3rd Generation Partnership Project; Technical Specification Group Radio Access Network; 3GPP TS 38.521-2 V16.48 (2019-12) User Equipment (UE) conformance specification Jechnical Specification

Radio transmission and reception;

Part 2: Range 2 Standalone

(Release 16)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP... The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this

Keywords 3GPP, New Radio

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

 $\ @$ 2019, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC). All rights reserved.

UMTSTM is a Trade Mark of ETSI registered for the benefit of its members $3GPP^{TM}$ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTETM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association

Contents

Forev	word	15
1	Scope	16
2	References	16
3	Definitions, symbols and abbreviations	17
3.1	Definitions	
3.2	Symbols	18
3.3	Abbreviations	20
4	General	
4.1	Relationship between minimum requirements and test requirements	
4.2	Applicability of minimum requirements	
4.3	Specification suffix information	
4.4	Test point analysis	
4.5	Applicability and test coverage rules	22
5	Operating bands and channel arrangement	
5.1	General	
5.2	Operating bands	
5.2A	Operating bands for CA	
5.2A.1		
5.2A.2		
5.2D	Operating bands for UL MIMO	
5.3	UE Channel bandwidth	
5.3.1	General	
5.3.2	Maximum transmission bandwidth configuration	
5.3.3	Minimum guardband and transmission bandwidth configuration	
5.3.4	RB alignment	
5.3.5	Channel bandwidth per operating band	27
5.3A	UE Channel bandwidth for CA	
5.3A.1		
5.3A.2	. 0	
5.3A.3		
5.3A.4	1 1 0	
5.3D	Channel bandwidth for UL MIMO	
5.4	Channel arrangement	
5.4.1	Channel spacing	
5.4.1.1		
5.4.2	Channel raster	32
5.4.2.1		
5.4.2.2		
5.4.2.3 5.4.3		
	Synchronization raster	
5.4.3.1 5.4.3.2		
5.4.3.3		
5.4A	Channel arrangement for CA	
5.4A.1	<u> </u>	
5.4A.	Configurations	
5.5A	Configurations for CA	
5.5A.1		
5.5A.2		
5.5A. ₂	Configurations for UL MIMO	
	-	
6	Transmitter characteristics	
6.1	General	
6.2	Transmit power.	47

6.2.1	UE maximum output power	
6.2.1.0	General	
6.2.1.1	UE maximum output power - EIRP and TRP	42
6.2.1.1.3.1	UE maximum output power for power class 1	43
6.2.1.1.3.2	UE maximum output power for power class 2	44
6.2.1.1.3.3	UE maximum output power for power class 3	44
6.2.1.1.3.4	UE maximum output power for power class 4	46
6.2.1.2	UE maximum output power - Spherical coverage	49
6.2.2	UE maximum output power reduction	
6.2.2.0	General	
6.2.2.3.1	UE maximum output power reduction for power class 1	53
6.2.2.3.2	UE maximum output power reduction for power class 2	
6.2.2.3.3	UE maximum output power reduction for power class 3	
6.2.2.3.4	UE maximum output power reduction for power class 4	
6.2.3	UE maximum output power with additional requirements	
6.2.3.3.2	A-MPR for NS_201	
6.2.3.3.2.1	A-MPR for NS_201 for power class 1	
6.2.3.3.2.2	A-MPR for NS_201 for power class 2	
6.2.3.3.2.3	A-MPR for NS_201 for power class 3	
6.2.4	Configured transmitted power	
	ransmit power for CA	
6.2A.1	UE maximum output power for CA	
6.2A.1.0	Minimum conformance requirements	
6.2A.1.1	UE maximum output power - EIRP and TRP for CA	
6.2A.1.1.1	UE maximum output power - EIRP and TRP for CA (2UL CA)	
6.2A.1.1.2	UE maximum output power - EIRP and TRP for CA (3UL CA)	
6.2A.1.1.3	UE maximum output power - EIRP and TRP for CA (4UL CA)	
6.2A.1.2	UE maximum output power - Spherical coverage	
6.2A.1.2.1	Spherical coverage for CA (2UL CA)	
6.2A.1.2.2	Spherical coverage for CA (3UL CA)	
6.2A.1.2.3	Spherical coverage for CA (4UL CA)	
6.2A.1.2.4	Spherical coverage for CA (5UL CA)	
6.2A.1.2.5	Spherical coverage for CA (6UL CA)	
6.2A.1.2.6	Spherical coverage for CA (7UL CA)	
6.2A.1.2.7	Spherical coverage for CA (8UL CA)	
6.2A.2	UE maximum output power reduction for CA	
6.2A.2.0	Minimum conformance requirements	
6.2A.2.0.1	General	
6.2A.2.0.1	Maximum output power reduction for power class 1	
6.2A.2.0.3	Maximum output power reduction for power class 1	
6.2A.2.0.4	Maximum output power reduction for power class 2	
6.2A.2.0.5	Maximum output power reduction for power class 3	
6.2A.2.1	UE maximum output power reduction for CA (2UL CA)	
6.2A.3	UE maximum output power with additional requirements for CA	
6.2A.4	Configured transmitted power for CA	
6.2A.4.0	Minimum conformance requirements	
6.2A.4.1	Configured transmitted power for CA (2UL CA)	
	ransmit power for UL MIMO	
6.2D.1	UE maximum output power for UL MIMO	
6.2D.1	UE maximum output power reduction for UL MIMO	
6.2D.3	UE maximum output power with additional requirements for UL MIMO	
6.2D.3 6.2D.4	Configured transmitted power for UL MIMO	
	utput power dynamicsutput power lor OL MIMO	
6.3.1	Minimum output power	
6.3.2	Transmit OFF power	
6.3.3	Transmit ON/OFF time mask	
6.3.3.1	General ON/OFF simo modil	
6.3.3.2	General ON/OFF time mask	
6.3.3.3	Transmit power time mask for slot and short or long subslot boundaries	
6.3.3.4	PRACH time mask	
6.3.3.5	Void	147

6.3.3.6	SRS time mask	
6.3.3.7	PUSCH-PUCCH and PUSCH-SRS time masks	148
6.3.3.8	Transmit power time mask for consecutive slot or long subslot transmission and short subslot	
	transmission boundaries	
6.3.3.9	Transmit power time mask for consecutive short subslot transmissions boundaries	
6.3.4	Power control	148
6.3.4.1	General	
6.3.4.2	Absolute power tolerance	148
6.3.4.2.1	Test purpose	148
6.3.4.2.2	Test applicability	148
6.3.4.2.3	Minimum conformance requirements	148
6.3.4.2.4	Test description	149
6.3.4.2.4.1	Initial condition	149
6.3.4.2.5	Test requirement	151
6.3.4.3	Relative power tolerance	152
6.3.4.4	Aggregate power tolerance	160
6.3A Ou	tput power dynamics for CA	164
6.3A.1	Minimum output power for CA	164
6.3A.1.0	Minimum conformance requirements	164
6.3A.1.1	Minimum output power for CA (2UL CA)	165
6.3A.1.1.1	Test purpose	165
6.3A.1.1.2	Test applicability	165
6.3A.1.1.3	Minimum conformance requirements	165
6.3A.1.1.4	Test description	165
6.3A.1.1.5	Test requirement	167
6.3A.1.2	Minimum output power for CA (3UL CA)	167
6.3A.1.2.1	Test purpose	168
6.3A.1.2.2	Test applicability	168
6.3A.1.2.3	Minimum conformance requirements	168
6.3A.1.2.4	Test description	168
6.3A.1.2.5	Test requirement	169
6.3A.1.3	Minimum output power for CA (4UL CA)	169
6.3A.1.3.1	Test purpose	169
6.3A.1.3.2	Test applicability	
6.3A.1.3.3	Minimum conformance requirements	170
6.3A.1.3.4	Test description	170
6.3A.1.3.5	Test requirement	170
6.3A.2	Transmit OFF power for CA	
6.3A.2.0	Minimum conformance requirements	
6.3A.2.1	Transmit OFF power for CA (2UL CA)	
6.3A.2.2	Transmit OFF power for CA (3UL CA)	
6.3A.2.3	Transmit OFF power for CA (4UL CA)	
6.3A.3	Transmit ON/OFF time mask for CA	
6.3A.3.0	Minimum conformance requirements	
6.3A.3.1	Transmit ON/OFF time mask for CA (2UL CA)	
6.3A.4	Power control for CA	
6.3A.4.1	General	
6.3A.4.2	Absolute power tolerance for CA	
6.3A.4.2.0	Minimum conformance requirements	
6.3A.4.2.1	Absolute power tolerance for CA (2UL CA)	
6.3A.4.2.1.1	Test purpose	
6.3A.4.2.1.2	Test applicability	
6.3A.4.2.1.3	Minimum conformance requirements	
6.3A.4.2.1.4	Test description	
6.3A.4.2.1.4.		
6.3A.4.2.1.4.	8	
6.3A.4.2.1.5	Test requirement	
6.3A.4.2.2.1	Test purpose	
6.3A.4.2.2.2	Test applicability	
6.3A.4.2.2.3	Minimum conformance requirements	
6.3A.4.2.2.4	Test description	183

6.3A.4.2.2.4.1	Initial condition	
6.3A.4.2.2.5	Test requirement	183
6.3A.4.2.3	Absolute power tolerance for CA (4UL CA)	184
6.3A.4.2.3.1	Test purpose	
6.3A.4.2.3.2	Test applicability	
6.3A.4.2.3.3	Minimum conformance requirements	
6.3A.4.2.3.4	Test description	
6.3A.4.2.3.4.1	Initial condition	
6.3A.4.2.3.5	Test requirement	
6.3A.4.2.4	Absolute power tolerance for CA (5UL CA)	
6.3A.4.2.4.1	Test purpose	
6.3A.4.2.4.2	Test applicability	
6.3A.4.2.4.3	Minimum conformance requirements	
6.3A.4.2.4.4	Test description	
6.3A.4.2.4.4.1	Initial condition.	
6.3A.4.2.4.5		
6.3A.4.2.5	Test requirement	
	Absolute power tolerance for CA (6UL CA)	
6.3A.4.2.5.1	Test purpose	
6.3A.4.2.5.2	Test applicability	
6.3A.4.2.5.3	Minimum conformance requirements	
6.3A.4.2.5.4	Test description	
6.3A.4.2.5.4.1	Initial condition	
6.3A.4.2.5.5	Test requirement	
6.3A.4.2.6	Absolute power tolerance for CA (7UL CA)	
6.3A.4.2.6.1	Test purpose	
6.3A.4.2.6.2	Test applicability	
6.3A.4.2.6.3	Minimum conformance requirements	
6.3A.4.2.6.4	Test description	
6.3A.4.2.6.4.1	Initial condition	
6.3A.4.2.6.5	Test requirement	191
6.3A.4.2.7	Absolute power tolerance for CA (8UL CA)	193
6.3A.4.2.7.1	Test purpose	193
6.3A.4.2.7.2	Test applicability	193
6.3A.4.2.7.3	Minimum conformance requirements	193
6.3A.4.2.7.4	Test description	193
6.3A.4.2.7.4.1	Initial condition	193
6.3A.4.2.7.5	Test requirement	194
6.3D Output p	ower dynamics for UL MIMO	
	mum output power for UL MIMO	
	smit OFF power for UL MIMO	
	smit ON/OFF time mask for UL MIMO	
	eneral ON/OFF time mask for UL MIMO	
	3	200
	RS time mask for UL MIMO	
6.3D.3.4.1	Test purpose	
6.3D.3.4.2	Test applicability	
6.3D.3.4.3	Minimum conformance requirements	
6.3D.3.4.4	Test description	
	signal quality	
	iency error	
•	smit modulation quality	
	rror vector magnitude	
	<u> </u>	
	arrier leakage 1-band emissions	
	VM equalizer spectrum flatness	
	VM spectral flatness for pi/2 BPSK modulation	
	signal quality for CA	
	nency error for CA	
6.4A.1.0	Minimum conformance requirements	
6.4A.1.1	Frequency error for CA (2UL CA)	
6.4A.1.2	Frequency error for CA (3UL CA)	237

6.4A.1.3	Frequency error for CA (4UL CA)	
6.4A.2	Transmit modulation quality for CA	239
6.4A.2.1	Error vector magnitude for CA	239
6.4A.2.1.0	Minimum conformance requirements	239
6.4A.2.1.1	Error Vector magnitude for CA (2UL CA)	
6.4A.2.1.2	Error Vector magnitude for CA (3UL CA)	
6.4A.2.1.3	Error Vector magnitude for CA (4UL CA)	
6.4A.2.2	Carrier leakage for CA	
6.4A.2.2.0	Minimum conformance requirements	
6.4A.2.2.0.1	General	
6.4A.2.2.0.2	Carrier leakage for power class 1	
6.4A.2.2.0.3	Carrier leakage for power class 2	
6.4A.2.2.0.4	Carrier leakage for power class 3	
6.4A.2.2.0.5	Carrier leakage for power class 3	
6.4A.2.2.1	Carrier leakage for CA (2UL CA)	
6.4A.2.2.2	Carrier leakage for CA (3UL CA)	
6.4A.2.2.3	Carrier leakage for CA (4UL CA)	
6.4A.2.3	In-band emissions for CA	
6.4A.2.3.0	Minimum conformance requirements	
6.4A.2.3.0.1	General	
6.4A.2.3.0.2	In-band emissions for power class 1	
6.4A.2.3.0.3	In-band emissions for power class 2	
6.4A.2.3.0.4	In-band emissions for power class 3	256
6.4A.2.3.0.5	In-band emissions for power class 4	257
6.4A.2.3.1	In-band emissions for CA (2UL CA)	257
6.4A.2.4	EVM equalizer spectrum flatness for CA	262
6.4A.2.5	EVM spectral flatness for pi/2 BPSK modulation with spectrum shaping for CA	
6.4D Tra	nsmit signal quality for UL MIMO	
	tput RF spectrum emissions	
6.5.1	Occupied bandwidth	
6.5.2	Out of band emission.	
6.5.2.1	Spectrum Emission Mask	
6.5.2.2	Void	
6.5.2.3	Adjacent channel leakage ratio	
6.5.3	Spurious emissions	
6.5.3.1	Transmitter Spurious emissions.	
	Spurious emission band UE co-existence	
6.5.3.2		
6.5.3.3	Additional Spurious emission	
	tput RF spectrum emissions for CA	
6.5A.1	Occupied bandwidth for CA	
6.5A.1.0	Minimum conformance requirements	
6.5A.1.1	Minimum output power for CA (2UL CA)	
6.5A.1.1.1	Test purpose	
6.5A.1.1.2	Test applicability	
6.5A.1.1.3	Minimum conformance requirements	282
6.5A.1.1.4	Test description	282
6.5A.1.1.5	Test requirement	283
6.5A.1.2	Occupied bandwidth for CA (3UL CA)	283
6.5A.1.2.1	Test purpose	284
6.5A.1.2.2	Test applicability	284
6.5A.1.2.3	Minimum conformance requirements	
6.5A.1.2.4	Test description	
6.5A.1.2.5	Test requirement	
6.5A.1.3	Occupied bandwidth for CA (4UL CA)	
6.5A.1.3.1	Test purpose	
6.5A.1.3.2	Test applicability	
6.5A.1.3.3	Minimum conformance requirements	
6.5A.1.3.4	Test description	
6.5A.1.3.5	Test requirement.	
6.5A.1.4	Occupied bandwidth for CA (5UL CA)	
6.5A.1.4.1	Test purpose	285

6.5A.1.4.2	Test applicability	
6.5A.1.4.3	Minimum conformance requirements	286
6.5A.1.4.4	Test description	286
6.5A.1.4.5	Test requirement	286
6.5A.1.5	Occupied bandwidth for CA (6UL CA)	286
6.5A.1.5.1	Test purpose	286
6.5A.1.5.2	Test applicability	
6.5A.1.5.3	Minimum conformance requirements	
6.5A.1.5.4	Test description	
6.5A.1.5.5	Test requirement	
6.5A.1.6	Occupied bandwidth for CA (7UL CA)	
6.5A.1.6.1	Test purpose	
6.5A.1.6.2	Test applicability	
6.5A.1.6.3	Minimum conformance requirements	
6.5A.1.6.4	Test description	
6.5A.1.6.5	Test requirement	
6.5A.1.7	Occupied bandwidth for CA (8UL CA)	
6.5A.1.7.1	Test purpose	
6.5A.1.7.2	Test applicability	
6.5A.1.7.3	Minimum conformance requirements	
6.5A.1.7.4	Test description	
6.5A.1.7.5	Test requirement	
6.5A.2	Out of band emission for CA.	
6.5A.2.1	Spectrum Emission Mask for CA.	
6.5A.2.1.0	Minimum conformance requirements	
6.5A.2.1.1	Spectrum Emission Mask for CA (2UL CA)	
6.5A.2.1.1	Spectrum Emission Mask for CA (20L CA)	
6.5A.2.1.3	Spectrum Emission Mask for CA (4UL CA)	
6.5A.2.1.4	Spectrum Emission Mask for CA (40L CA)	
6.5A.2.1.5	Spectrum Emission Mask for CA (6UL CA)	
6.5A.2.1.6	Spectrum Emission Mask for CA (7UL CA)	
6.5A.2.1.7	Spectrum Emission Mask for CA (8UL CA)	
6.5A.2.1.7	Adjacent channel leakage ratio for CA	
6.5A.2.2.0	Minimum conformance requirements	
6.5A.2.2.1	Adjacent channel leakage ratio for CA (2UL CA)	
6.5A.2.2.1	Adjacent channel leakage ratio for CA (20L CA)	
6.5A.2.2.3	Adjacent channel leakage ratio for CA (4UL CA)	
6.5A.2.2.4	Adjacent channel leakage ratio for CA (40L CA)	
6.5A.2.2.5		
6.5A.2.2.6	Adjacent channel leakage ratio for CA (6UL CA)	
6.5A.2.2.7	Adjacent channel leakage ratio for CA (8UL CA)	
	· , ,	
6.5A.3	Spurious emissions for CA	
6.5A.3.1	*	
6.5A.3.1.0	Minimum conformance requirements	
6.5A.3.1.1	Transmitter Spurious emissions for CA (2UL CA)	
6.5A.3.1.2	Transmitter Spurious emissions for CA (3UL CA)	
6.5A.3.1.3	Transmitter Spurious emissions for CA (4UL CA)	
6.5A.3.1.4	Transmitter spurious emissions for CA (5UL CA)	
6.5A.3.1.5	Transmitter spurious emissions for CA (6UL CA)	
6.5A.3.1.6	Transmitter spurious emissions for CA (7UL CA)	
6.5A.3.1.7	Transmitter spurious emissions for CA (8UL CA)	
6.5A.3.2	Spurious emission band UE co-existence for CA	
6.5A.3.2.0	Minimum conformance requirements	
6.5A.3.2.1	Spurious emission band UE co-existence for CA (2UL CA)	
6.5A.3.2.2	Spurious emission band UE co-existence for CA (3UL CA)	
6.5A.3.2.3	Spurious emission band UE co-existence for CA (4UL CA)	
6.5A.3.2.4	Spurious emission band UE co-existence for CA (5UL CA)	
6.5A.3.2.5	Spurious emission band UE co-existence for CA (6UL CA)	
6.5A.3.2.6	Spurious emission band UE co-existence for CA (7UL CA)	
6.5A.3.2.7	Couriers emission hand LIE as emisteres for CA (OLIL CA)	210
6.5A.3.3	Spurious emission band UE co-existence for CA (8UL CA)	

