DUT	measurement		
1	Positioning misalignment		N/A	N/A	
2	Measure distance uncertainty		N/A	N/A	
3	Quality of Quiet Zone		N/A	N/A	
4	Mismatch		N/A	N/A	
5	Standing wave between the DUT and measurement antenna		N/A	N/A	
6	gNB emulator SNR uncertainty	0.3	Note 3	1.96	0.153
7	Phase curvature		N/A	N/A	
8	Amplifier uncertainties		N/A	N/A	
9	Random uncertainty		N/A	N/A	
10	Influence of the XPD		N/A	N/A	
11	Insertion Loss Variation		N/A	N/A	
12	RF leakage (from measurement antenna to the receiver/transmitter)		N/A	N/A	
13	Multiple measurement antenna uncertainty		N/A	N/A	
14	DUT repositioning		N/A	N/A	
		ge 1: Calibrat	ion measurement		I
15	Mismatch		N/A	N/A	
16	Amplifier Uncertainties		N/A	N/A	
17	Misalignment of positioning System		N/A	N/A	
18	Uncertainty of the Network Analyzer		N/A	N/A	
19	Uncertainty of the absolute gain of		N/A	N/A	
20	the calibration antenna Positioning and pointing		N/A	N/A	
	misalignment between the reference antenna and the measurement antenna				
21	Phase centre offset of calibration antenna		N/A	N/A	
22	Quality of quiet zone for calibration process		N/A	N/A	
23	Standing wave between reference calibration antenna and measurement antenna		N/A	N/A	
24	Influence of the calibration antenna feed cable		N/A	N/A	
25	Insertion Loss Variation		N/A	N/A	
	Total	Signal-to-Noi	se ratio uncertainty		0.153
	Other	contributors	affecting test result		
27	gNB emulator fading model impairments	0.5 for 1Tx 0.7 for 2Tx	Note 3	1.96	0.255 for 1T 0.357 for 2T
28	AWGN flatness and signal flatness, max deviation for any Resource Block, relative to average over	3.6	Note 3	1.96	1.837
29	BW _{Config} (Note 4)	0.3 for PDSCH	Note 3	1.96	0.153 for
	SNR uncertainty due to finite test time	and Doppler < 100 Hz 0.0 for PDSCH and Doppler ≥ 100 Hz			PDSCH and Doppler < 100 Hz 0.0 for PDSCH and Doppler ≥ 100 Hz 0.204 for PDCCH

Overall system uncertainty	Value
PDSCH 1Tx with Doppler < 100 Hz	1.71
PDSCH 2Tx with Doppler < 100 Hz, rank 1	1.82
PDSCH 2Tx with Doppler < 100 Hz, rank 2	1.67
PDSCH 1Tx with Doppler ≥ 100 Hz	1.67
PDSCH 2Tx with Doppler ≥ 100 Hz, rank 1	1.78
PDSCH 2Tx with Doppler ≥ 100 Hz, rank 2	1.63
PDCCH 1Tx, rank 1	1.74
PDCCH 2Tx, rank 1	1.84

Table D-2: Uncertainty Contributions for Mode 1 Demodulation Test Cases (External-Combining Implementation)

UID	Uncertainty source	Uncertaint y value	Distribution of the probability	Divisor	Standard uncertainty
					(σ) [dB]
	S		ratio uncertainty measurement		
1	Positioning misalignment	Stage 2. DOT	[Normal]	[2.00]	
2	Measure distance uncertainty		[Rectangular]	[1.73]	
3	Quality of Quiet Zone		[Actual]	[1.00]	
4	Mismatch		[Actual]	[1.00]	
5	Standing wave between the DUT		[U-shaped]	[1.41]	
	and measurement antenna		[N a was a]	[0,00]	
6 7	gNB emulator SNR uncertainty Phase curvature		[Normal] [U-shaped]	[2.00]	
8	Amplifier uncertainties		[Normal]	[2.00]	
9	Random uncertainty		[Normal]	[2.00]	
10	Influence of the XPD		[U-shaped]	[1.41]	
11	Insertion Loss Variation		[Rectangular]	[1.73]	
12	RF leakage (from measurement		[Actual]	[1.00]	
	antenna to the receiver/transmitter)				
13	Multiple measurement antenna		[Actual]	[1.00]	
	uncertainty				
14	DUT repositioning		[Rectangular]	[1.73]	
		age 1: Calibrat	ion measurement		
15	Mismatch		[U-shaped]	[1.41]	
16	Amplifier Uncertainties		[Normal]	[2.00]	
17	Misalignment of positioning System		[Normal]	[2.00]	
18	Uncertainty of the Network Analyzer		[Normal]	[2.00]	
19	Uncertainty of the absolute gain of the calibration antenna		[Normal]	[2.00]	
20	Positioning and pointing		[Rectangular]	[1.73]	
	misalignment between the		[[=	
	reference antenna and the				
	measurement antenna				
21	Phase centre offset of calibration		[Rectangular]	[1.73]	
~ 1	antenna		[iteotaligulai]	[1.70]	
22	Quality of quiet zone for calibration		[Actual]	[1.00]	
	process		[]	[]	
23	Standing wave between reference		[U-shaped]	[1.41]	
	calibration antenna and		[]		
	measurement antenna				
24	Influence of the calibration antenna		[Normal]	[2.00]	
	feed cable				
25	Insertion Loss Variation		[Rectangular]	[1.73]	
	S	ystematic unc	ertainties		Value
26	Impact on non-ideal isolation betwee	en branches for	the wireless cable mode		0.45 (Note 1) 0.60 (Note 2)
	Tota	l Signal-to-Noi	se ratio uncertainty		
	Othe	r contributors	affecting test result		l
27	gNB emulator fading model		[Normal]	[2.00]	
	impairments				
28	AWGN flatness and signal flatness,		[Actual]	1.00	
	max deviation for any Resource				
	Block, relative to average over				
	BW _{Config} (Note 3)				
29	Result variation due to finite test time		[Actual]	[1.00]	
Note 1	applies to Rank 2 test cases for FR2	2a, FR2b, and F	R2c	•	1
	applies to Rank 1 test cases for FR2				
	: AWGN flatness and signal flatness h			s sensitivity facto	or shall be
-	considered in the calculation of th		-	,	

3GPP

The baseline MU table for Mode 2 (noise free conditions) is shown in Table D-3.