6.5A.3.3.	1	
6.5A.3.3.	Additional spurious emission for CA (2UL CA)	320
6.5A.3.3.	2 Additional spurious emission for CA (3UL CA)	323
6.5A.3.3.3		
6.5A.3.3.	<u> </u>	
6.5A.3.3.		
6.5A.3.3.	• /	
6.5A.3.3.		
6.5D		
	Output RF spectrum emissions for UL MIMO	
6.5D.1	Occupied bandwidth for UL MIMO	
6.5D.2	Out of band emission for UL MIMO	
6.5D.3	Spurious emissions for UL MIMO	
6.5D.3.1	Transmitter Spurious emissions for UL MIMO	
6.5D.3.2	Spurious emission band UE co-existence for UL MIMO	
6.5D.3.3	Additional Spurious emission for UL MIMO	327
6.6	Beam correspondence	328
6.6.0	General	328
6.6.1	Beam correspondence - EIRP	328
6.6.1.2	Test applicability	
6.6.1.3	Minimum conformance requirements	
6.6.1.3.1	(Void)	
6.6.1.3.2	(Void)	
6.6.1.3.3	Beam correspondence for PC3	
6.6.1.3.4	Normative reference	
6.6.1.4	Test description	
6.6.1.4.1	Initial conditions	
6.6.1.4.2	Test procedure	
6.6.1.5	Test requirements	
6.6A	Beam correspondence for CA	333
7 D.		222
	ceiver characteristics	
7.1	General	
7.2	Diversity characteristics	
7.3	Reference sensitivity	
7.3.1	General	
7.3.2	Reference sensitivity power level	
7.3.2.3.1	Reference sensitivity power level for power class 1	334
7.3.2.3.2	Reference sensitivity power level for power class 2	335
7.3.2.3.3	Reference sensitivity power level for power class 3	335
7.3.2.3.4	Reference sensitivity power level for power class 4	
7.3.4	EIS spherical coverage	
7.3.4.1	Test purpose	
7.3.4.2	Test applicability	
7.3.4.3	Minimum conformance requirements	
7.3.4.4	Test description	
7.3.4.4.1	Initial conditions	
7.3.4.4.2	Test procedure	
7.3.4.4.3	Message contents	
7.3.4.5	Test requirement	
7.3A	Reference sensitivity for CA	343
7.3A.1	General	
7.3A.2	Reference sensitivity power level for CA	343
7.3A.2.0	Minimum Conformance Requirements	
7.3A.2.0.	<u>.</u>	
7.3A.2.0.2	<u> </u>	
7.3A.2.1	Reference sensitivity power level for CA (2DL CA)	
7.3A.2.2	Reference sensitivity power level for CA (3DL CA)	
7.3A.2.3	Reference sensitivity power level for CA (4DL CA)	
7.3A.2.4	Reference sensitivity power level for CA (5DL CA)	
7.3A.2.5	Reference sensitivity power level for CA (6DL CA)	
7.3A.2.6	Reference sensitivity power level for CA (7DL CA)	
7.3A.2.7	Reference sensitivity power level for CA (8DL CA)	349

7.3D	Reference sensitivity for UL MIMO	
7.3D.1	General	
7.3D.2	Reference sensitivity power level	349
7.3D.3	Void	350
7.3D.4	EIS spherical coverage	350
7.4	Maximum input level	
7.4A	Maximum input level for CA	
7.4D	Maximum input level for UL MIMO	
7.5	Adjacent channel selectivity	
7.5A	Adjacent channel selectivity for CA	
7.5D	Adjacent channel selectivity for UL MIMO	
7.6	Blocking characteristics	
7.6.1	General.	
7.6.2	In-band blocking	
7.6.3	Void	
7.6A	Blocking characteristics for CA	
7.6A.1	General	
7.6A.2	In-band blocking for CA	
7.6D	Blocking characteristics for UL MIMO	
7.0D 7.7	Void	
7.8	Void	
7.0 7.9		
	Spurious emissions.	
7.9.1	Test purpose	
7.9.2	Test applicability	
7.9.3	Minimum conformance requirements	
7.9.4	Test description	
7.9.4.1	Initial conditions	
7.9.4.2	Test procedure	
7.9.4.3	Message contents	
7.9.5	Test requirement	
7.10	Void	363
Annov	A (normative). Massurement shannels	262
	A (normative): Measurement channels	
	•	
A.1 C	eneral	363
A.1 C	General	363 364
A.1 C A.2 U A.2.1	Jeneral	363 364 364
A.1 C A.2 U A.2.1 A.2.2	General	
A.1 C A.2 U A.2.1 A.2.2 A.2.3	General	
A.1 C A.2 U A.2.1 A.2.2 A.2.3 A.2.3.1I	General	
A.1 C A.2 U A.2.1 A.2.2 A.2.3 A.2.3.1I A.2.3.2	General	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1I A.2.3.2 A.2.3.3	General Under the reference measurement channels	
A.1 C A.2 U A.2.1 A.2.2 A.2.3 A.2.3.1I A.2.3.2	General	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1I A.2.3.2 A.2.3.3	General Under the reference measurement channels	
A.1 C A.2 U A.2.1 A.2.2 A.2.3 A.2.3.1I A.2.3.2 A.2.3.3 A.2.3.4	General Under the reference measurement channels	
A.1 C A.2 U A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.3 A.2.3.4 A.2.3.5	JL reference measurement channels	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.3 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7	General	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A A.2.3.1 A.2.3.2 A.2.3.3 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7	JL reference measurement channels	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.3 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7	JL reference measurement channels	
A.1 C A.2 U A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3.1 A.3.1	JL reference measurement channels	
A.1 C A.2 U A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3.1 A.3.1 A.3.2 A.3.3	The reference measurement channels General	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3.1 A.3.1 A.3.2 A.3.3 A.3.3.1	The reference measurement channels General Void Reference measurement channels for TDD DFT-s-OFDM Pi/2-BPSK DFT-s-OFDM QPSK DFT-s-OFDM 16QAM DFT-s-OFDM QPSK CP-OFDM QPSK CP-OFDM 16QAM CP-OFDM 16QAM CP-OFDM 16QAM CP-OFDM 64QAM DL reference measurement channels General Void DL reference measurement channels for TDD General	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.3 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3 L A.3.1 A.3.2 A.3.3 A.3.3.1 A.3.3.2	General	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.3 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3 L A.3.1 A.3.2 A.3.3 A.3.3.1 A.3.3.2 A.3.3.3	General UL reference measurement channels General Void Reference measurement channels for TDD DFT-s-OFDM Pi/2-BPSK DFT-s-OFDM QPSK DFT-s-OFDM 16QAM DFT-s-OFDM 64QAM CP-OFDM QPSK CP-OFDM 16QAM CP-OFDM 64QAM CP-OFDM 64QAM CP-OFDM 64QAM DL reference measurement channels General Void DL reference measurement channels for TDD General FRC for receiver requirements for QPSK FRC for receiver requirements for 16QAM	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.3 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3 L A.3.1 A.3.2 A.3.3 A.3.3.1 A.3.3.2	General	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3.1 A.3.1 A.3.2 A.3.3 A.3.3.1 A.3.3.2 A.3.3.3	General. IL reference measurement channels General Void Reference measurement channels for TDD DFT-s-OFDM Pi/2-BPSK DFT-s-OFDM QPSK DFT-s-OFDM 16QAM DFT-s-OFDM 64QAM CP-OFDM QPSK CP-OFDM 16QAM CP-OFDM 64QAM CP-OFDM 64QAM DL reference measurement channels General Void DL reference measurement channels for TDD General FRC for receiver requirements for QPSK FRC for receiver requirements for 16QAM FRC for receiver requirements for 64QAM	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1 A.2.3.2 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3.1 A.3.1 A.3.2 A.3.3 A.3.3.1 A.3.3.2 A.3.3.3	General UL reference measurement channels General Void Reference measurement channels for TDD DFT-s-OFDM Pi/2-BPSK DFT-s-OFDM QPSK DFT-s-OFDM 16QAM DFT-s-OFDM 64QAM CP-OFDM QPSK CP-OFDM 16QAM CP-OFDM 64QAM CP-OFDM 64QAM CP-OFDM 64QAM DL reference measurement channels General Void DL reference measurement channels for TDD General FRC for receiver requirements for QPSK FRC for receiver requirements for 16QAM	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1I A.2.3.2 A.2.3.3 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3 I A.3.1 A.3.2 A.3.3 A.3.3.1 A.3.3.2 A.3.3.3 A.3.3.4 A.4 V	General. July reference measurement channels. General. Void. Reference measurement channels for TDD. DFT-s-OFDM Pi/2-BPSK. DFT-s-OFDM QPSK. DFT-s-OFDM 16QAM. DFT-s-OFDM 64QAM. CP-OFDM 16QAM. CP-OFDM 16QAM. CP-OFDM 16QAM. CP-OFDM 16QAM. DL reference measurement channels. General. Void. DL reference measurement channels for TDD. General. FRC for receiver requirements for QPSK. FRC for receiver requirements for 16QAM. FRC for receiver requirements for 64QAM.	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1I A.2.3.2 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3 L A.3.1 A.3.2 A.3.3 A.3.3.1 A.3.3.2 A.3.3.4 A.4 L A.5 C	General IL reference measurement channels General Void Reference measurement channels for TDD DFT-s-OFDM Pi/2-BPSK DFT-s-OFDM QPSK DFT-s-OFDM 16QAM DFT-s-OFDM 64QAM CP-OFDM 16QAM CP-OFDM 16QAM CP-OFDM 16QAM CP-OFDM 16QAM DL reference measurement channels General Void DL reference measurement channels for TDD General FRC for receiver requirements for QPSK FRC for receiver requirements for 16QAM FRC for receiver requirements for 64QAM FRC for receiver requirements for 64QAM FRC for receiver requirements for 64QAM FODMA Channel Noise Generator (OCNG)	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1I A.2.3.2 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3 L A.3.1 A.3.2 A.3.3 A.3.3.1 A.3.3.2 A.3.3.4 A.4 L A.5 C A.5.1	Ceneral IL reference measurement channels General Void Reference measurement channels for TDD DFT-s-OFDM Pi/2-BPSK DFT-s-OFDM QPSK DFT-s-OFDM 16QAM DFT-s-OFDM 64QAM CP-OFDM 0PSK CP-OFDM 16QAM CP-OFDM 64QAM OL reference measurement channels General Void DL reference measurement channels for TDD General FRC for receiver requirements for QPSK FRC for receiver requirements for 16QAM FRC for receiver requirements for 64QAM OFDMA Channel Noise Generator (OCNG) OCNG Patterns for FDD	
A.1 C A.2 L A.2.1 A.2.2 A.2.3 A.2.3.1I A.2.3.2 A.2.3.4 A.2.3.5 A.2.3.6 A.2.3.7 A.3 L A.3.1 A.3.2 A.3.3 A.3.3.1 A.3.3.2 A.3.3.4 A.4 L A.5 C	General IL reference measurement channels General Void Reference measurement channels for TDD DFT-s-OFDM Pi/2-BPSK DFT-s-OFDM QPSK DFT-s-OFDM 16QAM DFT-s-OFDM 64QAM CP-OFDM 16QAM CP-OFDM 16QAM CP-OFDM 16QAM CP-OFDM 16QAM DL reference measurement channels General Void DL reference measurement channels for TDD General FRC for receiver requirements for QPSK FRC for receiver requirements for 16QAM FRC for receiver requirements for 64QAM FRC for receiver requirements for 64QAM FRC for receiver requirements for 64QAM FODMA Channel Noise Generator (OCNG)	

Anne	ex B (normative): Propagation conditions	387
B.0	No interference	387
Anne	ex C (normative): Downlink Physical Channels	388
C.0	Downlink signal levels	388
C.1	General	389
C.2	Setup	389
C.3	Connection	390
C.3.0		
C.3.1	Measurement of Receiver Characteristics	391
Anne	ex D (normative): Characteristics of the interfering signal	392
D.1	General	392
D.2	Interference signals	392
Anne	ex E (normative): Global In-Channel TX-Test	393
E.1	General	393
E.2	Signals and results	393
E.2.1	Basic principle	
E.2.2	Output signal of the TX under test	
E.2.3	Reference signal	
E.2.4 E.2.5	Measurement results	
E.3	Signal processing	394
E.3.1	Pre FFT minimization process	394
E.3.2	Timing of the FFT window	
E.3.3	Post FFT equalisation	
E.4	Derivation of the results	
E.4.1	EVM	
E.4.2 E.4.3	Averaged EVMIn-band emissions measurement	
E.4.3 E.4.4	EVM equalizer spectrum flatness	
E.4.5	Frequency error and Carrier leakage	
E.4.6	EVM of Demodulation reference symbols (EVM _{DMRS})	
E.4.6.		
E.4.6.	§ .	
E.5	EVM and inband emissions for PUCCH	402
E.5.1	Basic principle	
E.5.2	Output signal of the TX under test	
E.5.3	Reference signal	
E.5.4	Measurement results	
E.5.5	Measurement points	
E.5.6	Pre FFT minimization process.	
E.5.7 E.5.8	Timing of the FFT window Post FFT equalisation	
E.5.9	Derivation of the results.	
E.5.9.		
E.5.9.		
E.5.9.		
E.6	EVM for PRACH	
E.6.1	Basic principle	
E.6.2	Output signal of the TX under test	
E.6.3	Reference signal	
E.6.4	Measurement results	40/

T 6 5		405
E.6.5	1	
E.6.6 E.6.7	1	
E.6.8	8	
E.6.9	•	
E.6.9.		
E.6.9.		
	ex F (normative): Measurement uncertainties and Test Tolerances	
F.1	Acceptable uncertainty of Test System (normative)	
F.1.1	Measurement of test environments	
F.1.2	Measurement of transmitter	
F.1.3	Measurement of receiver	416
F.2	Interpretation of measurement results (normative)	416
F.3	Test Tolerance and Derivation of Test Requirements (informative)	417
F.3.1	Measurement of test environments	417
F.3.2	Measurement of transmitter	417
F.3.3	Measurement of receiver	423
Anne	ex G (normative): Uplink Physical Channels	424
G.0	Uplink Signal Levels	
	•	
G.1	General	
G.2	Set-up	424
G.3	Connection	424
G.3.0		
G.3.1	Measurement of Receiver Characteristics	424
Anne	ex H (normative): Statistical Testing	425
H.1	General	425
H.2	Statistical testing of receiver characteristics	125
H.2.1		
H.2.2		
H.2.3	11 0 01	
H.2.4		427
H.2.5		
Anne	ex I:Void 429	
Anne	ex J (normative): Test applicability per permitted test method	430
Anne	ex K (normative): EIRP, TRP, and EIS measurement procedures	431
K.1	Direct far field (DFF)	431
K.1.1		
K.1.2	RX beam peak direction search	432
K.1.3	±	
K.1.4	1	
K.1.5		
K.1.6	1 0	
K.1.7	1	
K.1.8		
K.1.9	•	
K.2	Direct far field (DFF) simplification	437
K.2.1		
K.2.2	RX beam peak direction search	437
K.2.3	<u> </u>	

K.2.4 Peak E15 measurement procedure	43/
K.2.5 EIRP spherical coverage	
K.2.6 EIS spherical coverage	
1 0	
K.2.7 TRP measurement procedure	
K.2.8 Blocking measurement procedure	437
K.3 Indirect far field (IFF)	/37
K.3.1 TX beam peak direction search	
1	
K.3.2 RX beam peak direction search	
K.3.3 Peak EIRP measurement procedure	
K.3.4 Peak EIS measurement procedure	
K.3.5 EIRP spherical coverage	438
K.3.6 EIS spherical coverage	438
K.3.7 TRP measurement procedure	
K.3.8 Blocking measurement procedure	
-	
K.4 Near field to far field transform (NFTF)	438
K.4.1 TX beam peak direction search	438
K.4.2 RX beam peak direction search	438
K.4.3 Peak EIRP measurement procedure	
K.4.4 Peak EIS measurement procedure	
K.4.5 EIRP spherical coverage	
•	
1 0	
K.4.7 TRP measurement procedure	
K.4.8 Blocking measurement procedure	439
A T () \$7.11 440	
Annex L (normative): Void 440	
A 36/ / 336	440
Annex M:(normative) Measurement grids	440
M.1 Grid Types	440
W.1 Gilu Types	440
M.2 Beam Peak Search Grid	442
M.2.1 UE Power classes	
M.2.1.1 Power class 1 devices	
M.2.1.2 Power class 2 devices	
M.2.1.3 Power class 3 devices	
M.2.1.4 Power class 4 devices	
M.2.2 Coarse and fine measurement grids	443
M.3 Spherical Coverage Grid	115
M.3.1 EIRP spherical coverage	
M.3.1.1 UE Power classes	
M.3.1.1.1 Power class 1 devices	
M.3.1.1.2 Power class 2 devices	447
M.3.1.1.3 Power class 3 devices	447
M.3.1.1.4 Power class 4 devices	447
M.3.2 EIS spherical coverage	447
M.3.2.1 UE Power classes	
M.3.2.1.1 Power class 1 devices	
M.3.2.1.2 Power class 2 devices	
M.3.2.1.3 Power class 3 devices	
M.3.2.1.4 Power class 4 devices	449
M.4 TRP Measurement Grid	ΔΛΛ
M.4.1 UE Power Classes	
M.4.1.1 Power class 1 devices	
M.4.1.2 Power class 2 devices	
M.4.1.3 Power class 3 devices	
M.4.1.4 Power class 1 devices	
M.4.2 TRP Integration for Constant Step Size Grid Type	450
M.4.2.1 TRP Integration using Weights	
M.4.3 TRP Integration for Constant Density Grid Types	
M.4.4 Interpolation at or near the Pole	
2.2 IIICIPOIGGOI GC UL ILCH LIC I ULCIOIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	······································

M.4.5	TRP Grids for Spurious Emissions	453
Anne	x N (normative): UE coordinate system	454
N.1	Reference coordinate system	454
N.2	Test conditions and angle definitions	456
N.3 O.2	DUT positioning guidelines	460
	methods	462
0.2.1	Equipment used	462
0.2.2	Test frequencies	464
O.2.3	Reference measurements	464
0.2.4	Size of the quiet zone	464
O.2.5	Reference AUT positions	465
O.2.5.	1 Distributed-axes system	465
O.2.5.	2 Combined-axes system	466
O.2.6	Reference AUT orientations	467
O.2.6.	1 Distributed-axes system	467
O.2.6.	2 Combined-axes system	469
O.2.7	Quality of quiet zone measurement uncertainty calculations for TRP	
O.2.8	Quality of quiet zone measurement uncertainty for EIRP/EIS	470
O.3	Procedure to characterize the spurious emissions quality of the quiet zone for the permitted far field	
	methods	471
O.3.1	Equipment used	471
O.3.2	Test frequencies	
0.3.3	Reference measurements	
O.3.4	Size of the quiet zone	
O.3.5	Reference AUT positions	472
O.3.5.		
O.3.5.	J	
O.3.6	Reference AUT orientations	472
O.3.6.	J	
O.3.6.	V	
O.3.7	Quality of quiet zone measurement uncertainty calculations for TRP	474
Anne	x P (informative): Change history	475

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

The present document is part 2 of a multi-part Technical Specification (TS) covering the New Radio (NR) User Equipment (UE) conformance specification, which is divided in the following parts:

3GPP TS 38.521-1 [13]: NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone;

3GPP TS 38.521-2: NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone;

3GPP TS 38.521-3 [14]: NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios;

3GPP TS 38.521-4 [15]: NR; User Equipment conformance specification; Radio transmission and reception; Part 4: Performance;

3GPP TS 38.522 [16]: NR; User Equipment (UE) conformance specification; Applicability of radio transmission, radio reception and radio resource management test cases;

3GPP TS 38.533 [17]: NR; User Equipment (UE) conformance specification; Radio resource management (RRM);

[14]

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain RF characteristics for frequency Range 2 as part of the 5G-NR.

The requirements are listed in different clauses only if the corresponding parameters deviate. More generally, tests are only applicable to those mobiles that are intended to support the appropriate functionality. To indicate the circumstances in which tests apply, this is noted in the "definition and applicability" part of the test.

For example only Release 15 and later UE declared to support 5G-NR shall be tested for this functionality. In the event that for some tests different conditions apply for different releases, this is indicated within the text of the test itself.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

Keleuse us ili	e present document.
[1]	3GPP.TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone".
[3]	3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone".
[4]	3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".
[5]	3GPP TR 38.810: "Study on test methods for New Radio".
[6]	ITU-R Recommendation M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
[7]	ITU-R Recommendation SM.329-10: "Unwanted emissions in the spurious domain".
[8]	FCC 47 CFR Part 30: "UPPER MICROWAVE FLEXIBLE USE SERVICE, §30.202 Power limits".
[9]	3GPP TS 38.211: "NR; Physical channels and modulation".
[10]	3GPP TS <u>38.508-1</u> : "5GS; User Equipment (UE) conformance specification; Part 1: Common test environment".
[11]	3GPP TS <u>38.508-</u> 2: "5GS; User Equipment (UE) conformance specification; Part 2: Common Implementation Conformance Statement (ICS) proforma".
[12]	3GPP TS <u>38.50</u> 9: "5GS; Special conformance testing functions for User Equipment (UE)".
[13]	3GPP TS 38.521-1: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone".

3GPP TS 38.521-3: "NR; User Equipment (UE) conformance specification; Radio transmission

and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".

[15]	3GPP TS 38.521-4: "NR; User Equipment conformance specification; Radio transmission and reception; Part 4: Performance".
[16]	3GPP TS <u>38.5</u> 22: "NR; User Equipment (UE) conformance specification; Applicability of radio transmission, radio reception and radio resource management test cases".
[17]	3GPP TS 38.533: "NR; User Equipment (UE) conformance specification; Radio resource management (RRM)".
[18]	3GPP TS 38.300: "NR; Overall description; Stage 2".
[19]	3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".
[20]	3GPP TR 38.903: "NR; Derivation of test tolerances and measurement uncertainty for User Equipment (UE) conformance tests ".
[21]	3GPP TR 38.905: "NR; Derivation of test points for radio transmission and reception conformance test cases".
[22]	3GPP TS 38.213: "NR; Physical layer procedures for control".
[23]	3GPP TS 38.214: "NR; Physical layer procedures for data".
[24]	3GPP TS 38.215: "NR; Physical layer measurements".
[25]	3GPP TS 38.133: "NR; Requirements for support of radio resource management".
[26]	3GPP TS 38.306: "NR; User Equipment (UE) radio access capabilities".
[27]	IEEE Std 149: "IEEE Standard Test Procedures for Antennas", IEEE.
[28]	3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Beam correspondence: the ability of the UE to select a suitable beam for UL transmission based on DL measurements with or without relying on UL beam sweeping.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

EIRP(Link=Link angle, Meas=beam peak direction): measurement of the EIRP of the UE such that the measurement angle is aligned with the beam peak direction within an acceptable measurement error uncertainty.

EIRP(Link=Link angle, Meas=Link angle): measurement of the UE such that the link angle is aligned with the measurement angle. EIRP (indicator to be measured) can be replaced by EIS, Frequency, EVM, carrier Leakage, Inband emission and OBW. Beam peak search grids, TX beam peak direction, and RX beam peak direction can be selected to describe Link.

EIS (**equivalent isotropic sensitivity**): sensitivity for an isotropic directivity device equivalent to the sensitivity of the discussed device exposed to an incoming wave from a defined AoA

NOTE 1: The sensitivity is the minimum received power level at which specific requirement is met.

NOTE 2: Isotropic directivity is equal in all directions (i.e. 0 dBi).

Fallback group: Group of carrier aggregation bandwidth classes for which it is mandatory for a UE to be able to fallback to lower order CA bandwidth class configuration. It is not mandatory for a UE to be able to fallback to lower order CA bandwidth class configuration that belongs to a different fallback group.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

Link angle: a DL-signal AoA from the view point of the UE, as described in Annex N.

Measurement angle: the angle of measurement of the desired metric from the view point of the UE, as described in Annex N.

radiated interface boundary: operating band specific radiated requirements reference point where the radiated requirements apply.

RX beam peak direction: direction where the maximum total component of RSRP and thus best total component of EIS is found.

Sub-block: This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

TRP(Link=Link angle): measurement of the TRP of the UE such that the measurement angle is aligned with the beam peak direction within an acceptable measurement uncertainty. TX beam peak direction and RX beam peak direction can be selected to describe Link.

NOTE: For requirements based on EIRP/EIS, the radiated interface boundary is associated to the far-field region.

TX beam peak direction: direction where the maximum total component of EIRP is found.

UE transmission bandwidth configuration: Set of resource blocks located within the UE channel bandwidth which may be used for transmitting or receiving by the UE.

Vehicular UE: A UE embedded in a vehicle.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

$\Delta EIRP_{BC}$	The beam correspondence tolerance, where $\Delta EIRP_{BC} = EIRP_2 - EIRP_1$
ΔF_{Global}	Granularity of the global frequency raster
ΔF_{Raster}	Band dependent channel raster granularity
Δf_{OOB}	Δ Frequency of Out Of Band emission
$\Delta \mathrm{MB}_{\mathrm{P,n}}$	Allowed relaxation to each, minimum peak EIRP and reference sensitivity due to support for
	multi-band operation, per band in a combination of supported bands
$\Delta MB_{S,n}$	Allowed relaxation to each, EIRP spherical coverage and EIS spherical coverage due to support
	for multi-band operation, per band in a combination of supported bands
$\Delta_{ ext{RB}}$	The starting frequency offset between the allocated RB and the measured non-allocated RB

 ΔR_{IB} Allowed reference sensitivity relaxation due to support for inter-band CA operation

 \sum MB_P Total allowed relaxation to each, minimum peak EIRP and reference sensitivity due to support for

multi-band operation, for all bands in a combination of supported bands

 Σ MB_s Total allowed relaxation to each, EIRP spherical coverage and EIS spherical coverage due to

support for multi-band operation, for all bands in a combination of supported bands

BW_{Channel} Channel bandwidth

BW_{Channel_CA} Aggregated channel bandwidth, expressed in MHz.

 BW_{GB} $max(BW_{GB,Channel(k)})$

 $BW_{\text{GB},\text{Channel}(k)} \qquad \text{Minimum guardband defined in subclause 5.3A.2 of carrier } k$

BW_{interferer} Bandwidth of the interferer

Ceil(x) Rounding upwards; ceil(x) is the smallest integer such that ceil(x) \geq x EIRP_{max} The applicable maximum EIRP as specified in sub-clause 6.2.1

EIRP₁ The measured total EIRP based on the beam the UE chooses autonomously (corresponding beam)

to transmit in the direction of the incoming DL signal, which is based on beam correspondence

without relying on UL beam sweeping

EIRP₂ The measured total EIRP based on the beam yielding highest EIRP in a given direction, which is

based on beam correspondence with relying on UL beam sweeping

F_C RF reference frequency for the carrier center on the channel raster, given in table 5.4.2.2-1

 $\begin{array}{ll} F_{\text{C,block, high}} & \text{Fc of the highest transmitted/received carrier in a sub-block.} \\ F_{\text{C,block, low}} & \text{Fc of the lowest transmitted/received carrier in a sub-block.} \end{array}$

 $F_{C, high}$ The Fc of the highest carrier, expressed in MHz. $F_{C, low}$ The Fc of the lowest carrier, expressed in MHz.

 F_{DL_high} The highest frequency of the downlink *operating band* F_{DL_low} The lowest frequency of the downlink *operating band*

$$\begin{split} F_{\text{edge,block,high}} & & \text{The upper sub-block edge, where } F_{\text{edge,block,high}} = F_{\text{C,block,high}} + F_{\text{offset, high.}} \\ F_{\text{edge,block,low}} & & \text{The lower sub-block edge, where } F_{\text{edge,block,low}} = F_{\text{C,block,low}} - F_{\text{offset, low.}} \end{split}$$

 $F_{edge, \, high}$ The upper edge of Aggregated Channel Bandwidth, expressed in MHz. $F_{edge, \, high} = F_{C, \, high} + F_{offset, \, high}$. The lower edge of Aggregated Channel Bandwidth, expressed in MHz. $F_{edge, \, low} = F_{C, \, low} - F_{offset, \, low}$.

 $F_{Interferer}$ Frequency of the interferer

F_{Interferer} (offset) Frequency offset of the interferer (between the center frequency of the interferer and the carrier

frequency of the carrier measured)

 F_{Ioffset} Frequency offset of the interferer (between the center frequency of the interferer and the closest

edge of the carrier measured)

Floor(x) Rounding downwards; floor(x) is the greatest integer such that floor(x) \leq x

 F_{OOB} The boundary between the NR out of band emission and spurious emission domains

 $F_{\text{offset, high}} \qquad \qquad \text{Frequency offset from } F_{\text{C, high}} \text{ to the upper } \textit{UE RF Bandwidth edge}, \text{ or from } F_{\text{C,block, high}} \text{ to the upper } F_{\text{C,block$

sub-block edge

Frequency offset from F_{C, low} to the lower *UE RF Bandwidth edge*, or from F_{C, block, low} to the lower

sub-block edge

 $\begin{array}{ll} F_{\text{REF}} & \text{RF reference frequency} \\ F_{\text{REF-Offs}} & \text{Offset used for calculating } F_{\text{REF}} \end{array}$

 F_{UL_high} The highest frequency of the uplink *operating band* F_{UL_low} The lowest frequency of the uplink *operating band*

 F_{UL_Meas} The sub-carrier frequency for which the equalizer coefficient is evaluated

F_center The center frequency of an allocated block of PRBs GB_{Channel} Minimum guardband defined in sub-clause 5.3.3

 L_{CRB} Transmission bandwidth which represents the length of a contiguous resource block allocation

expressed in units of resources blocks

 $L_{\text{CRB},\text{Max}}$ Maximum number of RB for a given Channel bandwidth and sub-carrier spacing

Max() The largest of given numbers Min() The smallest of given numbers

MPR $_{f,c}$ Maximum output power reduction for carrier f of serving cell c MPR $_{narrow}$ Maximum output power reduction due to narrow PRB allocation

MPR_{WT} Maximum power reduction due to modulation orders, transmit bandwidth configurations,

waveform types

NR_{ACLR} NR ACLR

 N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

N_{RB,high} Transmission bandwidth configurations according to Table 5.3.2-1 for the highest assigned

component carrier in section 5.3A.1

 $N_{RB,low}$ Transmission bandwidth configurations according to Table 5.3.2-1 for the lowest assigned

component carrier in section 5.3A.1

NR Absolute Radio Frequency Channel Number (NR-ARFCN)

 $N_{REF-Offs}$ Offset used for calculating N_{REF} n_{PRB} Physical resource block number

P_{CMAX} The configured maximum UE output power

 $P_{CMAX, f, c}$ The configured maximum UE output power for carrier f of serving cell c

 $P_{\text{Interferer}}$ Modulated mean power of the interferer

 $\begin{array}{ll} P_{\text{int}} & \text{The intermediate power point as defined in table 6.3.4.2-2} \\ P_{\text{max}} & \text{The maximum UE output power as specified in sub-clause 6.2.1} \\ P_{\text{min}} & \text{The minimum UE output power as specified in sub-clause 6.3.1} \\ \end{array}$

P_{PowerClass} Nominal UE power class (i.e., no tolerance) as specified in sub-clause 6.2.1

 P_{RB} The transmitted power per allocated RB, measured in dBm $P_{TMAX,f,c}$ The measured total radiated power for carrier f of serving cell c

P_{UMAX} The measured configured maximum UE output power

Pw Power of a wanted DL signal

P-MPR_{f,c} The Power Management UE Maximum Power Reduction for carrier f of serving cell c

 $\begin{array}{ll} RB_{\text{start}} & \text{Indicates the lowest RB index of transmitted resource blocks} \\ SCS_{\text{high}} & SCS \text{ for the highest assigned component carrier in section 5.3A.1} \\ SCS_{\text{low}} & SCS \text{ for the lowest assigned component carrier in section 5.3A.1} \\ \end{array}$

SS_{REF} SS block reference frequency position

TRP_{max} The maximum TRP for the UE power class as specified in sub-clause 6.2.1

 $T(\Delta P)$ The tolerance $T(\Delta P)$ for applicable values of ΔP (values in dB)

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

AoA Angle of Arrival

A-MPR Additional Maximum Power Reduction

BCS Bandwidth Combination Set BPSK Binary Phase-Shift Keying

BS Base Station
BW Bandwidth
BWP Bandwidth Part
CA Carrier Aggregation

CA_nX-nY Inter-band CA of component carrier(s) in one sub-block within Band X and component carrier(s)

in one sub-block within Band Y where X and Y are the applicable NR operating band

CC Component Carrier

CDF Cumulative Distribution Function

CP-OFDM Cyclic Prefix-OFDM CW Continuous Wave

DFT-s-OFDM Discrete Fourier Transform-spread-OFDM

DL Downlink

DM-RS Demodulation Reference Signal DTX Discontinuous Transmission

DUT Device Under Test

EIRP Effective Isotropic Radiated Power
EIS Effective Isotropic Sensitivity
EVM Error Vector Magnitude

FR Frequency Range FWA Fixed Wireless Access

GSCN Global Synchronization Channel Number

IBB In-band Blocking

IDFT Inverse Discrete Fourier Transformation

ITU-R Radio communication Sector of the International Telecommunication Union

MBW Measurement bandwidth defined for the protected band

MPR Allowed maximum power reduction

NR New Radio

NR-ARFCN NR Absolute Radio Frequency Channel Number

OCNG OFDMA Channel Noise Generator

OOB Out-of-band OTA Over The Air

PRB Physical Resource Block

P-MPR Power Management Maximum Power Reduction

QAM Quadrature Amplitude Modulation

RB Resource Blocks
REFSENS Reference Sensitivity
RF Radio Frequency

RIB Radiated Interface Boundary
RMS Root Mean Square (value)

RSRP Reference Signal Receiving Power

Rx Receiver

SCS Subcarrier Spacing
SEM Spectrum Emission Mask
SRS Sounding Reference Symbol
SS Synchronization Symbol
TDD Time Division Duplex
TPC Transmission Power Control
TRP Total Radiated Power

Tx Transmitter UE User Equipment

UL Uplink

UL MIMO Uplink Multiple Antenna transmission

4 General

4.1 Relationship between minimum requirements and test requirements

The TS 38.101-2 [3] is a Single-RAT specification for NR UE, covering RF characteristics and minimum performance requirements. Conformance to the TS 38.101-2 [3] is demonstrated by fulfilling the test requirements specified in the present document.

The Minimum Requirements given in TS 38.101-2 [3] make no allowance for measurement uncertainty (MU). The measurement uncertainty defines in TR 38.903 [20]. The present document defines test tolerances (TT). These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by either the "Never fail a good DUT" principle for test tolerance equal measurement uncertainty (TT = MU) or "Shared Risk" principle for test tolerance equal to 0 (TT = 0). Test tolerances lower that measurement uncertainty and greater than 0 (TT = 0) are also considered in this specification.

The "Never fail a good DUT" and the "Shared Risk" principles are defined in Recommendation ITU R M.1545 [6].

4.2 Applicability of minimum requirements

- a) In TS 38.101-2 [3] the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios.
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.

- c) The spurious emissions power requirements are for the long-term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.
- d) All the requirements for intra-band contiguous and non-contiguous CA apply under the assumption of the same slot format indicated by TDD-UL-DL-ConfigurationCommon and TDD-UL-DL-ConfigurationDedicated in the PCell and SCells for NR SA.

A terminal which supports CA or DC configurations, which include FR2 intra-band CA combinations with multiple subblocks, where at least one of the subblocks consists of a contiguous CA combination, is not required to support all possible fallback combinations but can directly fall back to a single FR2 carrier. Deactivating carriers within the CA or DC combination is still possible.

4.3 Specification suffix information

Unless stated otherwise the following suffixes are used for indicating at 2nd level subclause, shown in Table 4.3-1.

Clause suffix Variant None Single Carrier Carrier Aggregation (CA) В Dual-Connectivity (DC) С Supplement Uplink (SUL) **UL MIMO** NOTE: Suffix D in this specification represents either polarized UL MIMO or spatial UL MIMO. RF requirements are same. If UE supports both kinds of UL MIMO, then RF requirements only need to be verified under either polarized or spatial UL MIMO.

Table 4.3-1: Definition of suffixes

4.4 Test point analysis

The information on test point analysis and test point selection including number of test points for each test case is shown in TR 38.905 [21] clause 4.2.