UID	Uncertainty source	Uncertaint y value	Distribution of the probability	Divisor	Standard uncertainty
	Staa	e 2: DUT mea	suramont		(σ) [dB]
L	Positioning misalignment		[Normal]	[2 00]	1
2	Measure distance uncertainty		[Rectangular]		
3	Quality of Quiet Zone		[Actual]		
<u>,</u> 1	Mismatch		[Actual]		
5	Standing wave between the		[U-shaped]		
	DUT and measurement		[e enaped]	[]	
	antenna				
<u></u>	gNB uncertainty on absolute		[Normal]	[2 00]	
	level		[iterinal]	[2.00] [1.73] [1.00] [1.00] [1.01] [1.41] [2.00] [1.41] [2.00] [1.41] [1.73] [1.00] [1.73] [1.73] [2.00] [2.00] [2.00] [2.00] [2.00] [2.00] [2.00] [1.73] [1.73] [1.73]	
7	Phase curvature		[U-shaped]	[1 41]	
3	Amplifier uncertainties		[Normal]		
)	Random uncertainty		[Normal]		
, LO	Influence of the XPD		[U-shaped]		
11	Insertion Loss Variation		[Rectangular]		
12	RF leakage (from		[Actual]		1
	measurement antenna to the		[/ (0(004)]		
	receiver/transmitter)				
L3	Multiple measurement antenna		[Actual]	[1 00]	1
	uncertainty		[/ tottotal]	[1.00]	
14	DUT repositioning		[Rectangular]	[1 73]	
		: Calibration n			
5	Mismatch		[U-shaped]	[1 41]	1
L6	Amplifier Uncertainties		[Normal]		
L7	Misalignment of positioning		[Normal]		
	System		[rtornal]	[2:00]	
18	Uncertainty of the Network		[Normal]	[2.00]	
	Analyzer		[]	[]	
19	Uncertainty of the absolute gain		[Normal]	[2.00]	
-	of the calibration antenna				
20	Positioning and pointing		[Rectangular]	[1.73]	
	misalignment between the		[[]	
	reference antenna and the				
	measurement antenna				
21	Phase centre offset of		[Rectangular]	[1 73]	
	calibration antenna		[Incotaliguiai]		
22	Quality of quiet zone for		[Actual]	[1 00]	
	calibration process				
23	Standing wave between		[U-shaped]	[1 /1]	+
	reference calibration antenna		[U-snapeu]		
				1	
24	and measurement antenna Influence of the calibration	}	[Normal]	[2 00]	
-+			נוזטווומון	[1.73] [1.00] [1.00] [1.00] [1.41] [2.00] [2.00] [2.00] [1.41] [1.73] [1.73] [1.73] [1.73] [1.73] [2.00] [2.00] [2.00] [2.00] [2.00] [2.00] [2.00] [2.00] [2.00] [2.00] [2.00] [2.00] [1.73]	
25	antenna feed cable		[Dectongular]	[1 70]	
. <u>J</u>	Insertion Loss Variation	stematic unce	[Rectangular]	[[1./3]	Value
26	Systematic error related to beam				value
20					0.45 (Note 1
- /	Impact on non-ideal isolation betw	ween branches	for the wireless cable mo	ode	0.43 (Note 1 0.60 (Note 2
	Other con	tributors affec	ting test result		
28	Result variation due to finite		[Actual]	[1.00]	1
-	test time		[[]	
		R2b, and FR20			

Table D-3: Uncertainty Contributions for Mode 2 Demodulation Test Cases

D.1 Uncertainty budget calculation principle

D.1.1 Uncertainty budget calculation principle for DNF

The uncertainty tables cover the actual measurement using the DUT receiver. If applicable, any uncertainty arising from a calibration or alignment process before the measurements should also be included.

The MU budget should comprise of a minimum 5 headings:

- 1) The uncertainty source,
- 2) Uncertainty value,
- 3) Distribution of the probability,
- 4) Divisor based on distribution shape,
- 5) Calculated standard uncertainty (based on uncertainty value and divisor).

D.1.2 Uncertainty budget calculation principle for DFF

The same as defined in D.1.1.

D.1.3 Uncertainty budget calculation principle for IFF

The same as defined in D.1.1.

D.2 Measurement error contribution descriptions

D.2.1 Measurement error contribution descriptions for DNF

D.2.1.1 gNB emulator SNR uncertainty

This contribution originates from setting the ratio of signal and noise in the conducted part of the test system. It is estimated to be the same as for LTE conducted testing in TS 36.521-1 Annex F, which is ±0.3dB. The default for values in 36.521-1 Annex F is 95% confidence interval, normal distribution.

D.2.1.2 gNB emulator Downlink EVM

When simulations of demodulation performance are run, the downlink signal is modelled with a defined EVM, representing imperfections in the signal transmitted by the gNB. This EVM value is agreed across companies to align simulations, and is normally lower than the gNB EVM requirement, to represent "typical" conditions. The EVM used for simulations is therefore built in to the requirement points, normally specified as the SNR required to meet a specified throughput, with a defined modulation and Reference channel, under defined propagation conditions.

For a conformance test, the EVM defined for the simulations is taken as a maximum allowed value for the test system, as a worse gNB emulator EVM would make the signal harder to demodulate, and disadvantage the UE. In a test system the EVM cannot normally be set to a specific value, but is specified to be no higher than a defined value.

Following this approach, the uncertainty from gNB emulator Downlink EVM is a one-sided distribution, with beneficial effect. Without treating the positive and negative uncertainties separately, and as it would not make the SNR worse, the effective uncertainty is 0dB.

D.2.1.3 gNB emulator fading model impairments

This contribution originates from imperfections in the gNB emulator fading model, compared to the applied fading model. It is estimated to be the same as for LTE conducted testing in TS 36.521-1 Annex F, which is ±0.5dB. The default for values in 36.521-1 Annex F is 95% confidence interval, normal distribution.

D.2.2 Measurement error contribution descriptions for DFF

D.2.2.1 gNB emulator SNR uncertainty

See D.2.1.1.

D.2.2.2 gNB emulator Downlink EVM

See D.2.1.2.

D.2.2.3 gNB emulator fading model impairments

See D.2.1.3.

D.2.3 Measurement error contribution descriptions for IFF

The Measurement uncertainty contributions and uncertainty assessment are expected to be the same as for the Direct near field (DNF) setup in D.2.1.