4.5 Applicability and test coverage rules

The applicability and test coverage rules for Standalone and EN-DC capable devices shall include the following:

If a test case for a FR2 NR band in a device is tested in NSA mode for non-exceptional requirement as per TS 38.521-3 [14], it shall fulfil the coverage requirement for that test case for standalone FR2 test requirements for that NR band and need not be retested.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to this version of the specification are identified as described in Table 5.1-1.

Table 5.1-1: Definition of frequency ranges

Frequency range designation	Corresponding frequency range
FR1	410 MHz – 7125 MHz
FR2	24250 MHz – 52600 MHz

The present specification covers FR2 operating bands.

5.2 Operating bands

NR is designed to operate in the FR2 operating bands defined in Table 5.2-1.

Table 5.2-1: NR operating bands in FR2

Operating Band	Uplink (UL) operating band BS receive UE transmit	Downlink (DL) operating band BS transmit UE receive	Duplex Mode
	F _{UL_low} - F _{UL_high}	F _{DL_low} - F _{DL_high}	
n257	26500 MHz - 29500 MHz	26500 MHz - 29500 MHz	TDD
n258	24250 MHz - 27500 MHz	24250 MHz - 27500 MHz	TDD
n260	37000 MHz - 40000 MHz	37000 MHz - 40000 MHz	TDD
n261	27500 MHz - 28350 MHz	27500 MHz - 28350 MHz	TDD

5.2A Operating bands for CA

5.2A.1 Intra-band CA

NR intra-band contiguous carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.1-1, where all operating bands are within FR2.

Table 5.2A.1-1: Intra-band contiguous CA operating bands in FR2

NR CA Band	NR Band
	(Table 5.2-1)
CA_n257B	n257
CA_n257D	n257
CA_n257E	n257
CA_n257F	n257
CA_n257G	n257
CA_n257H	n257
CA_n257I	n257
CA_n257J	n257
CA_n257K	n257
CA_n257L	n257
CA_n257M	n257
CA_n260B	n260
CA_n260C	n260
CA_n260D	n260
CA_n260E	n260
CA_n260F	n260
CA_n260G	n260
CA_n260H	n260
CA_n260I	n260
CA_n260J	n260
CA_n260K	n260
CA_n260L	n260
CA_n260M	n260
CA_n260O	n260
CA_n260P	n260
CA_n260Q	n260
CA_n261B	n261
CA_n261C	n261
CA_n261D	n261
CA_n261E	n261
CA_n261F	n261
CA_n261G	n261
CA_n261H	n261
CA_n261I	n261
CA_n261J	n261
 CA_n261K	n261
CA_n261L	n261
 CA_n261M	n261
 CA_n261O	n261
CA n261P	n261
 CA_n261Q	n261

5.2A.2 Void

5.2D Operating bands for UL MIMO

NR UL MIMO is designed to operate in the operating bands defined in Table 5.2D-1.

Table 5.2D-1: NR UL MIMO operating bands

UL MIMO operating band (Table 5.2-1)				
n257				
n258				
n260				
n261				

5.3 UE Channel bandwidth

5.3.1 General

The UE channel bandwidth supports a single NR RF carrier in the uplink or downlink at the UE. From a BS perspective, different UE channel bandwidths may be supported within the same spectrum for transmitting to and receiving from UEs connected to the BS. Transmission of multiple carriers to the same UE (CA) or multiple carriers to different UEs within the BS channel bandwidth can be supported.

From a UE perspective, the UE is configured with one or more BWP / carriers, each with its own UE channel bandwidth. The UE does not need to be aware of the BS channel bandwidth or how the BS allocates bandwidth to different UEs.

The placement of the UE channel bandwidth for each UE carrier is flexible but can only be completely within the BS channel bandwidth.

The relationship between the channel bandwidth, the guardband and the transmission bandwidth configuration is shown in Figure 5.3.1-1.

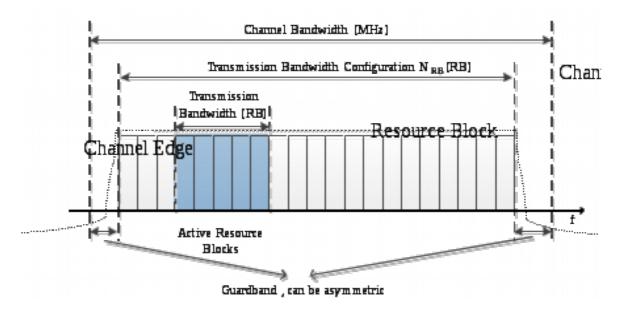


Figure 5.3.1-1: Definition of channel bandwidth and transmission bandwidth configuration for one NR channel

5.3.2 Maximum transmission bandwidth configuration

The maximum transmission bandwidth configuration N_{RB} for each UE channel bandwidth and subcarrier spacing is specified in Table 5.3.2-1

Table 5.3.2-1: Maximum transmission bandwidth configuration N_{RB}

SCS (kHz)	50 MHz	100 MHz	200 MHz	400 MHz
	N _{RB}	N _{RB}	N _{RB}	N _{RB}
60	66	132	264	N/A
120	32	66	132	264

5.3.3 Minimum guardband and transmission bandwidth configuration

The minimum guardband for each UE channel bandwidth and SCS is specified in Table 5.3.3-1.

Table 5.3.3-1: Minimum guardband for each UE channel bandwidth and SCS (kHz)

SCS (kHz)	50 MHz	100 MHz	200 MHz	400 MHz
60	1210	2450	4930	N/A
120	1900	2420	4900	9860

NOTE: The minimum guardbands have been calculated using the following equation: (BW_{Channel} x 1000 (kHz) - N_{RB} x SCS x 12) / 2 - SCS/2, where N_{RB} are from Table 5.3.2-1.

The minimum guardband of receiving BS SCS 240 kHz SS/PBCH block for each UE channel bandwidth is specified in table 5.3.3-2 for FR2.

Table: 5.3.3-2: Minimum guardband (kHz) of SCS 240 kHz SS/PBCH block

SCS (kHz)	100 MHz	200 MHz	400 MHz
240	3800	7720	15560

NOTE: The minimum guardband in Table 5.3.3-2 is applicable only when the SCS 240 kHz SS/PBCH block is received adjacent to the edge of the UE channel bandwidth within which the SS/PBCH block is located.

Figure 5.3.3-1: Void

The number of RBs configured in any channel bandwidth shall ensure that the minimum guardband specified in this clause is met.

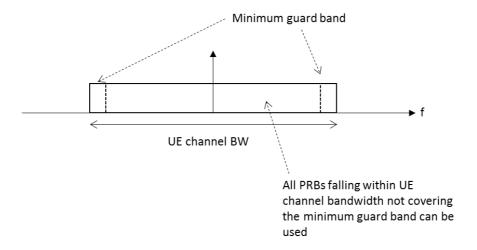


Figure 5.3.3-2: UE PRB utilization

In the case that multiple numerologies are multiplexed in the same symbol due to BS transmission of SSB, the minimum guardband on each side of the carrier is the guardband applied at the configured channel bandwidth for the numerology that is transmitted immediately adjacent to the guardband.

If multiple numerologies are multiplexed in the same symbol and the UE channel bandwidth is >200 MHz, the minimum guardband applied adjacent to 60 kHz SCS shall be the same as the minimum guardband defined for 120 kHz SCS for the same UE channel bandwidth.

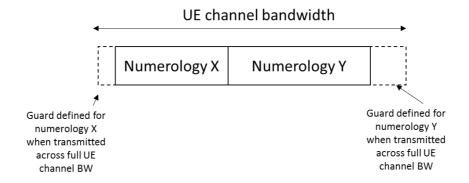


Figure 5.3.3-3: Guardband definition when transmitting multiple numerologies

NOTE: Figure 5.3.3-3 is not intended to imply the size of any guard between the two numerologies. Internumerology guardband within the carrier is implementation dependent.

5.3.4 RB alignment

For each numerology, its common resource blocks are specified in Section 4.4.4.3 in [9], and the starting point of its transmission bandwidth configuration on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology The *UE transmission bandwidth configuration* is indicated by the higher layer parameter *carrierBandwidth* [19] and will fulfil the minimum UE guardband requirement specified in Section 5.3.3.

5.3.5 Channel bandwidth per operating band

The requirements in this specification apply to the combination of channel bandwidths, SCS and operating bands shown in Table 5.3.5-1. The transmission bandwidth configuration in Table 5.3.2-1 shall be supported for each of the specified channel bandwidths. The channel bandwidths are specified for both the Tx and Rx path.

Table 5.3.5-1: Channel bandwidths for each NR band

Operating band / SCS / UE channel bandwidth					
Operating	SCS	50	100	200	400 ²
band	kHz	MHz	MHz	MHz	MHz
n257	60	Yes	Yes	Yes	N/A
11257	120	Yes	Yes	Yes	Yes
n258	60	Yes	Yes	Yes	N/A
11250	120	Yes	Yes	Yes	Yes
n260	60	Yes	Yes	Yes	N/A
11200	120	Yes	Yes	Yes	Yes
n261	60	Yes	Yes	Yes	N/A
11201	120	Yes	Yes	Yes	Yes
NOTE 1: For test configuration tables from the transmitter					
and receiver tests in Section 6 and 7 that refer to this table and indicate test SCS to use, if referenced SCS value is not supported by the UE in UL and/or DL, select the closest SCS supported by the UE in both UL and DL.					
NOTE 2: This UE channel bandwidth is optional in this release of the specification.					

5.3A UE Channel bandwidth for CA

5.3A.1 General

TBD

5.3A.2 Minimum guardband and transmission bandwidth configuration for CA

For intra-band contiguous carrier aggregation, *Aggregated Channel Bandwidth* and *Guard Bands* are defined as follows, see Figure 5.3A.2-1.

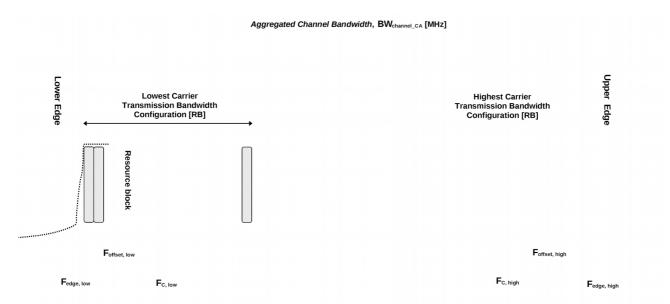


Figure 5.3A.2-1: Definition of Aggregated Channel Bandwidth for intra-band carrier aggregation

The aggregated channel bandwidth, BW_{Channel_CA}, is defined as

 $BW_{Channel_CA} = F_{edge,high} - F_{edge,low}$ (MHz).

The lower bandwidth edge $F_{\text{edge, low}}$ and the upper bandwidth edge $F_{\text{edge, high}}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

$$F_{\rm edge,low} = F_{\rm C,low} - F_{\rm offset,low}$$

$$F_{\rm edge,high} = F_{\rm C,high} + F_{\rm offset,high}$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$\begin{split} F_{\text{offset,low}} &= (N_{\text{RB,low}} * 12 + 1) * \text{SCS}_{\text{low}} / 2 + \text{BW}_{\text{GB}} \, (\text{MHz}) \\ F_{\text{offset,high}} &= (N_{\text{RB,high}} * 12 - 1) * \text{SCS}_{\text{high}} / 2 + \text{BW}_{\text{GB}} \, (\text{MHz}) \\ \text{BW}_{\text{GB}} &= \text{max} (\text{BW}_{\text{GB,Channel(k)}}) \end{split}$$

 $BW_{GB,Channel(k)}$ is the minimum guardband defined in sub-clause 5.3.3 of carrier k, while $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier, SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier respectively.

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.3A.2-2.

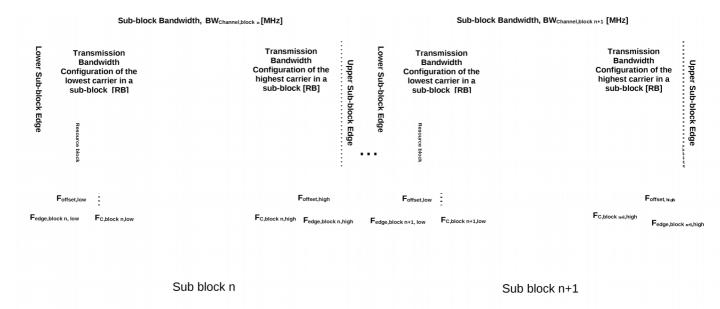


Figure 5.3A.2-2: Definition of sub-block bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the Sub-block Bandwidth (BW_{Channel,block}) is defined as

$$F_{\text{edge,block, low}} = F_{\text{C,block,low}} \text{-} F_{\text{offset, low}}.$$

The upper sub-block edge of the Sub-block Bandwidth is defined as

$$F_{\text{edge,block,high}} = F_{\text{C,block,high}} + F_{\text{offset, high}}$$

The Sub-block Bandwidth, BW_{Channel,block}, is defined as follows:

$$BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} (MHz)$$

The lower and upper frequency offsets $F_{\text{offset,block,low}}$ and $F_{\text{offset,block,high}}$ depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$F_{\text{offset,block,low}} = (N_{\text{RB,low}} * 12 + 1) * SCS_{\text{low}} / 2 + BW_{\text{GB}} (MHz)$$

$$F_{\text{offset,block,high}} = (N_{\text{RB,high}} * 12 - 1)*SCS_{\text{high}}/2 + BW_{\text{GB}}(MHz)$$

$$BW_{GB} = max(BW_{GB,Channel(k)})$$

where $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier within a sub-block, respectively. SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier within a sub-block, respectively. $BW_{GB,Channel(k)}$ is the minimum guardband defined in sub-clause 5.3.3 of carrier k within a sub-block.

The sub-block gap size between two consecutive sub-blocks W_{gap} is defined as

$$W_{gap} = F_{edge,block n+1,low -} F_{edge,block n,high} (MHz)$$

5.3A.3 RB alignment with different numerologies for CA

TBD

5.3A.4 UE channel bandwidth per operating band for CA

For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class with associated bandwidth combination sets specified in clause 5.5A.1. For each carrier aggregation configuration, requirements are specified for all aggregated channel bandwidths contained in a bandwidth combination set, UE can indicate support of several bandwidth combination sets per carrier aggregation configuration. The requirements are applicable only when Uplink CCs are configured within the frequency range between lower edge of lowest downlink component carrier and upper edge of highest downlink component carrier.

For intra-band non-contiguous downlink carrier aggregation, a carrier aggregation configuration is a single operating band supporting two or more sub-blocks, each supporting a carrier aggregation bandwidth class. The requirements are applicable only when Uplink CCs are configured within the frequency range between lower edge of lowest downlink component carrier and upper edge of highest downlink component carrier.

Frequency separation class specified in Table 5.3A.4-2 indicates the maximum frequency span between lower edge of lowest component carrier and upper edge of highest component carrier that UE can support per band in downlink or uplink respectively.

For inter-band carrier aggregation, a carrier aggregation configuration is a combination of operating bands, each supporting a carrier aggregation bandwidth class.

Table 5.3A.4-1: CA bandwidth classes

NR CA bandwidth class	Aggregated channel bandwidth	Number of contiguous CC	Fallback group
А	BW _{Channel} ≤ 400 MHz	1	1,2,3,4
В	400 MHz < BW _{Channel_CA} ≤ 800 MHz	2	1
С	800 MHz < BW _{Channel_CA} ≤ 1200 MHz	3	1
D	200 MHz < BW _{Channel_CA} ≤ 400 MHz	2	
E	400 MHz < BW _{Channel_CA} ≤ 600 MHz	3	2
F	600 MHz < BW _{Channel_CA} ≤ 800 MHz	4	
G	100 MHz < BW _{Channel_CA} ≤ 200 MHz	2	
Н	200 MHz < BW _{Channel_CA} ≤ 300 MHz	3	
I	300 MHz < BW _{Channel_CA} ≤ 400 MHz	4	
J 400 MHz < BW _{Channel_CA} ≤ 500 MHz		5	3
K	500 MHz < BW _{Channel_CA} ≤ 600 MHz	6	
L	600 MHz < BW _{Channel_CA} ≤ 700 MHz	7	
М	700 MHz < BW _{Channel_CA} ≤ 800 MHz	8	
0	100 MHz ≤ BW _{Channel_CA} ≤200 MHz	2	
Р	150 MHz ≤ BW _{Channel_CA} ≤300 MHz	3	4
Q	200 MHz ≤ BW _{Channel_CA} ≤ 400 MHz	4	

NOTE 1: Maximum supported component carrier bandwidths for fallback groups 1, 2, 3 and 4 are 400 MHz, 200 MHz, 100 MHz and 100 MHz respectively.

NOTE 2: It is mandatory for a UE to be able to fall back to lower order CA bandwidth class configuration within a fallback group. It is not mandatory for a UE to be able to fall back to lower order CA bandwidth class configuration that belongs to a different fallback group.

Table 5.3A.4-2: Frequency separation classes

Frequency separation class	Frequency separation (Fs)
I	Fs ≤ 800 MHz
II	Fs ≤ 1200 MHz
III	Fs ≤ 1400 MHz

5.3D Channel bandwidth for UL MIMO

The requirements specified in subclause 5.3 are applicable to UE supporting UL MIMO.

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NR carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent NR carriers is defined as following:

For NR operating bands with 60 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-20 \text{ kHz}, 0 \text{ kHz}, 20 \text{ kHz}\}$ for ΔF_{Raster} equals to 60 kHz

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-40 \text{ kHz}, 0 \text{ kHz}, 40 \text{ kHz}\}$ for ΔF_{Raster} equals to 120 kHz

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency raster defines a set of RF reference frequencies F_{REF} . The RF reference frequency is used in signalling to identify the position of RF channels, SS blocks and other elements.

The global frequency raster is defined for all frequencies from 0 to 100 GHz. The granularity of the global frequency raster is ΔF_{Global} .

RF reference frequency is designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range [2016667...3279165] on the global frequency raster. The relation between the NR-ARFCN and the RF reference frequency F_{REF} in MHz is given by the following equation, where $F_{REF-Offs}$ and $N_{Ref-Offs}$ are given in Table 5.4.2.1-1 and N_{REF} is the NR-ARFCN

$$F_{\text{REF}} = F_{\text{REF-Offs}} + \Delta F_{\text{Global}} \left(N_{\text{REF}} - N_{\text{REF-Offs}} \right)$$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Frequency range (MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	$N_{REF-Offs}$	Range of N _{REF}
24250 – 100000	60	24250.08	2016667	2016667 – 3279165

The *channel raster* defines a subset of *RF reference frequencies* that can be used to identify the RF channel position in the uplink and downlink. The *RF reference frequency* for an RF channel maps to a resource element on the carrier. For each operating band, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity ΔF_{Raster} , which may be equal to or larger than ΔF_{Global} .