D.2.3.1 gNB emulator SNR uncertainty

See D.2.1.1.

D.2.3.2 gNB emulator Downlink EVM

See D.2.1.2.

D.2.3.3 gNB emulator fading model impairments

See D.2.1.3.

Annex E: Acceptable uncertainty of test system for test cases defined in TS 38.533 for radiative testing

This annex contains suggested uncertainties for each test case or MU quantity in TS 38.533 [10].

E.1 Uncertainty budget calculation principle

E.1.1 Uncertainty budget calculation principle for DFF

The uncertainty tables cover the actual measurement using the DUT. In some cases, uncertainty may also arise from a calibration or alignment process before the measurements.

When a calibration process is used before the measurements, the uncertainty tables should be presented with two stages:

- Stage 1: the calibration of the absolute level of the DUT measurement results is performed by means of using a calibration antenna whose absolute gain is known at the frequencies of measurement
- Stage 2: the actual measurement with the DUT as either the transmitter or receiver is performed.

The MU budget should comprise of a minimum 5 headings:

- 1) The uncertainty source,
- 2) Uncertainty value,
- 3) Distribution of the probability,
- 4) Divisor based on distribution shape,
- 5) Calculated standard uncertainty (based on uncertainty value and divisor).

E.1.2 Uncertainty budget calculation principle for IFF

The same as defined in E.1.1.

E.2 Measurement error contribution descriptions

E.2.1 Measurement error contribution descriptions for DFF

All the measurement error contributions defined in Section B.2.1, with the following additions.

E.2.1.1 gNB emulator SNR uncertainty

See D.2.1.1.

E.2.1.2 gNB emulator Downlink EVM

See D.2.1.2.

E.2.1.3 gNB emulator fading model impairments

See D.2.1.3.

E.2.2 Measurement error contribution descriptions for IFF

All the measurement error contributions defined in Section B.2.2, with the following additions.

E.2.2.1 gNB emulator SNR uncertainty

See D.2.1.1.

E.2.2.2 gNB emulator Downlink EVM

See D.2.1.2.

E.2.2.3 gNB emulator fading model impairments

See D.2.1.3.

E.3 Uncertainty assessment for RRM MU quantities.

RRM measurement uncertainty analysis shall define the values for the following MU quantities:

- DL AWGN absolute power or wanted DL signal absolute power
- DL applied SNR
- DL Fading profile uncertainty
- DL AWGN and signal flatness
- UL absolute power measurement
- UL relative power measurement
- UL signal transmit timing relative to DL
- Relative transmit timing accuracy during UE timing adjustment

E.3.1 Uncertainty assessment for DL AWGN absolute power or wanted DL signal absolute power

Table E.3.1-1 summarizes the MU threshold for DL AWGN absolute power for RRM FR2 test cases. The origin MU values for different test setups with varies parameters can be found in following subclauses.

Power Class	Frequency	MBW	Power	Threshold MU value (NOTE 1)			
PC3	23.45GHz <= f	BW <= 400MHz	As configured in	FFS			
	<= 32.125GHz		the test case				
	32.125GHz < f			FFS			
	<= 40.8GHz						
PC1	23.45GHz <= f	BW <= 400MHz	As configured in	FFS			
	<= 32.125GHz		the test case				
	32.125GHz < f			FFS			
	<= 40.8GHz						
NOTE 1: Total Ex	NOTE 1: Total Expanded MU for IFF for Quiet Zone size ≤ 30cm in Table E.3.1.3-2 for PC3 UEs						
and Tab	and Table FFS for PC1 UEs						

Table E.3.1-1: MU threshold for DL AWGN absolute	power for RRM FR2
--	-------------------

The types of test setup are defined in clause 7.1.3.2 of TS 38.508-1 [18]

E.3.1.1 Uncertainty budget format and assessment for DFF test setup

The uncertainty contributions that may impact the overall MU value are listed in Table E.3.1.1-1.

Table E.3.1.1-1: Uncertainty contributions for DL AWGN absolute power or wanted DL signal absolute
power

UID	Description of uncertainty contribution	Details in annex			
	Stage 2: DUT measurement				
1	Positioning misalignment	B.2.1.1			
2	Measure distance uncertainty	B.2.1.2			
3	Quality of Quiet Zone	B.2.1.3			
4	Mismatch	B.2.1.4			
5	Standing wave between the DUT and measurement antenna	B.2.1.5			
6	gNB emulator uncertainty	B.2.1.17			
7	Phase curvature	B.2.1.7			
8	Amplifier uncertainties	B.2.1.8			
9	Random uncertainty	B.2.1.9			
10	Influence of the XPD	B.2.1.10			
11	Insertion Loss Variation	B.2.1.11			
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.1.12			
13	Multiple measurement antenna uncertainty	B.2.1.25			
14	DUT repositioning	B.2.1.26			
	Stage 1: Calibration measurement				
15	Mismatch	B.2.1.4			
16	Amplifier Uncertainties	B.2.1.8			
17	Misalignment of positioning System	B.2.1.13			
18	Uncertainty of the Network Analyzer	B.2.1.14			
19	Uncertainty of the absolute gain of the calibration antenna	B.2.1.15			
20	Positioning and pointing misalignment between the reference antenna and the measurement antenna	B.2.1.16			
21	Phase centre offset of calibration antenna	B.2.1.18			
22	Quality of quiet zone for calibration process	B.2.1.19			
23	Standing wave between reference calibration antenna and measurement antenna	B.2.1.20			
24	Influence of the calibration antenna feed cable	B.2.1.21			
25	Insertion Loss Variation	B.2.1.11			
	Systematic uncertainties				
26	Systematic error related to beam peak search	B.2.1.28			

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size \leq [30 cm], f = {23.45GHz, 32.125GHz, 40.8GHz}.
- The uncertainty assessment is applicable for 1AoA and 2AoA test cases
- The uncertainty assessment is provided in Table E.3.1.1-2.