The mapping between the channel raster and corresponding resource element is given in subclause 5.4.2.2. The applicable entries for each operating band are defined in subclause 5.4.2.3

5.4.2.2 Channel raster to resource element mapping

The mapping between the RF reference frequency on channel raster and the corresponding resource element is given in Table 5.4.2.2-1 and can be used to identify the RF channel position. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL. The mapping must apply to at least one numerology supported by the UE.

 $N_{\rm RB} \, {\rm mod} \, 2 = 0 \qquad N_{\rm RB} \, {\rm mod} \, 2 = 1$ Resource element index k 0 6

Physical resource block number $n_{\rm PRB}$ $n_{\rm PRB} = \frac{1}{0} \frac{N_{\rm RB}}{2} \frac{1}{0} \qquad n_{\rm PRB} = \frac{1}{0} \frac{N_{\rm RB}}{2} \frac{1}{0}$

Table 5.4.2.2-1: Channel raster to resource element mapping

k , n_{PRB} , N_{RB} are as defined in TS 38.211[9].

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NR operating band are given through the applicable NR-ARFCN in Table 5.4.2.3-1, using the channel raster to resource element mapping in subclause 5.4.2.2.

- For NR operating bands with 60 kHz channel raster above 24 GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{1,2\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as $\langle I \rangle$.
- In frequency bands with two ΔF_{Raster} , the higher ΔF_{Raster} applies to channels using only the SCS that is equal to the higher ΔF_{Raster} and the SSB SCS(subcarrierspacingCommon) that is equal to or larger than the higher ΔF_{Raster} .

Operating Band	ΔF _{Raster} (kHz)	Uplink and Downlink Range of N _{REF} (First – <step size=""> – Last)</step>
n257	60	2054166 - <1> - 2104165
	120	2054167 - <2> - 2104165
n258	60	2016667 - <1> - 2070832
	120	2016667 - <2> - 2070831
n260	60	2229166 - <1> - 2279165
	120	2229167 - <2> - 2279165
n261	60	2070833 - <1> - 2084999
	120	2070833 – <2> – 2084999

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS_{REF} with corresponding number GSCN. The parameters defining the SS_{REF} and GSCN for all the frequency ranges are in Table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency SS_{REF} is given in subclause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block are defined separately for each band.

Table 5.4.3.1-1: GSCN parameters for the global frequency raster

Frequency range	SS block frequency position SS _{REF}	GSCN	Range of GSCN
	24250.08 MHz + N * 17.28 MHz,		
24250 – 100000 MHz		22256+ N	22256 – 26639
	N = 0: 4383		

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block is given in Table 5.4.3.2-1. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL.

Table 5.4.3.2-1: Synchronization raster to SS block resource element mapping

Resource element index k	0
Physical resource block number n_{PRB} of the SS block	$n_{\text{PRB}} = 10$

k, n_{PRB} , are as defined in TS 38.211 [9].

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is given in Table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in Table 5.4.3.3-1.

Table 5.4.3.3-1: Applicable SS raster entries per operating band

NR Operating Band	SS Block SCS	SS Block pattern ¹	Range of GSCN				
			(First – <step size=""> – Last)</step>				
n257	120 kHz	Case D	22388 - <1> - 22558				
11257	240 kHz	Case E	22390 - <2> - 22556				
n258	120 kHz	Case D	22257 - <1> - 22443				
11236	240 kHz	Case E	22258 - <2> - 22442				
n260	120 kHz	Case D	22995 - <1> - 23166				
11200	240 kHz	Case E	22996 - <2> - 23164				
n261	120 kHz	Case D	22446 - <1> - 22492				
11201	240 kHz	Case E	22446 - <2> - 22490				
NOTE 1: SS Block pattern is defined in subclause 4.1 in TS 38.213 [22].							

5.4A Channel arrangement for CA

5.4A.1 Channel spacing for CA

For intra-band contiguous carrier aggregation with two or more component carriers, the nominal channel spacing between two adjacent NR component carriers is defined as the following unless stated otherwise:

For NR operating bands with 60kHz channel raster:

Nominal channel spacing =
$$\begin{bmatrix} BW_{Channel(1)} + BW_{Channel(2)} - 2 | GB_{Channel(1)} - GB_{Channel(2)} | \\ 0.06 * 2^{n+1} \end{bmatrix} \begin{bmatrix} 0.06 * 2^{n} \\ 0.06 * 2^{n} \end{bmatrix}$$

with

$$n = \mu_0 - 2$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective NR component carriers according to Table 5.3.2-1 with values in MHz, μ_0 is the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1, and $GB_{Channel(i)}$ is the minimum guardband for channel bandwidth i according to Table 5.3.3-1 for the said μ value, with μ as defined in TS 38.211 [9].

The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of sub-carrier spacing less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation, the channel spacing between two NR component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this subclause.

5.5 Configurations

5.5A Configurations for CA

5.5A.1 Configurations for intra-band contiguous CA

Table 5.5A.1-1: NR CA configurations, bandwidth combination sets, and fallback group defined for intra-band contiguous CA

		NR CA c	onfigura	tion / Ba	ndwidth	combina	ation set	/ Fallba	ck group			
NR CA	Uplink CA					Maximum	Fallback					
configuratio n	configuration s	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	aggregated BW (MHz)	BCS	group
CA_n257B	CA_n257B	50, 100, 200, 400	400							800	0	1
CA_n257D	CA_n257D	50, 100, 200,	200							400	0	
CA_n257E	CA_n257E	50, 100, 200,	200	200						600	0	2
CA_n257F	CA_n257F	50, 100, 200,	200	200	200					800	0	
CA_n257G	CA_n257G	100	100							200	0	
CA_n257H	CA_n257H	100	100	100						300	0	
CA_n257I	CA_n257I	100	100	100	100					400	0	
CA_n257J	CA_n257J	100	100	100	100	100				500	0	3
CA_n257K	CA_n257K	100	100	100	100	100	100			600	0	
CA_n257L	CA_n257L	100	100	100	100	100	100	100		700	0	
CA_n257M	CA_n257M	100	100	100	100	100	100	100	100	800	0	
CA_n260B	CA_n260B	50, 100, 200, 400	400							800	0	_
CA_n260C	CA_n260B	50, 100, 200, 400	400	400						1200	0	1
CA_n260D	CA_n260D	50, 100, 200	200							400	0	
CA_n260E	CA_n260E	50, 100, 200	200	200						600	0	2
CA_n260F	CA_n260F	50, 100, 200	200	200	200					800	0	
CA_n260G	CA_n260G	100	50, 100							200	0	3
CA_n260H	CA_n260H	100	100	50, 100						300	0	

Maximum aggregated BW (MHz) - 400 500 600 700 800	0 0 0	Fallback group
500 600 700	0	
600 700	+	
700	0	7
-		
800	0	
	0	
200	0	
300	0	4
400	0	
800	0	1
850¹	0	
400	0	
600	0	2
800	0	-
200	0	
300	0	-
- 400	0	-
500	0	
	+	3
	+	-
- 800	0	
	500 600 700	500 0 600 0 700 0

	NR CA configuration / Bandwidth combination set / Fallback group											
NR CA	Uplink CA									Maximum		Fallback
configuratio n	configuration s	CBW (MHz)	aggregated BW (MHz)	BCS	group							
CA_n261O	CA_n261O	50, 100	50, 100							200	0	
CA_n261P	CA_n261P	50, 100	50, 100	50, 100						300	0	4
CA_n261Q	CA_n261Q	50, 100	50, 100,	50, 100	50, 100					400	0	

NOTE 1: The maximum bandwidth of band n261 is 850MHz.

NOTE 2: For the NR CA configuration with more than two component carries, the bandwidths in a BCS which may introduce combinations more than requested unintentionally should be listed in a row separately.

5.5A.2 Configurations for intra-band non-contiguous CA

Configurations listed in this clause apply to downlink carrier aggregation only.

Table 5.5A.2-1: NR CA configurations with single CA bandwidth class defined for intra-band noncontiguous CA

			NR CA configuration / Bandwidth combination set						
			Compor	ent carriers in	order of increa	sing carrier free	quency	Maximum	
NR configuration	Uplink CA configuration s	scs	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	aggregate d bandwidth (MHz)	BCS
		60	50, 100, 200	50, 100, 200				400	
CA_n257(2A)	-	120	50, 100, 200, 400	50, 100, 200, 400				800	0
04 =000(04)		60	50, 100, 200	50, 100, 200				400	0
CA_n260(2A)	-	120	50, 100, 200, 400	50, 100, 200, 400				800	0
0.4 000(0.4)		60	50, 100, 200	50, 100, 200	50, 100, 200			600	
CA_n260(3A)		120	50, 100, 200, 400	50, 100, 200, 400	50, 100, 200, 400			1200	0
		60	50, 100, 200	50, 100, 200	50, 100, 200	50, 100, 200		800	
CA_n260(4A)	-	120	50, 100, 200, 400	50, 100, 200, 400	50, 100, 200, 400	50, 100, 200, 400		1600	0
0.4 004/0.4		60	50, 100, 200	50, 100, 200				400	
CA_n261(2A)	-	120	50, 100, 200, 400	50, 100, 200, 400				800	0
0.4 004/0.4		60	50, 100, 200	50, 100, 200	50, 100, 200			600	
CA_n261(3A) -	-	120	50, 100, 200, 400	50, 100, 200, 400	50, 100, 200, 400			750	0
04 -061(44)		60	50, 100, 200	50, 100, 200	50, 100, 200	50, 100, 200		700	
CA_n261(4A)	-	120	50, 100, 200, 400	50, 100, 200, 400	50, 100, 200, 400	50, 100, 200, 400		700	0

NOTE 1: Void

NOTE 2: The maximum frequency span including frequency gaps in between non-contiguous component carriers shall not exceed 1400 MHz for all CA configurations in the current release of specifications.

NOTE 3: Parameter value accounts for both, the constraint in NOTE 2, and the minimum frequency gaps in between non-contiguous component carriers.

Table 5.5A.2-2: NR CA configurations and bandwidth combination sets for intra-band non-contiguous CA

	NR CA configuration / Bandwidth combination set										
CA configuration	Uplink CA configurations	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	Maximum aggregated bandwidth (MHz)	BCS
CA_n260(A-I)	CA_n260I	See CA_n260 Channel Bandwidth in Table 5.3.5-1		CA_n260I BC		5A.1-1				800	0
CA_n260(D-G)	CA_n260D- CA_n260G	See CA_n26 Table 5.			60G BCS0 in 5.5A.1-1					600	0
CA_n260(D-H)	CA_n260D CA_n260H-	See CA_n26 Table 5.		See CA_n20	60H BCS0 in	Table 5.5A.1-1				700	0
CA_n260(D-I)	CA_n260D CA_n260I-	See CA_n26 Table 5.		See	CA_n260I BC	S0 in Table 5.5	4.1-1			800	0
CA_n260(D-O)	CA_n260D CA_n260O-	See CA_n26 Table 5.			600 BCS0 in 5.5A.1-1					600	0
CA_n260(D-P)	CA_n260D CA_n260P-	See CA_n26 Table 5.		See CA_n2	60P BCS0 in	Table 5.5A.1-1				700	0
CA_n260(D-Q)	CA_n260D CA_n260Q-	See CA_n26 Table 5.		See (CA_n260Q BC	CS0 in Table 5.5	A.1-1			800	0
CA_n260(E-O)	CA_n260E CA_n260O-	See CA_n26 Table 5.		See CA_n2	60E BCS0 in	Table 5.5A.1-1				800	0
CA_n260(E-P)	CA_n260E CA_n260P-	See CA_n260	DE BCS0 in Ta	able 5.5A.1-1	See CA_n2	60P BCS0 in Ta	able 5.5A.1-1			900	0
CA_n260(E-Q)	CA_n260E CA_n260Q-	See CA_n260	DE BCS0 in Ta	able 5.5A.1-1	See (CA_n260Q BCS	0 in Table 5.5	6A.1-1		1000	0
CA_n260(G-I)	CA_n260G CA_n260I -	See CA_n26 Table 5.		See	CA_n260I BC	SO in Table 5.5	A.1-1			600	0
CA_n261(D-G)	CA_n261D CA_n261G-	See CA_n26 Table 5.			61G BCS0 in 5.5A.1-1					600	0
CA_n261(D-H)	CA_n261D CA_n261H-	See CA_n26 Table 5.	1D BCS0 in			Table 5.5A.1-1				700	0
CA_n261(D-I)	CA_n261D CA_n261I-	See CA_n26 Table 5.	1D BCS0 in	See	CA_n261I BC	S0 in Table 5.5	A.1-1			800	0
CA_n261(D-O)	CA_n261D CA_n261O-	See CA_n26 Table 5.	1D BCS0 in		610 BCS0 in 5.5A.1-1					600	0
CA_n261(D-P)	CA_n261D CA_n261P-	See CA_n26 Table 5.	1D BCS0 in			Table 5.5A.1-1				700	0

	NR CA configuration / Bandwidth combination set										
CA configuration	Uplink CA configurations	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	CBW (MHz)	Maximum aggregated bandwidth (MHz)	BCS
CA_n261(D-Q)	CA_n261D CA_n261Q-	See CA_n26 Table 5.		See CA_n261Q BCS0 in Table 5.5A.1-1					800	0	
CA_n261(E-O)	CA_n261E CA_n261O-	See CA_n261	See CA_n261E BCS0 in Table 5.5A.1-1		_	2610 BCS0 in 5.5A.1-1				800	0
CA_n261(E-P)	CA_n261E CA_n261P-	See CA_n261	ee CA_n261E BCS0 in Table 5.5A.1-1		See CA_n261P BCS0 in Table 5.5A.1-1				800	0	
CA_n261(E-Q)	CA_n261E CA_n261Q-	See CA_n261	LE BCS0 in Ta	ble 5.5A.1-1	See	CA_n261Q BCS	0 in Table 5.5	A.1-1		800	0

NOTE 1: (Void)

NOTE 2: The maximum frequency span including the frequency gap in between non-contiguous component carriers shall not exceed 1400 MHz for all CA configurations in the current release of specifications.

5.5D Configurations for UL MIMO

The requirements specified in subclause 5.5 are applicable to UE supporting UL MIMO.

6 Transmitter characteristics

6.1 General

Editor's Note: Test configurations/environments that require new spherical scan shall be included in test procedure section and identifying such scenarios is currently FFS and owned by RAN5.

Unless otherwise stated, the transmitter characteristics are specified over the air (OTA) with a single or multiple transmit chains.

For Tx test cases the identified beam peak direction can be stored and reused for a device under test in various configurations/environments for the full duration of device testing as long as beam peak direction is the same.

Unless otherwise stated, Channel Bandwidth shall be prioritized in the selecting of test points. Subcarrier spacing shall be selected after Test Channel Bandwidth is selected.

Uplink RB allocations given in Table 6.1-1 are used throughout this section, unless otherwise stated by the test case.

For conformance testing of all test cases in this specification, the UE under test shall disable UL Tx diversity schemes.

Table 6.1-1: Common Uplink Configuration PC2, for PC3 and PC4

			RB allocation					
Channel Bandwidth	SCS(kHz)	OFDM	Outer_Full	Outer_1RB_Left	Outer_1RB_Right	Inner_Full (Note 1)	Inner_1RB_Left	Inner_1RB_Right
	60	DFT-s	64@0	1@0	1@65	20@22	1@22	1@43
50MHz		CP	66@0	1@0	1@65	22@22	1@22	1@43
JOIVII 12	120	DFT-s	32@0	1@0	1@31	10@11	1@11	1@21
	120	CP	32@0	1@0	1@31	11@11	1@11	1@21
	60	DFT-s	128@0	1@0	1@131	40@44	1@44	1@87
100MHz	00	CP	132@0	1@0	1@131	44@44	1@44	1@87
TOOMIN	120	DFT-s	64@0	1@0	1@65	20@22	1@22	1@43
	120	CP	66@0	1@0	1@65	22@22	1@22	1@43
	60	DFT-s	256@0	1@0	1@263	81@88	1@88	1@175
200MHz	00	CP	264@0	1@0	1@263	88@88	1@88	1@175
ZUUIVITZ	120	DFT-s	128@0	1@0	1@131	40@44	1@44	1@87
	120	CP	132@0	1@0	1@131	44@44	1@44	1@87
	60	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A
400MHz	00	CP	N/A	N/A	N/A	N/A	N/A	N/A
400101172	120	DFT-s	256@0	1@0	1@263	64@66	1@66	1@197
		CP	264@0	1@0	1@263	64@66	1@66	1@197
Note 1: RE	3 allocation is	left aligned w	vithin inner re	gion				

RB allocation Right Inner_1RB_Right Outer_1RB_Left Inner_Full (Note Channel Inner 1RB Outer_1RB_ SCS(kHz) **OFDM** Bandwidth DFT-s 64@0 1@0 1@65 32@16 1@1 1@64 60 66@0 1@0 1@65 33@16 1@64 CP 1@1 50MHz DFT-s 32@0 1@0 1@31 16@8 1@1 1@30 120 CP 32@0 1@0 1@31 16@8 1@1 1@30 DFT-s 128@0 1@0 1@131 64@33 1@130 1@1 60 132@0 66@33 CP 1@0 1@131 1@1 1@130 100MHz DFT-s 64@0 1@0 1@65 32@16 1@1 1@64 120 66@0 1@0 1@65 33@16 1@1 1@64 1@262 DFT-s 1@0 1@263 256@0 128@66 1@1 60 CP 264@0 1@0 1@263 132@66 1@262 1@1 200MHz DFT-s 128@0 1@0 1@131 64@33 1@130 1@1 120 CP 132@0 1@0 1@131 66@33 1@1 1@130 DFT-s N/A N/A N/A N/A N/A N/A 60 СР N/A N/A N/A N/A N/A N/A 400MHz DFT-s 256@0 1@0 1@263 128@66 1@1 1@262 120

1@0

1@263

132@66

1@1

1@262

Table 6.1-2: Common Uplink Configuration for PC1

6.2 Transmit power

Note 1:

6.2.1 UE maximum output power

CP

RB allocation is left aligned within inner region.

264@0

6.2.1.0 General

Note: Power class 1, 2, 3, and 4 are specified based on the assumption of certain UE types with specific device architectures. The UE types can be found in Table 6.2.1.0-1.