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stage	2: DUT meas	urement	ļ	
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.15	Rectangular	1.73	0.08
3	Quality of Quiet Zone (NOTE 4)	[1.1]	Actual	1.00	[1.1]
4	Mismatch	1.30	Actual	1.00	1.30
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00
6	gNB uncertainty on absolute level	2.9	Normal	2.00	1.45
7	Phase curvature	0.00	U-shaped	1.41	0.00
3	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.50	Normal	2.00	0.25
10	Influence of the XPD	[0.03]	U-shaped	1.41	[0.02]
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00
13	Multiple measurement antenna uncertainty (NOTE 3)	0.15	Actual	1.00	0.15
14	DUT repositioning	0.08	Rectangular	1.73	0.05
	Stage 1:	Calibration m			
15	Mismatch	0.00	U-shaped	1.41	0.00
16	Amplifier Uncertainties	0.00	Normal	2.00	0.00
17	Misalignment of positioning System	0.00	Normal	2.00	0.00
18	Uncertainty of the Network Analyzer	0.73	Normal	2.00	0.37
19	Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30
20	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.01	Rectangular	1.73	0.00
21	Phase centre offset of calibration antenna	0.47	Rectangular	1.73	0.27
22	Quality of quiet zone for calibration process (NOTE 4)	[0.3]	Actual	1.00	[0.3]
23	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
24	Influence of the calibration antenna feed cable	0.14	Normal	2.00	0.07
25	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
	Systematic u		NOTE 2)		Value
26	Systematic error related to beam pea				0.5
	Total measure				Value
	AWGN absolute power expanded unce [E 1: The analysis was done only for t	dB]			[5.53]
NOTE NOTE		urement uncer square of the a structure of	tainty, systematic un standard deviations mechanical feed an	ncertainties I s of the Stag Itenna positio	e 1 and Stage oning.

Table E.3.1.1-2: Uncertainty assessment for DL AWGN absolute power or wanted DL signal absolute power (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm)

NOTE 4: Value based on procedure defined in Annex D.2 of TR 38.810 [13] for Quiet Zone size less or equal to 30 cm.

NOTE 5: The values in this table have been derived for DL powers above and equal to REFSENS. The values might need to be revisited for power levels below REFSENS

E.3.1.2 Uncertainty budget format and assessment for Simplified DFF test setup

[FFS]

E.3.1.3 Uncertainty budget format and assessment for IFF test setup

The uncertainty contributions that may impact the overall MU value are listed in Table E.3.1.3-1.

Table E.3.1.3-1: Uncertainty contributions for DL AWGN absolute power or wanted DL signal absolute
power

UID	Description of uncertainty contribution	Details in annex				
	Stage 2: DUT measurement					
1	Positioning misalignment	B.2.2.1				
2	Measure distance uncertainty	B.2.2.2				
3	Quality of Quiet Zone	B.2.2.3				
4	Mismatch	B.2.2.4				
5	Standing wave between the DUT and measurement antenna	B.2.2.5				
6	gNB emulator uncertainty	B.2.2.17				
7	Phase curvature	B.2.2.7				
8	Amplifier uncertainties	B.2.2.8				
9	Random uncertainty	B.2.2.9				
10	Influence of the XPD	B.2.2.10				
11	Insertion Loss Variation	B.2.2.11				
12	RF leakage (from measurement antenna to the receiver/transmitter)	B.2.2.12				
13	Multiple measurement antenna uncertainty	B.2.2.25				
14	DUT repositioning	B.2.2.26				
	Stage 1: Calibration measurement					
15	Mismatch	B.2.2.4				
16	Amplifier Uncertainties	B.2.2.8				
17	Misalignment of positioning System	B.2.2.13				
18	Uncertainty of the Network Analyzer	B.2.2.14				
19	Uncertainty of the absolute gain of the calibration antenna	B.2.2.15				
20	Positioning and pointing misalignment between the reference antenna and the measurement antenna	B.2.2.16				
21	Phase centre offset of calibration antenna	B.2.2.18				
22	Quality of quiet zone for calibration process	B.2.2.19				
23	Standing wave between reference calibration antenna and measurement antenna	B.2.2.20				
24	Influence of the calibration antenna feed cable	B.2.2.21				
25	Insertion Loss Variation	B.2.2.11				
	Systematic uncertainties	1				
26	Systematic error related to beam peak search	B.2.2.28				

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size ≤ [30 cm], f = {23.45GHz, 32.125GHz, 40.8GHz}.
- The uncertainty assessment is applicable for 1AoA test cases- The uncertainty assessment is provided in Table E.3.1.3-2.

UID	Uncertainty source	Uncertainty	Distribution of	Divisor	Standard uncertainty					
		value	the probability							
					(σ) [dB]					
		2: DUT meas			1					
1	Positioning misalignment	0.00	Normal	2.00	0.00					
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00					
3	Quality of Quiet Zone (NOTE 4)	0.6	Actual	1.00	0.6					
4	Mismatch	1.30	Actual	1.00	1.30					
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00					
6	gNB uncertainty on absolute level	2.9	Normal	2.00	1.45					
7	Phase curvature	0.00	U-shaped	1.41	0.00					
8	Amplifier uncertainties	2.1	Normal	2.00	1.05					
9	Random uncertainty	0.50	Normal	2.00	0.25					
10	Influence of the XPD	0.01	U-shaped	1.41	0.00					
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00					
12	RF leakage (from measurement	0.00	Actual	1.00	0.00					
	antenna to the receiver/transmitter)		, lotdal							
13	Multiple measurement antenna	0.15	Actual	1.00	0.15					
	uncertainty (NOTE 3)									
14	DUT repositioning	0.08	Rectangular	1.73	0.05					
		Calibration m								
15	Mismatch	0.00	U-shaped	1.41	0.00					
16	Amplifier Uncertainties	0.00	Normal	2.00	0.00					
17	Misalignment of positioning	0.00	Normal	2.00	0.00					
	System									
18	Uncertainty of the Network	0.73	Normal	2.00	0.37					
	Analyzer									
19	Uncertainty of the absolute gain of	0.60	Normal	2.00	0.30					
	the calibration antenna									
20	Positioning and pointing	0.01	Rectangular	1.73	0.00					
	misalignment between the									
	reference antenna and the									
	measurement antenna									
21	Phase centre offset of calibration	0.00	Rectangular	1.73	0.00					
	antenna									
22	Quality of quiet zone for calibration	0.4	Actual	1.00	0.4					
	process (NOTE 4)		, lotadi	1.00						
23	Standing wave between reference	0.00	U-shaped	1.41	0.00					
20	calibration antenna and	0.00	e chapea							
	measurement antenna									
24	Influence of the calibration antenna	0.14	Normal	2.00	0.07					
24	feed cable	0.14	Normai	2.00	0.07					
25	Insertion Loss Variation	0.00	Rectangular	1.73	0.00					
25			<u> </u>	1.70	Value					
26	Systematic uncertainties (NOTE 2) 26 Systematic error related to beam peak search									
Total measurement uncertainty										
DL A	AWGN absolute power expanded unce			al of 95 %)	Value 5.19					
		dB]								
NOTE	E 1: The analysis was done only for t	he case of ope	erating in-band, non	-CA.						
NOTE			-		have to be					
	added to the expanded root sum									
	2 contributors.				3-					
NOTE		a structure of	mechanical feed ar	itenna positi	oning.					
	E 4: Value based on procedure define				-					
	in the protocol of a domination of the protocol of the protoco		· • · • • · • • · • • • • • • • • • • •							

Table E.3.1.3-2: Uncertainty assessment for DL AWGN absolute power or wanted DL signal absolute power (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm)

NOTE 4: Value based on procedure defined in Annex D.2 of TR 38.810 [13] for Quiet Zone size less or equal to 30 cm.

NOTE 5: The values in this table have been derived for DL powers above and equal to REFSENS. The values might need to be revisited for power levels below REFSENS

E.3.1.4 Uncertainty budget format and assessment for Enhanced IFF test setup

The uncertainty contributions that may impact the overall MU value are listed in Table E.3.1.4-1.

Table E.3.1.4-1: Uncertainty contributions for DL AWGN absolute power or wanted DL signal absolute power

UID	Description of uncertainty contribution	Details in annex							
	Stage 2: DUT measurement								
1 to	to See 1-14 of Table E.3.1.3-1								
14	See 1-14 OF Table E.3.1.3-1								
Stage 1: Calibration measurement									
15 to		N/A							
25	See 15-25 of Table E.3.1.3-1								
Systematic uncertainties									
26	See 26 of Table E.3.1.3-1	N/A							

The uncertainty assessment tables are organized as follows:

- For the purpose of uncertainty assessment, the radiating antenna aperture of the DUT is denoted as D
- The uncertainty assessment has been derived for the case of Quiet Zone size \leq [30 cm], f = {23.45GHz, 32.125GHz, 40.8GHz}.
- The uncertainty assessment is applicable for 1AoA and 2AoA test cases
- The uncertainty assessment is provided in Table E.3.1.4-2.

UID	Uncertainty source	Uncertainty value	Distribution of the probability	Divisor	Standard uncertainty (σ) [dB]
	Stage	2: DUT meas	urement		
1	Positioning misalignment	0.00	Normal	2.00	0.00
2	Measure distance uncertainty	0.00	Rectangular	1.73	0.00
3	Quality of Quiet Zone (NOTE 4)	0.7	Actual	1.00	0.7
4	Mismatch	1.30	Actual	1.00	1.30
5	Standing wave between the DUT and measurement antenna	0.00	U-shaped	1.41	0.00
3	gNB uncertainty on absolute level	2.9	Normal	2.00	1.45
7	Phase curvature	0.00	U-shaped	1.41	0.00
3	Amplifier uncertainties	2.1	Normal	2.00	1.05
9	Random uncertainty	0.50	Normal	2.00	0.25
10	Influence of the XPD	0.01	U-shaped	1.41	0.00
11	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
12	RF leakage (from measurement antenna to the receiver/transmitter)	0.00	Actual	1.00	0.00
13	Multiple measurement antenna uncertainty (NOTE 3)	0.15	Actual	1.00	0.15
14	DUT repositioning	0.08	Rectangular	1.73	0.05
	Stage 1:	Calibration m	easurement		
L7	Mismatch	0.00	U-shaped	1.41	0.00
L8	Amplifier Uncertainties	0.00	Normal	2.00	0.00
19	Misalignment of positioning System	0.00	Normal	2.00	0.00
20	Uncertainty of the Network Analyzer	0.73	0.73 Normal 2.00		
21	Uncertainty of the absolute gain of the calibration antenna	0.60	Normal	2.00	0.30
22	Positioning and pointing misalignment between the reference antenna and the measurement antenna	0.01	Rectangular	1.73	0.00
23	Phase centre offset of calibration antenna	0.00	Rectangular	1.73	0.00
24	Quality of quiet zone for calibration process (NOTE 4)	0.4	Actual	1.00	0.4
25	Standing wave between reference calibration antenna and measurement antenna	0.00	U-shaped	1.41	0.00
26	Influence of the calibration antenna feed cable	0.14	Normal	2.00	0.07
27	Insertion Loss Variation	0.00	Rectangular	1.73	0.00
		ncertainties (NOTE 2)		Value
28	Systematic error related to beam pea	ak search	•		0.5
	Total measure				Value
		dB]			5.25
NOTE	 E 1: The analysis was done only for t E 2: In order to obtain the total measure added to the expanded root sum 2 contributors. E 3: Applies to the system which has E 4: Value based on procedure define 	urement uncer square of the a structure of	tainty, systematic un standard deviations mechanical feed an	ncertainties I s of the Stag Itenna positio	e 1 and Stage oning.

Table E.3.1.4-2: Uncertainty assessment for fDL AWGN absolute power or wanted DL signal absolute power (f=23.45GHz, 32.125GHz, 40.8GHz, Quiet Zone size ≤ 30 cm)

equal to 30 cm. NOTE 5: The values in this table have been derived for DL powers above and equal to REFSENS.