 UE Power class
 UE type

 1
 Fixed wireless access (FWA) UE

 2
 Vehicular UE

 3
 Handheld UE

 4
 High power non-handheld UE

Table 6.2.1.0-1: Assumption of UE Types

6.2.1.1 UE maximum output power - EIRP and TRP

Editor's note: The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS for power class 1, 2 and 4.
- The following aspects of the clause are for future consideration:
 - Test Procedures for EIRP beam peak Extreme Conditions are FFS

6.2.1.1.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.2.1.1.3 Minimum conformance requirements

6.2.1.1.3.1 UE maximum output power for power class 1

The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1ms). The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).

Table 6.2.1.1.3.1-1: UE minimum peak EIRP for power class 1

Operating band	Min peak EIRP (dBm)		
n257	40.0		
n258	40.0		
n260	38.0		
n261	40.0		
NOTE 1: Minimum peak EIRP is defined as the lower limit without tolerance			

The maximum output power values for TRP and EIRP are found in Table 6.2.1.1.3.1-2 below. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.2.1.1.3.1-2: UE maximum output power limits for power class 1

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	35	55
n258	35	55
n260	35	55
n261	35	55

The minimum EIRP at the 85th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2.1.1.3.1-3 below. The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).

Table 6.2.1.1.3.1-3: UE spherical coverage for power class 1

Operating band	Min EIRP at 85%-tile CDF (dBm)		
n257	32.0		
n258	32.0		
n260	30.0		
n261	32.0		
NOTE 1: Minimum E	EIRP at 85%-tile CDF is defined as		
the lower limit without tolerance			

NOTE 2: The requirements in this table are verified only under normal temperature conditions as defined in Annex E.2.1.

6.2.1.1.3.2 UE maximum output power for power class 2

The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1ms). The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).

Table 6.2.1.1.3.2-1: UE minimum peak EIRP for power class 2

Operating band	Min peak EIRP (dBm)
n257	29
n258	29
n261	29
NOTE 1: Minimum peak EIRP is	s defined as the lower limit without tolerance

The maximum output power values for TRP and EIRP are found in Table 6.2.1.1.3.2-2 below. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.2.1.1.3.2-2: UE maximum output power limits for power class 2

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	23	43
n258	23	43
n261	23	43

The minimum EIRP at the 60th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2.1.1.3.2-3 below. The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).

Table 6.2.1.1.3.2-3: UE spherical coverage for power class 2

Operati	ng band	Min EIRP at 60%-tile CDF (dBm)		
n2	:57	18.0		
n2	:58	18.0		
n2	61	18.0		
NOTE 1:		EIRP at 60%-tile CDF is defined as		
NOTE 2:	the lower limit without tolerance The requirements in this table are verified only under normal temperature conditions as defined in Appendix F. 2.1			

6.2.1.1.3.3 UE maximum output power for power class 3

The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1ms). The requirement is verified with the test metric of total component of EIRP (Link=Beam peak search grids, Meas=Link angle). The requirement for the UE which supports a single FR2 band is specified in Table 6.2.1.1.3.3-1. The requirement for the UE which supports multiple FR2 bands is specified in both Table 6.2.1.1.3.3-1 and Table 6.2.1.1.3.3-4.

Table 6.2.1.1.3.3-1: UE minimum peak EIRP for power class 3

Operating band	Min peak EIRP (dBm)			
n257	22.4			
n258	22.4			
n260	20.6			
n261	22.4			
NOTE 1: Minimum	peak EIRP is defined as the			

NOTE 1: Minimum peak EIRP is defined as the lower limit without tolerance

NOTE 2: Void

The maximum output power values for TRP and EIRP are found on the Table 6.2.1.1.3.3-2. The max allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction) in beam locked mode and the total component of EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.2.1.1.3.3-2: UE maximum output power limits for power class 3

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	23	43
n258	23	43
n260	23	43
n261	23	43

The minimum EIRP at the 50th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2.1.1.3.3-3 below. The requirement is verified with the test metric of the total component of EIRP, as defined in [5] (Link=Beam peak search grids, Meas=Link angle). The requirement for the UE which supports a single FR2 band is specified in Table 6.2.1.1.3.3-3. The requirement for the UE which supports multiple FR2 bands is specified in both Table 6.2.1.1.3.3-3 and Table 6.2.1.1.3.3-4.

Table 6.2.1.1.3.3-3: UE spherical coverage for power class 3

Operating band	Min EIRP at 50 ^t %-tile CDF (dBm)
n257	11.5
n258	11.5
n260	8
n261	11.5

NOTE 1: Minimum EIRP at 50 %-tile CDF is defined as the lower limit without tolerance

NOTE 2: Void

NOTE 3: The requirements in this table are verified only under normal temperature conditions as defined in Annex E.2.1.

For the UEs that support multiple FR2 bands, minimum requirement for peak EIRP and EIRP spherical coverage in Tables 6.2.1.1.3.3-1 and 6.2.1.1.3.3-3 shall be decreased per band, respectively, by the peak EIRP relaxation parameter $\Delta MB_{\text{P,n}}$ and EIRP spherical coverage relaxation parameter $\Delta MB_{\text{S,n}}$.

Table 6.2.1.1.3.3-4: UE multi-band relaxation factors for power class 3

Supported bands	∑MB _P (dB)	∑MB _s (dB)
n257, n258	≤ 1.3	≤ 1.25
n257, n260	≤ 1.0	≤ 0.75³
n258, n260	≤ 1.0	≤ 0.75³
n258, n261	≤ 1.0	≤ 1.25
n260, n261	0.0	≤ 0.75 ²
n257, n258, n260	≤ 1.7	≤ 1.75³
n257, n258, n261	≤ 1.7	≤ 1.75
n257, n260, n261	≤ 0.5	≤ 1.25³
n258, n260, n261	≤ 1.5	≤ 1.25 ³
n257, n258, n260, n261	≤ 1.7	≤ 1.75³

NOTE 1: The requirements in this table are applicable to UEs which support only the indicated bands

NOTE 2: For supported bands n260 + n261, $\Delta MB_{S,n}$ is not applied for band n260

NOTE 3: For n260, maximum applicable $\Delta MB_{s,n}$ is 0.4 dB

6.2.1.1.3.4 UE maximum output power for power class 4

The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1ms). The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).

Table 6.2.1.1.3.4-1: UE minimum peak EIRP for power class 4

Operating band	Min peak EIRP (dBm)	
n257	34	
n258	34	
n260	31	
n261	34	
NOTE 1: Minimum peak EIRP is defined as the		
lower limit without tolerance		

The maximum output power values for TRP and EIRP are found in Table 6.2.1.1.3.4-2 below. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.2.1.1.3.4-2: UE maximum output power limits for power class 4

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	23	43
n258	23	43
n260	23	43
n261	23	43

The minimum EIRP at the 20th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2.1.1.3.4-3 below. The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).

Table 6.2.1.1.3.4-3: UE spherical coverage for power class 4

Operating band	Min EIRP at 20%-tile CDF (dBm)	
n257	25	
n258	25	
n260	19	
n261	25	
	Minimum EIRP at 20%-tile CDF is defined as the lower limit without tolerance	
under norr	The requirements in this table are verified only under normal temperature conditions as defined in Annex E.2.1.	

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2.1.

6.2.1.1.4 Test description

6.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.2.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.1.1.4.1-1: Test Configuration Table

Default Conditions						
Test Environment as specified in TS 38.508-1 [10]			Normal, TL/VL, TL	./VH, TH/VL, TH/VH		
subclau	subclause [4.1]			(NOTE 2)		
Test Frequencies as specified in TS 38.508-1 [10]			Low range, Mid Range, High range			
subclau	ıse [4.3.1]					
Test Ch	annel Band	dwidths as	specified in TS 38.5	508-	Lowest, 100 MHz,	Highest
1 [10] s	ubclause [4	l.3.1]				
Test SC	S as speci	fied in Tabl	e 5.3.5-1		120 kHz	
			Test P	aram	eters	
Test	ChBw	SCS	Downlink		Uplink C	onfiguration
l 15			Configuration			
ID			Configuration			
טו		Default	Configuration N/A		Modulation	RB allocation (NOTE 1)
1	50	Default		DF.	Modulation T-s-OFDM QPSK	RB allocation (NOTE 1)
1 2	50 100	Default		DF*	***************************************	` '
1		Default		DF*	***************************************	` '
1 2	100	Default		DF	***************************************	` '
1 2 3 4 NOTE 2	100 200 400 1: The spe	cific config		alloca	T-s-OFDM QPSK ation is defined in Ta	Inner_Fùll

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.2.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2.1.1.4.3

6.2.1.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.2.1.1.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in section 6.2.1.1.4.3.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec starting from the first TPC command in this step to ensure that the UE transmits at its maximum output power.
- 3. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (Note 1) for the UE Tx beam selection to complete.
- 4. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 5. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.1.1.5-1 to 6.2.1.1.5-4. EIRP test procedure is defined in Annex K.1.3. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 6. Measure TRP of the transmitted signal for the assigned NR channel with a rectangular measurement filter with bandwidths according to Table 6.5.2.3.5-1. Total radiated power is measured according to TRP measurement procedure defined in Annex K.1.7 and measurement grid specified in Annex M.4. TRP is calculated considering both polarizations, theta and phi.
- 7. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.2.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.2.1.1.5 Test requirement

The EIRP derived in step 4 and TRP derived in step 5 shall not exceed the values specified in Table 6.2.1.1.5-1 to Table 6.2.1.1.5-4.

Table 6.2.1.1.5-1: UE maximum output test requirements for power class 1

Operating band	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
n257	35+TT	55	40.0-TT
n258	35+TT	55	40.0-TT
n260	35+TT	55	38.0-TT
n261	35+TT	55	40.0-TT

Table 6.2.1.1.5-2: UE maximum output test requirements for power class 2

Operating band	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
n257	23+TT	43	29-TT
n258	23+TT	43	29-TT
n260			
n261	23+TT	43	29-TT

Table 6.2.1.1.5-3: UE maximum output test requirements for power class 3 for single band UE or multiband UE declaring $MB_p = 0$ in all FR2 bands

Operating band	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
n257	23+TT	43	22.4-TT
n258	23+TT	43	22.4-TT
n260	23+TT	43	20.6-TT
n261	23+TT	43	22.4-TT

Table 6.2.1.1.5-3a: UE maximum output test requirements for power class 3 for multi band UE declaring MB_p>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)				Maximum sum of MB _p , ∑MB _P (dB) (Note 3)	Comments
		n257	n258	n260	n261		
1	n257, n258	22.4-TT-MB _p	22.4-TT-MB _p			1.3	
2	n257, n260	22.4-TT-MB _p		20.6-TT-MB _p		1.0	
3	n258, n260		22.4-TT-MB _p	20.6-TT-MB _p		1.0	
4	n258, n261		22.4-TT-MB _p		22.4-TT-MB _p	1.0	
5	n260, n261					0.0	No relaxation factor allowed
6	n257, n258, n260	22.4-TT-MB _p	22.4-TT-MB _p	20.6-TT-MB _p		1.7	
7	n257, n258, n261	22.4-TT-MB _p	22.4-TT-MB _p		22.4-TT-MB _p	1.7	
8	n257, n260, n261	22.4-TT-MB _p		20.6-TT-MB _p	22.4-TT-MB _p	0.5	
9	n258, n260, n261		22.4-TT-MB _p	20.6-TT-MB _p	22.4-TT-MB _p	1.5	
10	n257, n258, n260, n261	22.4-TT-MB _p	22.4-TT-MB _p	20.6-TT-MB _p	22.4-TT-MB _p	1.7	

Note 1: MB_p is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-2 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_p over all supported FR2 bands as defined in clause 6.2.1.1.3.3

Table 6.2.1.1.5-3b: Test Tolerance (Max TRP for Power class 3)

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	2.65 dB	2.77 dB

Table 6.2.1.1.5-3c: Test Tolerance (Min peak EIRP for Power class 3)

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	2.87 dB	2.87 dB

Table 6.2.1.1.5-4: UE maximum output power test requirements for power class 4

Operating band	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
n257	23+TT	43	34-TT
n258	23+TT	43	34-TT
n260	23+TT	43	31-TT
n261	23+TT	43	34-TT

6.2.1.2 UE maximum output power - Spherical coverage

Editor's note: The following aspects are either missing or not yet determined:

Measurement Uncertainties and Test Tolerances are FFS for power class 1, 2 and 4.

6.2.1.2.1 Test purpose

To verify that the spatial coverage of the UE in expected directions is acceptable.

6.2.1.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support beam correspondence without UL beam sweeping.

6.2.1.2.3 Minimum conformance requirements

Minimum conformance requirements are defined in clause 6.2.1.1.3.

6.2.1.2.4 Test description

6.2.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.2.1.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.1.2.4.1-1: Test Configuration Table

	Default Conditions					
Test Environment as specified in TS 38.508-1 [10]			Normal			
subclau	ıse [4.1]					
Test Fre	equencies a	as specified	d in TS 38.508-1 [10	0]	Low range, Mid Range, High range	
subclau	ıse [4.3.1]					
Test Ch	annel Band	dwidths as	specified in TS 38.5	508-	Lowest, Highest	
1 [10] s	ubclause [4	1.3.1]				
Test SC	S as speci	fied in Tabl	e 5.3.5-1		120 kHz	
			Test P	arame	eters	
Test	ChBw	SCS	Downlink		Uplink C	onfiguration
ID			Configuration		-	
		Default	N/A		Modulation	RB allocation (NOTE 1)
1	50			DF.	Γ-s-OFDM QPSK	Inner_Full
2	100					
3	200					
4	400					
NOTE:	1: The spe	cific config	juration of each RF	alloca	tion is defined in Ta	able 6.1-1.

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.2.1.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2.1.2.4.3

6.2.1.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.2.1.2.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in section 6.2.1.2.4.3.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec to ensure that the UE transmits at its maximum output power.
- 3. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM SELECT WAIT TIME (Note 1) for the UE Tx beam selection to complete.
- 4. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration. Repeat EIRP measurements for all directions in the sphere according to EIRP measurement procedure defined in Annex K.1.3. After a rotation, allow TBD ms for UE to find the best beam to use. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 5. Calculate a cumulative distribution function for the measured EIRP values.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.2.1.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.2.1.2.5 Test requirement

The defined %-tile EIRP in measurement distribution derived in step 5 shall exceed the values specified in Table 6.2.1.2.5-1 to Table 6.2.1.2.5-4.

Table 6.2.1.2.5-1: UE spherical coverage for power class 1

Operating band	Min EIRP at 85%-tile CDF (dBm)
n257	32.0-TT
n258	32.0-TT
n260	30.0-TT
n261	32.0-TT

Table 6.2.1.2.5-2: UE spherical coverage for power class 2

Operating band	Min EIRP at 60%-tile CDF (dBm)	
n257	18.0-TT	
n258	18.0-TT	
n260		
n261	18.0-TT	

Table 6.2.1.2.5-3: UE spherical coverage for power class 3 for single band UE or multiband UE declaring $MB_s = 0$ in all FR2 bands

Operating band	Min EIRP at 50 ¹ %-tile CDF (dBm)	
n257	11.5-TT	
n258	11.5-TT	
n260	8-TT	
n261	11.5-TT	

Table 6.2.1.2.5-3a: UE spherical coverage for power class 3 for multi band UE declaring MB_s>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)				Maximum sum of MB _s , ∑MB _s (dB) (Note 3)	Comments
		n257	n258	n260	n261		
1	n257, n258	11.5-TT-MB _s	11.5-TT-MB _s			1.25	
2	n257, n260	11.5-TT-MB _s		8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
3	n258, n260		11.5-TT-MB _s	8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
4	n258, n261		11.5-TT-MB _s		11.5-TT-MB _s	1.25	
5	n260, n261			8-TT-MB _s	11.5-TT-MBs	0.75	No relaxation allowed for n260
6	n257, n258, n260	11.5-TT-MB _s	11.5-TT-MB _s	8-TT-MB _s		1.75	Maximum 0.4 dB relaxation allowed for n260
7	n257, n258, n261	11.5-TT-MB _s	11.5-TT-MB _s		11.5-TT-MB _s	1.75	
8	n257, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
9	n258, n260, n261		11.5-TT-MB _s	8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
10	n257, n258, n260, n261	11.5-TT-MB _s	11.5-TT-MB _s	8-TT-MB _s	11.5-TT-MB _s	1.75	Maximum 0.4 dB relaxation allowed for n260

Note 1: MB_s is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-3 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_s over all supported FR2 bands as defined in clause 6.2.1.1.3.3

Table 6.2.1.2.5-3b: Test Tolerance (UE spherical coverage for Power class 3)

Test Metric	FR2a	FR2b
Ouiet Zone size ≤ 30 cm	2.58 dB	2.58 dB

Table 6.2.1.2.5-4: UE spherical coverage for power class 4

Operating band	Min EIRP at 20%-tile CDF (dBm)
n257	25
n258	25
n260	19
n261	25

6.2.2 UE maximum output power reduction

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS.
- Measurement grid for PC1/2/4 in Annex M.4 is FFS.

6.2.2.0 General

The requirements in section 6.2.2 only apply when both UL and DL of a UE are configured for single CC operation, and they are of the same bandwidth. A UE may reduce its maximum output power due to modulation orders, transmit bandwidth configurations, waveform types and narrow allocations. This Maximum Power Reduction (MPR) is defined in subclauses below. The allowed MPR for SRS, PUCCH formats 0, 1, 3 and 4, and PRACH shall be as specified for QPSK modulated DFT-s-OFDM of equivalent RB allocation. The allowed MPR for PUCCH format 2 shall be as specified for QPSK modulated CP-OFDM of equivalent RB allocation. When the maximum output power of a UE is modified by MPR, the power limits specified in subclause 6.2.4 apply.

For a UE that is configured for single CC operation with different channel bandwidths in UL and DL, the requirements in section 6.2A.2 apply.

For all power classes, the waveform defined by BW = 100 MHz, SCS = 120 kHz, DFT-S-OFDM QPSK, 20RB23 is the reference waveform with 0 dB MPR and is used for the power class definition.

6.2.2.1 Test purpose

The number of RB identified in 6.2.2.3 is based on meeting the requirements for the maximum power reduction (MPR) due to Cubic Metric (CM).

6.2.2.2 Test applicability

The requirements of this test apply to all types of NR UE release 15 and forward.

6.2.2.3 Minimum conformance requirements

6.2.2.3.1 UE maximum output power reduction for power class 1

For power class 1, MPR for contiguous allocations is defined as:

$$MPR = max(MPR_{WT}, MPR_{narrow})$$

Where,

 $MPR_{narrow} = 14.4 \text{ dB, when } BW_{alloc,RB} \leq 1.44 \text{ MHz, } MPR_{narrow} = 10 \text{ dB, when } 1.44 \text{ MHz} \leq BW_{alloc,RB} \leq 10.8 \text{ MHz, where } BW_{alloc,RB} \text{ is the bandwidth of the RB allocation size.}$

 MPR_{WT} is the maximum power reduction due to modulation orders, transmission bandwidth configurations listed in table 5.3.2-1, and waveform types. MPR_{WT} is defined in Tables 6.2.2.3.1-1 and 6.2.2.3.1-2.