The values might need to be revisited for power levels below REFSENS

E.3.1.5 Uncertainty budget format and assessment for IFF+DFF Hybrid test setup

[FFS]

- E.3.2 Uncertainty assessment for DL applied SNR
- E.3.3 Uncertainty assessment for DL Fading profile uncertainty
- E.3.4 Uncertainty assessment for DL AWGN and signal flatness
- E.3.5 Uncertainty assessment for UL absolute power measurement
- E.3.6 Uncertainty assessment for UL relative power measurement
- E.3.7 Uncertainty assessment for UL signal transmit timing relative to DL
- E.3.8 Uncertainty assessment for Relative transmit timing accuracy during UE timing adjustment

Annex F: Change history

				_	-	Change history	
Date	Meeting	TDoc	CR	R ev	Cat	Subject/Comment	New version
2017-09	RAN5 #76	R5-174706	1			Initial skeleton	0.0.1
2018-04	RAN5 #2- 5G-NR-	R5-182093				Implementation of pCRs to TS 38.903 V0.0.1	0.1.0
2010.05	Adhoc	DF 100070				Editorial undets of TD 20,000	0.2.0
2018-05		R5-182670		-		Editorial update of TR 38.903.	0.2.0
2018-09		R5-185213				Making Measurement Uncertainty Terms Common between methods in TR 38.90	1.0.0
2018-09		R5-185214				TP on Measurement Uncertainty Contributions in FR2	1.0.0
2018-09	RAN5#80	R5-185212				Adding MU values for EIRPTRP measurements with Near Field test range (NFTF) at mmWave	1.0.0
2018-09	RAN#81	-	-	-	-	raised to v15.0.0 with editorial changes only	15.0.0
2018-12	RAN#82	R5-187023	0010	-	F	Editorial update of Annex B	15.1.0
2018-12	RAN#82	R5-187024	0011	-	F	Addition of MU contribution for demodulation test cases	15.1.0
2018-12	RAN#82	R5-187025	0012	-	F	Addition of MU contribution for RRM test cases	15.1.0
2018-12	RAN#82	R5-187148	0013	-	F	General clauses updated for TR38.903	15.1.0
2018-12	RAN#82	R5-187848	8000	1	F	FR2 Spurious Emission measurement grids and offset values	15.1.0
2018-12	RAN#82	R5-188060	0019	1	F	Update of MU budget and contributor description to TR 38.903	15.1.0
2018-12	RAN#82	R5-188224	0009	1	F	Update MU budget in TR 38.903	15.1.0
2018-12	RAN#82	R5-188225	0016	1	F	Update of MU budget tables in TR 38.903	15.1.0
2018-12	RAN#82	R5-188226	0017	2	F	Addition of descriptions on new MU contributions	15.1.0
2019-03	RAN#83	R5-192476	0030	1	F	Addition of Test Tolerance analysis for FR1 PRACH Test cases	15.2.0
2019-03	RAN#83	R5-192504	0038	1	F	Addition of TT analysis for Transmit timing accuracy Tests	15.2.0
2019-03	RAN#83	R5-192505	0031	1	F	Addition common text for RRM	15.2.0
2019-03	RAN#83	R5-192534	0039	-	F	Addition of TT Analysis for Timing Advance Adjustment Accuracy 4.4.3.1	15.2.0
2019-03	RAN#83	R5-192671	0033	1	F	Addition of TT analysis for event triggered test cases	15.2.0
2019-03	RAN#83	R5-192679	0036	1	F	Addition of TT analysis for handover with known cell	15.2.0
2019-03	RAN#83	R5-192845	0029	1	F	CR to update TR 38.903	15.2.0
2019-06	RAN#84	R5-193799	0048	-	F	FR1 Test tolerance analysis for intra re-selection 6.1.1.1	15.3.0
2019-06	RAN#84	R5-193800	0049	-	F	FR1 Test tolerance analysis for inter re-selection 6.1.1.2	15.3.0
2019-06	RAN#84	R5-193801	0050	-	F	FR1 Test tolerance analysis for interRAT higher priority re-selection 6.1.2.1	15.3.0
2019-06	RAN#84	R5-193802	0051	-	F	FR1 Test tolerance analysis for interRAT lower priority re-selection 6.1.2.2	15.3.0
2019-06	RAN#84	R5-193803	0052	-	F	FR1 Test tolerance analysis for interRAT known handover 6.3.1.4	15.3.0
2019-06	RAN#84	R5-194027	0057	-	F	CR on spurious emission MU in FR2	15.3.0
2019-06	RAN#84	R5-194123	0058	-	F	Definition of MU terminologies in TR 38.903	15.3.0
2019-06	RAN#84	R5-195014	0054	1	F	FR1 Test tolerance analysis for EN-DC SCell activation 4.5.3.1- 4.5.3.3	15.3.0
2019-06	RAN#84	R5-195015	0060	1	F	Test Tolerance analysis for Inter-Freq measurement Test Cases	15.3.0
2019-06	RAN#84	R5-195159	0059	1	F	CR to update TR 38.903 after RAN5#5-5GNR Adhoc	15.3.0
2019-06	RAN#84	R5-195181	0055	1	F	FR1 Test tolerance analysis for EN-DC measurement reporting 4.6.1.1-4.6.1.4	15.3.0
2019-06	RAN#84	-	-	-	-	Administrative release upgrade to match the release of 3GPP TS 38.521-1 which was upgraded at RAN#84 to Rel-16 due to Rel-16	16.0.0
2019-09	RAN#85	R5-195583	0061	+	F	relevant CR(s) Update FR1 Test tolerance of 4.5.3.1-4.5.3.3 Scell activation	16.1.0
2019-09	RAN#85	R5-195584	0062	1_	F	Update FR1 Test tolerance of 6.1.1.1 FR1 cell re-selection	16.1.0
2019-09	RAN#85	R5-195585	0063	1-	F	Update FR1 Test tolerance of 6.1.1.2 FR1-FR1 cell re-selection	16.1.0
2019-09	RAN#85	R5-195586	0064	-	F	Update FR1 Test tolerance of 6.1.2.1 inter-RAT cell re-selection to	
2019-09	RAN#85	R5-195587	0065	-	F	higher priority Update FR1 Test tolerance of 6.1.2.2 inter-RAT cell re-selection to	
2019-09	RAN#85	R5-195588	0066	-	F	lower priority Update FR1 Test tolerance of 6.3.1.4 inter-RAT handover to known	
2019-09	RAN#85	R5-195589	0067	-	F	cell Addition FR1 Test tolerance of 6.3.1.5 inter-RAT handover to	
2019-09	RAN#85	R5-195590	0068	-	F	unknown cell Addition FR1 Test tolerance of 6.3.2.1.1 intra-freq RRC re-	
2019-09	RAN#85	R5-195591	0069	-	F	establishment Addition FR1 Test tolerance of 6.3.2.1.2 inter-freq RRC re-	16.1.0

2019-09	RAN#85	R5-195592	0070	-	F	Addition FR1 Test tolerance of 6.3.2.3.1 NR RRC redirection	16.1.0
2019-09	RAN#85	R5-195593	0071	-	F	Addition FR1 Test tolerance of 6.3.2.3.2 inter-RAT RRC redirection	16.1.0
2019-09	RAN#85	R5-197362	0072	1	F	FR1 Test Tolerance Analysis for SSB-based RLM IS Tests	16.1.0
2019-09	RAN#85	R5-197363	0073	1	F	FR1 Test Tolerance Analysis for SA Tx Timing Accuracy 6.4.1.1	16.1.0
2019-09	RAN#85	R5-197365	0083	1	F	TT_Analysis_ENDC_FR1_RLM_OOS	16.1.0
2019-09	RAN#85	R5-197369	0087	1	F	TT_Analysis_SA_FR1_TAAA	16.1.0
2019-09	RAN#85	R5-197494	0077	1	F	CR on DUT turnover and relations with QoQZ MU	16.1.0
2019-09	RAN#85	R5-197505	0081	1	F	Update of FR2 MUs in TR 38.903	16.1.0
2019-09	RAN#85	R5-197571	0078	1	F	TT Analysis for SS-RSRP FR1 tests	16.1.0
2019-09	RAN#85	R5-197625	0080	1	F	CR on FR2 OFF Power MU	16.1.0
2019-09	RAN#85	R5-197659	0076	2	F	CR on spurious emission MU in FR2	16.1.0
2019-12	RAN#86	R5-198260	0099	-	F	CR to 38.903 to define Reference Methodology for SE	16.2.0
2019-12	RAN#86	R5-198285	0100	-	F	FR1 Test tolerance analysis for interRAT measurement	16.2.0
2019-12	RAN#86	R5-198427	0101	-	F	Correction to uncertainty budget calculation principles	16.2.0
2019-12	RAN#86	R5-199070	0098	1	F	Editorial corrections to FR1 Test Tolerance files	16.2.0
2019-12	RAN#86	R5-199082	0104	2	F	FR1 Test Tolerance : Addition of TT Analysis for 6.3.1.1 NR SA FR1	16.2.0
				-	l.	Intra-Freq Handover	
2019-12	RAN#86	R5-199083	0105	2	F	FR1 Test Tolerance : Addition of TT Analysis for 6.3.1.2 NR SA FR1	16.2.0
2019-12		113-199003	0103	2	'	-	10.2.0
2010 12		DF 100004	0100		F	Intra-Freq Handover	10.2.0
2019-12	RAN#86	R5-199084	0106	2	F	FR1 Test Tolerance : Addition of TT Analysis for 6.3.1.3 NR SA FR1	16.2.0
			ļ			Inter-Freq Handover	
2019-12	RAN#86	R5-199091	0102	1	F	Update on FR2 MUs in 38.903	16.2.0
2019-12	RAN#86	R5-199092	0103	1	F	Update on FR2 Spurious MUs in 38.903	16.2.0
2019-12	RAN#86	R5-199362	0091	1	F	FR1 Test tolerance analysis for interruptions active and non-active	16.2.0
2019-12	RAN#86	R5-199363	0094	1	F	FR1 Test tolerance analysis for CSI-RS based RLM	16.2.0
2020-03	RAN#87	R5-200163	0107	-	F	Add Annex A.2 handling of common Test Tolerance Topics for FR2	16.3.0
2020-03	RAN#87	R5-200329	0112	-	F	CR to 38.903 on XPD Verification	16.3.0
2020-03	RAN#87	R5-200470	0114	-	F	FR1 Test tolerance analysis for interruptions deactivated NR SCC	16.3.0
2020-03	RAN#87	R5-200918	0116	1	F	Update to FR2 TRx Measurement Uncertainties	16.3.0
2020-03	RAN#87	R5-201037	0108	1	F	Test tolerance analysis inter-frequency SS-RSRP and intra-	16.3.0
						frequency SS-SINR	
2020-03	RAN#87	R5-201038	0109	1	F	Test tolerance analysis SS-RSRQ and inter-frequency SS-SINR	16.3.0
2020-03	RAN#87	R5-201042	0110	1	F.	Test Tolerance analysis for CSI-RS-Based L1-RSRP measurement	16.3.0
2020-03		113-201042	10110	-	'		10.5.0
2020.02	DAN#07	DF 001040	0111	1	I F	test cases	10.0.0
2020-03	RAN#87	R5-201043	0111	1		Test Tolerance analysis for SSB-Based L1-RSRP measurement test	16.3.0
						cases	
2020-06	RAN#88	R5-201662	0118	-	F	FR1 Test tolerance analysis for interruptions deactivated E-UTRAN	16.4.0
						scc	
2020-06	RAN#88	R5-203094	0119	1	F	FR1 Test tolerance analysis for SCell activation	16.4.0
2020-06	RAN#88	R5-202104	0124	-	F	Test tolerance correction for event triggered measurement test	16.4.0
						cases	
2020-06	RAN#88	R5-202105	0125	-	F	Test tolerance correction for CSI-RS-based L1-RSRP measurement	16.4.0
						test cases	
2020-06	RAN#88	R5-202702	0130	1	F	Test Tolerance analysis TC 4.5.4 and 6.5.4 RRC reconfiguration	16.4.0
2020 00			0100	-	l'	delay	10.4.0
2020-06	RAN#88	DE 202760	0127	1	F	CR to 38.903 to introduce baseline Demod MU tables	16.4.0
		R5-202769		_	IF F		
2020-06	RAN#88	R5-202915	0117	1		MU contributors for RRM FR2 TC 7.7.1.1	16.4.0
	RAN#88	R5-202916	0126	1	F	CR to 38.903 to introduce PC1 MU Tables	16.4.0
2020-06	RAN#88	R5-202917	0128	1	F	Update to FR2 Measurement Uncertainties	16.4.0
2020-06	RAN#88	R5-202938	0129	1	F	Addition of EIRP to Transmit OFF power MU analysis	16.4.0
2020-09	RAN#89	R5-203231	0131	-	F	TT analysis for RRM TC 8.5.2.1.1.1	16.5.0
2020-09	RAN#89	R5-203232	0132	-	F	TT analysis for RRM TC 8.5.2.2.1	16.5.0
2020-09	RAN#89	R5-203233	0133	-	F	TT analysis for RRM TC 8.5.2.3.1	16.5.0
2020-09	RAN#89	R5-203237	0134	-	F	TT analysis for RRM TC 4.7.4.1.1	16.5.0
2020-09	RAN#89	R5-203238	0135	-	F	TT analysis for RRM TC 4.7.4.1.2	16.5.0
2020-09	RAN#89	R5-203323	0140	-	F	Add Draft Test Tolerance analysis for FR2 Tx Timing Test cases	16.5.0
2020-09	RAN#89	R5-203324	0141	-	F	Add Draft Test Tolerance analysis for FR2 Inter-freq Event-trig Test	16.5.0
						cases	
2020-09	RAN#89	R5-203325	0142	-	F	Add Draft Test Tolerance analysis for FR2 Intra-freq SS-RSRP Test	16.5.0
					Ľ	case	
2020-09	RAN#89	R5-203825	0149	-	F	Addition of FR1 Test tolerance analysis for 6.3.2.1.3 RRC Re-	16.5.0
2020-09	117114409	113-203025	0149	Ē	l'	-	10.0.0
2020.00			0150	-		establishment	1650
2020-09	RAN#89	R5-203826	0150	-	F	Update of grouping of test cases in clause 8	16.5.0
2020-09	RAN#89	R5-204190	0154	- _	F	On Standard Deviation Definition in 38.903	16.5.0
2020-09	RAN#89	R5-204788	0138	1	F	Correction to the extreme conditions in TT analysis of 4.7.1.2.1	16.5.0
2020-09	RAN#89	R5-204887	0139	1	F	CR to update the DL AWGN absolute power for RRM test cases	16.5.0
2020-09	RAN#89	R5-204888	0143	1	F	Adjacent Channel Selectivity FR2 MU definition in 38.903	16.5.0
2020-09	RAN#89	R5-204889	0144	1	F	In-band Blocking FR2 MU definition in 38.903	16.5.0
2020-09	RAN#89	R5-204890	0153	1	F	CR to update MU in 38.903	16.5.0
2020-09	RAN#89	R5-204891	0155	1	F	FR2 Minimum output power measurement uncertainty	16.5.0