MPR			R _{WT} (dB), BW _{channel} ≤ 200 MHz		
Modulation		Outer RB allocations Inner RB allocation		allocations	
			Region 1	Region 2	
	Pi/2 BPSK	≤ 5.5	0.0	≤ 3.0	
DFT-s-OFDM	QPSK	≤ 6.5	0.0	≤ 3.0	
	16 QAM	≤ 6.5	≤ 4.0	≤ 4.0	
	64 QAM	≤ 6.5	≤ 5.0	≤ 5.0	
	QPSK	≤ 7.0	≤ 4.5	≤ 4.5	
CP-OFDM	16 QAM	≤ 7.0	≤ 5.5	≤ 5.5	
	64 QAM	≤ 7.5	≤ 7.5	≤ 7.5	

Table 6.2.2.3.1-1: MPR_{WT} for power class 1, BW_{channel} ≤ 200 MHz

6.2.2.3.1-2: MPR_{WT} for power class 1, BW_{channel} = 400 MHz

Modulation		MPR _{WT} (dB), BW _{channel} = 400 MHz			
		Outer RB allocations Inner RB allocation		allocations	
			Region 1	Region 2	
	P/2 BPSK	≤ 5.5	0.0	≤ 3.0	
DFT-s-OFDM	QPSK	≤ 6.5	0.0	≤ 3.5	
	16 QAM	≤ 6.5	≤ 4.5	≤ 4.5	
	64 QAM	≤ 6.5	≤ 6.5	≤ 6.5	
	QPSK	≤ 7.0	≤ 5.0	≤ 5.0	
CP-OFDM	16 QAM	≤ 7.0	≤ 6.5	≤ 6.5	
	64 QAM	≤ 9.0	≤ 9.0	≤ 9.0	

Where the following parameters are defined to specify valid RB allocation ranges for RB allocations regions in Tables 6.2.2.3.1-1 and 6.2.2.3.1-2:

N_{RB} is the maximum number of RBs for a given Channel bandwidth and sub-carrier spacing defined in Table 5.3.2-1.

$$RB_{end} = RB_{Start} + L_{CRB} - 1$$

$$RB_{Start,Low} = max(1, floor(L_{CRB}/2))$$

where max() indicates the largest value of all arguments and floor(x) is the greatest integer less than or equal to x.

$$RB_{\text{Start,High}} = N_{\text{RB}} - RB_{\text{Start,Low}} - L_{\text{CRB}}$$

An RB allocation is an Outer RB allocation if

$$RB_{Start} < RB_{Start,Low} OR RB_{Start} > RB_{Start,High} OR L_{CRB} > Ceil(N_{RB}/2)$$

where ceil(x) is the smallest integer greater than or equal to x.

An RB allocation belonging to table 6.2.2.3.1-1 is a Region 1 inner RB allocation if

$$RB_{start} \ge Ceil(1/3 N_{RB}) AND RB_{end} \le Ceil(2/3 N_{RB})$$

An RB allocation belonging to table 6.2.2.3.1-2 is a Region 1 inner RB allocation if

$$RB_{start} \ge Ceil(1/4 N_{RB}) AND RB_{end} \le Ceil(3/4 N_{RB}) AND L_{CRB} \le Ceil(1/4 N_{RB})$$

An RB allocation is a Region 2 inner allocation if it is NOT an Outer allocation AND NOT a Region 1 inner allocation.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.4 apply.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2.2.1.

6.2.2.3.2 UE maximum output power reduction for power class 2

For power class 2, MPR specified in subclause 6.2.2.3.3 applies.

Table 6.2.2.3.2-1: Void

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2.2.2.

6.2.2.3.3 UE maximum output power reduction for power class 3

For power class 3, MPR for contiguous allocations is defined as:

$$MPR = max(MPR_{WT}, MPR_{narrow})$$

Where,

 $MPR_{\text{narrow}} = 2.5 \text{ dB, when } L_{\text{CRB}} \leq 1.44 \text{ MHz, and } 0 \leq RB_{\text{start}} \leq \text{Ceil}(1/3 \text{ N}_{\text{RB}}) \text{ or Ceil}(2/3N_{\text{RB}}) \leq RB_{\text{start}} \leq N_{\text{RB}} - L_{\text{CRB}},$ where N_{RB} is the maximum transmission bandwidth configuration defined in Table 5.3.2-1.

 MPR_{WT} is the maximum power reduction due to modulation orders, transmission bandwidth configurations listed in Table 5.3.2-1, and waveform types. MPR_{WT} is defined in Table 6.2.2.3.3-1 and Table 6.2.2.3.3-2.

Table 6.2.2.3.3-1: MPR_{WT} for power class 3, BWchannel ≤ 200 MHz

Modulation		MPR _{WT} , BW _{channel} ≤ 200 MHz		
		Inner RB allocations, Region 1	Edge RB allocations	
	Pi/2 BPSK	0.0	≤ 2.0	
DFT-s-OFDM	QPSK	0.0	≤ 2.0	
DF1-S-OFDIN	16QAM	≤ 3.0	≤ 3.5	
	64QAM	≤ 5.0	≤ 5.5	
CP-OFDM	QPSK	≤ 3.5	≤ 4.0	
	16QAM	≤ 5.0	≤ 5.0	
	64QAM	≤ 7.5	≤ 7.5	

Table 6.2.2.3.3-2: MPR_{WT} for power class 3, BW_{channel} = 400 MHz

		MPR _{WT} , BW _{channel} = 400 MHz			
Modulation		Inner RB allocations, Region 1	Edge RB allocations		
	Pi/2 BPSK	0.0	≤ 3.0		
DFT-s-OFDM	QPSK	0.0	≤ 3.0		
DF1-S-OFDIN	16QAM	≤ 4.5	≤ 4.5		
	64QAM	≤ 6.5	≤ 6.5		
	QPSK	≤ 5.0	≤ 5.0		
CP-OFDM	16QAM	≤ 6.5	≤ 6.5		
	64QAM	≤ 9.0	≤ 9.0		

Where the following parameters are defined to specify valid RB allocation ranges for RB allocations in Tables 6.2.2.3.3-1 and 6.2.2.3.3-2:

N_{RB} is the maximum number of RBs for a given Channel bandwidth and sub-carrier spacing defined in Table 5.3.2-1.

$$RB_{end} = RB_{Start} + L_{CRB} - 1$$

An RB allocation belonging to table 6.2.2.3.3-1 is a Region 1 inner RB allocation if

$$RB_{start} \ge Ceil(1/3 N_{RB}) AND RB_{end} \le Ceil(2/3 N_{RB})$$

An RB allocation belonging to table 6.2.2.3.3-2 is a Region 1 inner RB allocation if

$$RB_{start} \ge Ceil(1/4 N_{RB}) AND RB_{end} \le Ceil(3/4 N_{RB}) AND L_{CRB} \le Ceil(1/4 N_{RB})$$

An RB allocation is an Edge allocation if it is NOT a Region 1 inner allocation.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2.2.3.

6.2.2.3.4 UE maximum output power reduction for power class 4

For power class 4, MPR specified in sub-clause 6.2.2.3.3 applies.

Table 6.2.2.3.4-1: Void

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2.2.4.

6.2.2.4 Test description

6.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 6.2.2.4.1-1 to Table 6.2.2.4.1-9. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.2.4.1-1: Test Configuration Table (Power Class 1, MPR_{narrow})

	Default Conditions								
Test E	invironme	nt as spec	ified in TS	38.508-1 [10]	Normal				
subcla	ause 4.1								
Test F	requencie	s as spec	ified in TS	38.508-1 [10]	Low range, High range				
	ause 4.3.1								
1			as specifi	ed in TS	Lowest and Highest				
	8-1 [10] sı								
Test S	CS as spe	ecified in 7	able 5.3.5		120kHz				
				Test Param					
Test	Freq	ChBw	SCS	Downlink	Uplink Config	uration			
ID				Configuration					
				N/A for	Modulation	RB allocation			
				Maximum	Modulation	(NOTE 1)			
1	Low	Default	Default	Power	CP-OFDM 64 QAM	Outer_1RB_Left			
2	High	Delaali	Delaali	Reduction	CP-OFDM 64 QAM	Outer_1RB_Right			
				(MPR) test					
				case					
3	Low				CP-OFDM 64 QAM	2@0			
4	4 High				CP-OFDM 64 QAM	2@N _{RB} -2			
5	5 Low				CP-OFDM 64 QAM	7@0			
6	High				CP-OFDM 64 QAM	7@N _{RB} -7			
NOTE	1: The s	specific co	nfiguration	of each RF alloc	ation is defined in Table 6.1-	2.			

Table 6.2.2.4.1-2: Test Configuration Table (Power Class 1, MPR_{WT}, BWchannel ≤ 200 MHz)

Default Conditions								
Test E	nvironmer	nt as spec	ified in TS	38.508-1 [10]	Normal			
subcla	use 4.1							
Test F	Test Frequencies as specified in TS 38.508-1 [10]				Low range, High range			
	use 4.3.1							
			as specific	ed in TS	Lowest and Highest suppo	rted channel		
	3-1 [10] su				bandwidth that \leq 200 MHz			
Test S	CS as spe	ecified in 1	Table 5.3.5		120kHz			
				Test Param				
Test	Freq	ChBw	SCS	Downlink	Uplink Config	uration		
ID				Configuration				
					Modulation	RB allocation (NOTE 1)		
1	Low				DFT-s-OFDM PI/2 BPSK	8@0		
2	High				DFT-s-OFDM PI/2 BPSK	8@N _{RB} -8		
3	Default				DFT-s-OFDM PI/2 BPSK	Outer_Full		
4	Default				DFT-s-OFDM QPSK	Inner_Full		
5	Default			N1/A f	DFT-s-OFDM 16 QAM	Inner_Full		
6	Low			N/A for Maximum	DFT-s-OFDM 64 QAM	8@0		
7	High			Power	DFT-s-OFDM 64 QAM	8@N _{RB} -8		
8	Default	Default	Default	Reduction	DFT-s-OFDM 64 QAM	Outer_Full		
9	Default			(MPR) test	DFT-s-OFDM 64 QAM	Inner_Full		
10	Default			case	CP-OFDM QPSK	Inner_Full		
11	Low			Jaco	CP-OFDM 16 QAM	8@0		
12	High				CP-OFDM 16 QAM	8@N _{RB} -8		
13	Default				CP-OFDM 16 QAM	Outer_Full		
14	Default				CP-OFDM 16 QAM	Inner_Full		
15	Low				CP-OFDM 64 QAM	8@0		
16	High				CP-OFDM 64 QAM	8@N _{RB} -8		
17	Default				CP-OFDM 64 QAM	Outer_Full		
NOTE	1: The s	specific co	nfiguratior	of each RF alloc	ation is defined in clause 6.1	-2.		

Table 6.2.2.4.1-3: Test Configuration Table (Power Class 1, MPR_{WT}, BWchannel = 400 MHz)

	Default Conditions								
Test E	nvironme	nt as spec	ified in TS	38.508-1 [10]	Normal				
subcla	ause 4.1								
Test F	requencie	s as spec	ified in TS	38.508-1 [10]	Low range, High range				
subclause 4.3.1									
Test Channel Bandwidths as specified in TS					400 MHz				
	8-1 [10] su								
Test S	CS as spe	ecified in 1	able 5.3.5		120kHz				
		_		Test Param					
Test	Freq	ChBw	SCS	Downlink	Uplink Config	uration			
ID				Configuration		55 H			
					Modulation	RB allocation (NOTE 1)			
1	Low				DFT-s-OFDM PI/2 BPSK	8@0			
2	High				DFT-s-OFDM PI/2 BPSK	8@N _{RB} -8			
3	Default				DFT-s-OFDM PI/2 BPSK	Outer_Full			
4	Default				DFT-s-OFDM PI/2 BPSK	Inner_Full			
5	Default			NI/A for	DFT-s-OFDM QPSK	Inner_Full			
6	Default			N/A for Maximum	DFT-s-OFDM 16 QAM	Inner_Full			
7	Low			Power	DFT-s-OFDM 64 QAM	8@0			
8	High	Default	Default	Reduction	DFT-s-OFDM 64 QAM	8@N _{RB} -8			
9	Default			(MPR) test	DFT-s-OFDM 64 QAM	Outer_Full			
10	Default			case	CP-OFDM QPSK	Inner_Full			
11	Low				CP-OFDM 16 QAM	8@0			
12	High				CP-OFDM 16 QAM	8@N _{RB} -8			
13	Default				CP-OFDM 16 QAM	Outer_Full			
14	Default				CP-OFDM 16 QAM	Inner_Full			
15	Low				CP-OFDM 64 QAM	8@0			
16	High				CP-OFDM 64 QAM	8@N _{RB} -8			
17	Default				CP-OFDM 64 QAM	Outer_Full			
NOTE	1: The s	specific co	nfiguratior	of each RF alloc	ation is defined in clause 6.1	2.			

Table 6.2.2.4.1-4: Void

Table 6.2.2.4.1-5: Void

Table 6.2.2.4.1-6: Void

Table 6.2.2.4.1-7: Test Configuration Table (Power Class 2, 3 and 4, MPR_{narrow,} BWchannel ≤ 200 MHz)

Default Conditions								
Test E	nvironme	nt as spec	ified in TS	38.508-1 [10]	Normal			
	ause 4.1							
Test F	requencie	es as spec	ified in TS	38.508-1 [10]	Low range, High range			
subcla	ause 4.3.1							
Test C	Channel Ba	andwidths	as specific	ed in TS	Lowest and Highes suppo	rted channel		
38.50	8-1 [10] sı	ubclause 4	.3.1		bandwidth that \leq 200 MHz	: t		
Test S	SCS as sp	ecified in 7	Table 5.3.5	5-1	120kHz			
				Test Param	eters			
	Test Freq ChBw SCS Downlink				Uplink Configuration			
lest	Freq	ChBw	SCS	Downlink	Uplink Config	juration		
Iest	Freq	ChBw	SCS	Downlink Configuration	Uplink Config	juration		
	Freq	ChBw	SCS	_		guration RB allocation		
	Freq	ChBw	SCS	Configuration	Uplink Config Modulation			
	Freq Low			Configuration N/A for		RB allocation		
ID	•	ChBw - Default	SCS Default	Configuration N/A for Maximum	Modulation	RB allocation (NOTE 1)		
1D	Low			Configuration N/A for Maximum Power	Modulation DFT-s-OFDM QPSK	RB allocation (NOTE 1) Outer_1RB_Left		
1D	Low			N/A for Maximum Power Reduction	Modulation DFT-s-OFDM QPSK	RB allocation (NOTE 1) Outer_1RB_Left		

Table 6.2.2.4.1-8: Test Configuration Table (Power Class 2, 3 and 4, MPR_{WT}, BWchannel ≤ 200 MHz)

	Default Conditions								
Test E	nvironme	nt as spec	ified in TS	38.508-1 [10]	Normal				
1	ause 4.1								
Test F	Test Frequencies as specified in TS 38.508-1 [10]				Low range, High range				
subcla	subclause 4.3.1								
	Test Channel Bandwidths as specified in TS				Lowest and Highest suppo	rted channel			
	8-1 [10] รเ				bandwidth that \leq 200 MHz				
Test S	SCS as spe	ecified in 7	Table 5.3.5	-1	120kHz				
				Test Param					
Test	Freq	ChBw	SCS	Downlink	Uplink Config	uration			
ID				Configuration					
					Modulation	RB allocation (NOTE 1)			
1	Default				DFT-s-OFDM QPSK	Outer_Full			
2	Default				DFT-s-OFDM 16 QAM	Inner_Full			
3	Low				DFT-s-OFDM 16 QAM	Outer_1RB_Left			
4	High				DFT-s-OFDM 16 QAM	Outer_1RB_Right			
5	Default				DFT-s-OFDM 16 QAM	Outer_Full			
6	Default			NI/A for	DFT-s-OFDM 64 QAM	Inner_Full			
7	Low			N/A for	DFT-s-OFDM 64 QAM	Outer_1RB_Left			
8	High			Maximum Power	DFT-s-OFDM 64 QAM	Outer_1RB_Right			
9	Default	Default	Default	Reduction	DFT-s-OFDM 64 QAM	Outer_Full			
10	Default			(MPR) test	CP-OFDM QPSK	Inner_Full			
11	Low			case	CP-OFDM QPSK	Outer_1RB_Left			
12	High			dase	CP-OFDM QPSK	Outer_1RB_Right			
13	Default				CP-OFDM QPSK	Outer_Full			
14	Low				CP-OFDM 16 QAM	Outer_1RB_Left			
15	High				CP-OFDM 16 QAM	Outer_1RB_Right			
16	Default				CP-OFDM 16 QAM	Outer_Full			
17	Low				CP-OFDM 64 QAM	Outer_1RB_Left			
18	High				CP-OFDM 64 QAM	Outer_1RB_Right			
19	Default				CP-OFDM 64 QAM	Outer_Full			
NOTE	E 1: The s	specific co	nfiguration	of each RF alloc	ation is defined in Table 6.1-	1.			

Table 6.2.2.4.1-9: Test Configuration Table (Power Class 2, 3 and 4, MPR_{wt}, BWchannel = 400 MHz)

	Default Conditions								
		nt as spec	ified in TS	38.508-1 [10]	Normal				
	ause 4.1								
	Test Frequencies as specified in TS 38.508-1 [10]				Low range, High range				
	ause 4.3.1								
	Test Channel Bandwidths as specified in TS				400 MHz				
	8-1 [10] su								
Test S	SCS as spe	ecified in 1	able 5.3.5		120kHz				
<u> </u>				Test Param					
Test	Freq	ChBw	SCS	Downlink	Uplink Config	uration			
ID				Configuration					
					Modulation	RB allocation (NOTE 1)			
1	Low				DFT-s-OFDM QPSK	Outer 1RB Left			
2	High				DFT-s-OFDM QPSK	Outer 1RB Right			
3	Default				DFT-s-OFDM QPSK	Outer Full			
4	Low				DFT-s-OFDM 16 QAM	Outer 1RB Left			
5	High				DFT-s-OFDM 16 QAM	Outer_1RB_Right			
6	Default			N/A for	DFT-s-OFDM 16 QAM	Outer_Full			
7	Low			Maximum	DFT-s-OFDM 64 QAM	Outer_1RB_Left			
8	High	Default	Default	Power	DFT-s-OFDM 64 QAM	Outer_1RB_Right			
9	Default	Delault	Delault	Reduction	DFT-s-OFDM 64 QAM	Outer_Full			
10	Low			(MPR) test	CP-OFDM QPSK	Outer_1RB_Left			
11	High			case	CP-OFDM QPSK	Outer_1RB_Right			
12	Default				CP-OFDM QPSK	Outer_Full			
13	Low				CP-OFDM 16 QAM	Outer_1RB_Left			
14	High				CP-OFDM 16 QAM	Outer_1RB_Right			
15	Default				CP-OFDM 16 QAM	Outer_Full			
16	Low				CP-OFDM 64 QAM	Outer_1RB_Left			
17	High				CP-OFDM 64 QAM	Outer_1RB_Right			
18	Default				CP-OFDM 64 QAM	Outer_Full			
NOTE	1: The s	specific co	nfiguration	of each RF alloc	ation is defined in Table 6.1-	1.			