2020-09	RAN#89	R5-204945	0152	1	F	CR to 38.903 on some of the Transmit OFF power MU parameters	16.5.0
2020-09	RAN#89	R5-204946	0156	1	F	Update of AWGN flatness in TR 38.903	
2020-09	RAN#89	R5-204947	0157	1	F	FR2 EIRP OFF power measurement uncertainty	
2020-09	RAN#89	R5-205001	0145	1	F	Addition of FR1 Test tolerance analysis for DCI based BWP switch	
2020-09	RAN#89	R5-205002	0146	1	F	Addition of FR1 Test tolerance analysis for RRC based BWP switch	16.5.0
2020-09	RAN#89	R5-205003	0147	1	F	Addition of FR1 Test tolerance analysis for SSB based BFR	16.5.0
2020-09	RAN#89	R5-205004	0148	1	F	Addition of FR1 Test tolerance analysis for CSI-RS based BFR	16.5.0
2020-12	RAN#90	R5-205628	0174	-	F	RRM FR2 DL AWGN absolute power MU	16.6.0
2020-12	RAN#90	R5-205704	0176	-	F	Update of demod MU	16.6.0
2020-12	RAN#90	R5-205831	0177	-	F	Editorial correction of clause 5.2	16.6.0
2020-12	RAN#90	R5-205949	0183	-	F	Update of grouping of test cases in clause 8	16.6.0
2020-12	RAN#90	R5-206809	0158	1	F	TT analysis for RRM 6.7.5.1	16.6.0
2020-12	RAN#90	R5-206810	0159	1	F	TT analysis for RRM 6.7.6.1	16.6.0
2020-12	RAN#90	R5-206811	0160	1	F	TT analysis for RRM 6.7.7.1	16.6.0
2020-12	RAN#90	R5-206812	0161	1	F	TT analysis for RRM 4.7.5.1	16.6.0
2020-12	RAN#90	R5-206813	0163	1	F	TT analysis for RRM 8.5.2.1.2	16.6.0
2020-12	RAN#90	R5-206814	0166	1	F	Add Draft Test Tolerance analysis for FR2 PRACH Test cases	16.6.0
2020-12	RAN#90	R5-206815	0178	1	F	Addition of FR1 TT analysis for inter-RAT cell reselection	16.6.0
2020-12	RAN#90	R5-206816	0179	1	F	Addition of FR1 TT analysis for inter-RAT handover	16.6.0
2020-12	RAN#90	R5-206817	0180	1	F	Addition of FR1 TT analysis for inter-RAT SFTD measurement	16.6.0
2020-12	RAN#90	R5-206818	0181	1	F	Addition of FR1 TT analysis for inter-RAT event-triggered reporting	16.6.0
2020-12	RAN#90	R5-206835	0184	1	F	CR to 38.903 on ETC Testing	16.6.0
2020-12	RAN#90	R5-206836	0185	1	F	CR to add DFF MU Tables in 38.903	16.6.0
2020-12	RAN#90	R5-206837	0187	1	F	Update FR2 TRx MU in 38.903	16.6.0
2020-12	RAN#90	R5-206838	0189	1	F	FR2 Time masks updates	16.6.0
2020-12	RAN#90	R5-206845	0164	1	F	TT analysis for RRM 8.5.2.2.2	16.6.0
2020-12	RAN#90	R5-206846	0167	1	F	Update Draft Test Tolerance analysis for FR2 Tx Timing Test cases	16.6.0
2020-12	RAN#90	R5-206847	0169	1	F	Add Draft Test Tolerance analysis FR2 RLM Peak Test cases	16.6.0
2020-12	RAN#90	R5-206848	0170	1	F	Add Draft Test Tolerance analysis for FR2 Intra-freq Event-trig Test	16.6.0
						cases	
2020-12	RAN#90	R5-206849	0171	1	F	Update Draft Test Tolerance analysis for FR2 Inter-freq Event-trig	16.6.0
						Test cases	
2020-12	RAN#90	R5-206850	0172	1	F	Update Draft Test Tolerance analysis for FR2 Intra-freq SS-RSRP	16.6.0
						Test case	
2020-12	RAN#90	R5-206851	0173	1	F	Add Draft Test Tolerance analysis for FR2 Inter-freq SS-RSRP Test	16.6.0
						case	
2020-12	RAN#90	R5-206852	0182	1	F	Update of FR1 TT analysis for 6.1.1.1 intra-freq cell re-selection	16.6.0
2020-12	RAN#90	R5-206911	0165	1	F	TT analysis for RRM 8.5.2.3.2	16.6.0