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.2.2.4.1-1 to Table 6.2.2.4.1-9.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2.2.4.3.

6.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.2.4.1-1 to Table 6.2.2.4.1-9. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 4. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.

- 5. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in 6.2.2.5. EIRP test procedure is defined in Annex K.1.3. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 6. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.
- NOTE 2: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.2.2.4.1-1 to Table 6.2.2.4.1-9, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.2.2.5 Test requirement

The maximum output power, derived in step 5 shall be within the range prescribed by the nominal maximum output power and tolerance in following tables.

Table 6.2.2.5-1: UE Power Class test requirements for Power Class 1 (for Bands n257, n258, n261)

Test Configuration Table	Test ID	P _{Powerclass}	MPR _{f,c}	T(MPR _{f,c})	Lower limit (dBm)	Upper limit (dBm)
	1	40	14.4	7	18.6-TT	55
	2	40	14.4	7	18.6-TT	55
Toble C 2 2 4 1 1	3	40	10	5	25-TT	55
Table 6.2.2.4.1-1	4	40	10	5	25-TT	55
	5	40	10	5	25-TT	55
	6	40	10	5	25-TT	55
	1	40	5.5	5	29.5-TT	55
	2	40	5.5	5	29.5-TT	55
	3	40	5.5	5	29.5-TT	55
	4	40	3	2	35-TT	55
	5	40	4	3	33-TT	55
	6	40	6.5	5	28.5-TT	55
	7	40	6.5	5	28.5-TT	55
	8	40	6.5	5	28.5-TT	55
Table 6.2.2.4.1-2	9	40	5	4	31-TT	55
	10	40	4.5	4	31.5-TT	55
	11	40	7	5	28-TT	55
	12	40	7	5	28-TT	55
	13	40	7	5	28-TT	55
	14	40	5.5	5	29.5-TT	55
	15	40	7.5	5	27.5-TT	55
	16	40	7.5	5	27.5-TT	55
	17	40	7.5	5	27.5-TT	55
	1	40	5.5	5	29.5-TT	55
	2	40	5.5	5	29.5-TT	55
	3	40	5.5	5	29.5-TT	55
	4	40	3	2	35-TT	55
	5	40	3.5	3	33.5-TT	55
	6	40	4.5	4	31.5-TT	55
	7	40	6.5	5	28.5-TT	55
	8	40	6.5	5	28.5-TT	55
Table 6.2.2.4.1-3	9	40	6.5	5	28.5-TT	55
	10	40	5	4	31-TT	55
	11	40	7	5	28-TT	55
	12	40	7	5	28-TT	55
	13	40	7	5	28-TT	55
	14	40	6.5	5	28.5-TT	55
	15	40	9	5	26-TT	55
	16	40	9	5	26-TT	55
	17	40	9	5	26-TT	55

Table 6.2.2.5-1a: UE Power Class test requirements for Power Class 1 (for Bands n260)

Test Configuration Table	Test ID	P _{Powerclass}	MPR _{f,c}	T(MPR _{f,c})	Lower limit (dBm)	Upper limit (dBm)
	1	38	14.4	7	16.6-TT	55
	2	38	14.4	7	16.6-TT	55
Toble C 2 2 4 1 1	3	38	10	5	23-TT	55
Table 6.2.2.4.1-1	4	38	10	5	23-TT	55
	5	38	10	5	23-TT	55
	6	38	10	5	23-TT	55
	1	38	5.5	5	27.5-TT	55
	2	38	5.5	5	27.5-TT	55
	3	38	5.5	5	27.5-TT	55
	4	38	3	2	33-TT	55
	5	38	4	3	31-TT	55
	6	38	6.5	5	26.5-TT	55
	7	38	6.5	5	26.5-TT	55
	8	38	6.5	5	26.5-TT	55
Table 6.2.2.4.1-2	9	38	5	4	29-TT	55
	10	38	4.5	4	29.5-TT	55
	11	38	7	5	26-TT	55
	12	38	7	5	26-TT	55
	13	38	7	5	26-TT	55
	14	38	5.5	5	27.5-TT	55
	15	38	7.5	5	25.5-TT	55
	16	38	7.5	5	25.5-TT	55
	17	38	7.5	5	25.5-TT	55
	1	38	5.5	5	27.5-TT	55
	2	38	5.5	5	27.5-TT	55
	3	38	5.5	5	27.5-TT	55
	4	38	3	2	33-TT	55
	5	38	3.5	3	31.5-TT	55
	6	38	4.5	4	29.5-TT	55
	7	38	6.5	5	26.5-TT	55
	8	38	6.5	5	26.5-TT	55
Table 6.2.2.4.1-3	9	38	6.5	5	26.5-TT	55
	10	38	5	4	29-TT	55
	11	38	7	5	26-TT	55
	12	38	7	5	26-TT	55
	13	38	7	5	26-TT	55
	14	38	6.5	5	26.5-TT	55
	15	38	9	5	24-TT	55
	16	38	9	5	24-TT	55
	17	38	9	5	24-TT	55

Table 6.2.2.5-2: UE Power Class test requirements for Power Class 2

Test Configuration Table	Test ID	P _{Powerclass}	$MPR_{f,c}$	T(MPR _{f,c})	Lower limit (dBm)	Upper limit (dBm)
Table 6.2.2.4.1-7	1	29	2.5	2	24.5-TT	43
10010 0.2.2.4.1 7	2	29	2.5	2	24.5-TT	43
	1	29	2	1.5	25.5-TT	43
	2	29	3	2	24-TT	43
	3	29	3.5	3	22.5-TT	43
	4	29	3.5	3	22.5-TT	43
	5	29	3.5	3	22.5-TT	43
	6	29	5	4	20-TT	43
	7	29	5.5	5	18.5-TT	43
	8	29	5.5	5	18.5-TT	43
	9	29	5.5	5	18.5-TT	43
Table 6.2.2.4.1-8	10	29	3.5	3	22.5-TT	43
	11	29	4	3	22-TT	43
	12	29	4	3	22-TT	43
	13	29	4	3	22-TT	43
	14	29	5	4	20-TT	43
	15	29	5	4	20-TT	43
	16	29	5	4	20-TT	43
	17	29	7	5	17-TT	43
	18	29	7	5	17-TT	43
	19	29	7	5	17-TT	43
	1	29	3	2	24-TT	43
	2	29	3	2	24-TT	43
	3	29	3	2	24-TT	43
	4	29	4.5	4	20.5-TT	43
	5	29	4.5	4	20.5-TT	43
	6	29	4.5	4	20.5-TT	43
	7	29	6.5	5	17.5-TT	43
	8	29	6.5	5	17.5-TT	43
Table 6.2.2.4.1-9	9	29	6.5	5	17.5-TT	43
14010 0.2.2.4.1-9	10	29	5	4	20-TT	43
	11	29	5	4	20-TT	43
	12	29	5	4	20-TT	43
	13	29	6.5	5	17.5-TT	43
	14	29	6.5	5	17.5-TT	43
	15	29	6.5	5	17.5-TT	43
	16	29	9	5	15-TT	43
	17	29	9	5	15-TT	43
	18	29	9	5	15-TT	43

Table 6.2.2.5-3: UE Power Class test requirements for Power Class 3 (n257, 258, 261)

Test Configuration Table	Test ID	P _{Powerclass}	$MPR_{f,c}$	T(MPR _{f,c})	Lower limit (dBm)	Upper limit (dBm)
Table	1	22.4	2.5	2	17.9-TT-∆MB _{P,n}	43
6.2.2.4.1-7	2	22.4	2.5	2	17.9-TT-ΔMB _{P,n}	43
	1	22.4	2	1.5	18.9-TT-ΔMB _{P,n}	43
	2	22.4	3	2	17.4-TT-ΔMB _{P,n}	43
	3	22.4	3.5	3	15.9-TT-ΔMB _{P,n}	43
	4	22.4	3.5	3	15.9-TT-ΔMB _{P,n}	43
	5	22.4	3.5	3	15.9-TT-ΔMB _{P,n}	43
	6	22.4	5	4	13.4-TT-ΔMB _{P,n}	43
	7	22.4	5.5	5	11.9-TT-ΔMB _{P,n}	43
	8	22.4	5.5	5	11.9-TT-ΔMB _{P,n}	43
	9	22.4	5.5	5	11.9-TT-ΔMB _{P,n}	43
Table 6.2.2.4.1-8	10	22.4	3.5	3	15.9-TT-∆MB _{P,n}	43
0.2.2.4.1-0	11	22.4	4	3	15.4-TT-ΔMB _{P,n}	43
	12	22.4	4	3	15.4-TT-ΔMB _{P,n}	43
	13	22.4	4	3	15.4-TT-ΔMB _{P,n}	43
	14	22.4	5	4	13.4-TT-ΔMB _{P,n}	43
	15	22.4	5	4	13.4-TT-ΔMB _{P,n}	43
	16	22.4	5	4	13.4-TT-ΔMB _{P,n}	43
	17	22.4	7	5	10.4-TT-ΔMB _{P,n}	43
	18	22.4	7	5	10.4-TT-ΔMB _{P,n}	43
	19	22.4	7	5	10.4-TT-ΔMB _{P,n}	43
	1	22.4	3	2	17.4-TT-∆MB _{P,n}	43
	2	22.4	3	2	17.4-TT-ΔMB _{P,n}	43
	3	22.4	3	2	17.4-TT-ΔMB _{P,n}	43
	4	22.4	4.5	4	13.9-TT-ΔMB _{P,n}	43
	5	22.4	4.5	4	13.9-TT-ΔMB _{P,n}	43
	6	22.4	4.5	4	13.9-TT-ΔMB _{P,n}	43
	7	22.4	6.5	5	10.9-TT-ΔMB _{P,n}	43
	8	22.4	6.5	5	10.9-TT-ΔMB _{P,n}	43
Table	9	22.4	6.5	5	10.9-TT-ΔMB _{P,n}	43
6.2.2.4.1-9	10	22.4	5	4	13.4-TT-ΔMB _{P,n}	43
	11	22.4	5	4	13.4-TT-ΔMB _{P,n}	43
	12	22.4	5	4	13.4-TT-ΔMB _{P,n}	43
	13	22.4	6.5	5	10.9-TT-ΔMB _{P,n}	43
	14	22.4	6.5	5	10.9-TT-ΔMB _{P,n}	43
	15	22.4	6.5	5	10.9-TT-ΔMB _{P,n}	43
	16	22.4	9	5	8.4-TT-ΔMB _{P,n}	43
	17	22.4	9	5	8.4-TT-ΔMB _{P,n}	43
	18	22.4	9	5	8.4-TT-ΔMB _{P,n}	43

ΔMB_{P,n} is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-2 of Note 1: TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant. Max allowed sum of $\Delta MB_{P,n}$ over all supported FR2 bands as defined in clause 6.2.1.1.3.3. Note 2:

Note 3:

 $\Delta MB_{P,n}$ is 0 for single band UE. Note 4:

Table 6.2.2.5-3a: UE Power Class test requirements for Power Class 3 (n260)

Test Configuration Table	Test ID	P _{Powerclass}	$MPR_{f,c}$	T(MPR _{f,c})	Lower limit (dBm)	Upper limit (dBm)
Table	1	20.6	2.5	2	16.1-TT-ΔMB _{P,n}	43
6.2.2.4.1-7	2	20.6	2.5	2	16.1-TT-ΔMB _{P,n}	43
	1	20.6	2	1.5	17.1-TT-ΔMB _{P,n}	43
	2	20.6	3	2	15.6-TT-ΔMB _{P,n}	43
	3	20.6	3.5	3	14.1-TT-ΔMB _{P,n}	43
	4	20.6	3.5	3	14.1-TT-ΔMB _{P,n}	43
	5	20.6	3.5	3	14.1-TT-ΔMB _{P,n}	43
	6	20.6	5	4	11.6-TT-ΔMB _{P,n}	43
	7	20.6	5.5	5	10.1-TT-ΔMB _{P,n}	43
	8	20.6	5.5	5	10.1-TT-ΔMB _{P,n}	43
	9	20.6	5.5	5	10.1-TT-ΔMB _{P,n}	43
Table 6.2.2.4.1-8	10	20.6	3.5	3	14.1-TT-ΔMB _{P,n}	43
0.2.2.4.1-0	11	20.6	4	3	13.6-TT-ΔMB _{P,n}	43
	12	20.6	4	3	13.6-TT-ΔMB _{P,n}	43
	13	20.6	4	3	13.6-TT-ΔMB _{P,n}	43
	14	20.6	5	4	11.6-TT-ΔMB _{P,n}	43
	15	20.6	5	4	11.6-TT-ΔMB _{P,n}	43
	16	20.6	5	4	11.6-TT-ΔMB _{P,n}	43
	17	20.6	7	5	8.6-TT-ΔMB _{P,n}	43
	18	20.6	7	5	8.6-TT-ΔMB _{P,n}	43
	19	20.6	7	5	8.6-TT-ΔMB _{P,n}	43
	1	20.6	3	2	15.6-TT-ΔMB _{P,n}	43
	2	20.6	3	2	15.6-TT-ΔMB _{P,n}	43
	3	20.6	3	2	15.6-TT-ΔMB _{P,n}	43
	4	20.6	4.5	4	12.1-TT-ΔMB _{P,n}	43
	5	20.6	4.5	4	12.1-TT-ΔMB _{P,n}	43
	6	20.6	4.5	4	12.1-TT-ΔMB _{P,n}	43
	7	20.6	6.5	5	9.1-TT-ΔMB _{P,n}	43
	8	20.6	6.5	5	9.1-TT-ΔMB _{P,n}	43
Table	9	20.6	6.5	5	9.1-TT-ΔMB _{P,n}	43
6.2.2.4.1-9	10	20.6	5	4	11.6-TT-ΔMB _{P,n}	43
	11	20.6	5	4	11.6-TT-ΔMB _{P,n}	43
	12	20.6	5	4	11.6-TT-ΔMB _{P,n}	43
	13	20.6	6.5	5	9.1-TT-ΔMB _{P,n}	43
	14	20.6	6.5	5	9.1-TT-ΔMB _{P,n}	43
	15	20.6	6.5	5	9.1-TT-ΔMB _{P,n}	43
	16	20.6	9	5	6.6-TT-ΔMB _{P,n}	43
	17	20.6	9	5	6.6-TT-ΔMB _{P,n}	43
	18	20.6	9	5	6.6-TT-ΔMB _{P,n}	43

ΔMB_{P,n} is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-2 of Note 1: TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant. Max allowed sum of $\Delta MB_{P,n}$ over all supported FR2 bands as defined in clause 6.2.1.1.3.3. Note 2:

Note 3:

 $\Delta MB_{P,n}$ is 0 for single band UE. Note 4:

Table 6.2.2.5-4: UE Power Class test requirements for Power Class 4 (n257, 258, 261)

Test Configuration Table	Test ID	P _{Powerclass}	$MPR_{f,c}$	T(MPR _{f,c})	Lower limit (dBm)	Upper limit (dBm)
Table 6.2.2.4.1-7	1	34	2.5	2	29.5-TT	43
Table 0.2.2.4.1-7	2	34	2.5	2	29.5-TT	43
	1	34	2	1.5	30.5-TT	43
	2	34	3	2	29-TT	43
	3	34	3.5	3	27.5-TT	43
	4	34	3.5	3	27.5-TT	43
	5	34	3.5	3	27.5-TT	43
	6	34	5	4	25-TT	43
	7	34	5.5	5	23.5-TT	43
	8	34	5.5	5	23.5-TT	43
	9	34	5.5	5	23.5-TT	43
Table 6.2.2.4.1-8	10	34	3.5	3	27.5-TT	43
	11	34	4	3	27-TT	43
	12	34	4	3	27-TT	43
	13	34	4	3	27-TT	43
	14	34	5	4	25-TT	43
	15	34	5	4	25-TT	43
	16	34	5	4	25-TT	43
	17	34	7	5	22-TT	43
	18	34	7	5	22-TT	43
	19	34	7	5	22-TT	43
	1	34	3	2	29-TT	43
	2	34	3	2	29-TT	43
	3	34	3	2	29-TT	43
	4	34	4.5	4	25.5-TT	43
	5	34	4.5	4	25.5-TT	43
	6	34	4.5	4	25.5-TT	43
	7	34	6.5	5	22.5-TT	43
	8	34	6.5	5	22.5-TT	43
Table 6.2.2.4.1-9	9	34	6.5	5	22.5-TT	43
Table 0.2.2.4.1-9	10	34	5	4	25-TT	43
	11	34	5	4	25-TT	43
	12	34	5	4	25-TT	43
	13	34	6.5	5	22.5-TT	43
	14	34	6.5	5	22.5-TT	43
	15	34	6.5	5	22.5-TT	43
	16	34	9	5	20-TT	43
	17	34	9	5	20-TT	43
	18	34	9	5	20-TT	43

Table 6.2.2.5-4a: UE Power Class test requirements for Power Class 4 (n260)

Test Configuration Table	Test ID	P _{Powerclass}	$MPR_{f,c}$	T(MPR _{f,c})	Lower limit (dBm)	Upper limit (dBm)
Table 6.2.2.4.1-7	1	31	2.5	2	26.5-TT	43
Table 0.2.2.4.1-7	2	31	2.5	2	26.5-TT	43
	1	31	2	1.5	27.5-TT	43
	2	31	3	2	26-TT	43
	3	31	3.5	3	24.5-TT	43
	4	31	3.5	3	24.5-TT	43
	5	31	3.5	3	24.5-TT	43
	6	31	5	4	22-TT	43
	7	31	5.5	5	20.5-TT	43
	8	31	5.5	5	20.5-TT	43
	9	31	5.5	5	20.5-TT	43
Table 6.2.2.4.1-8	10	31	3.5	3	24.5-TT	43
	11	31	4	3	24-TT	43
	12	31	4	3	24-TT	43
	13	31	4	3	24-TT	43
	14	31	5	4	22-TT	43
	15	31	5	4	22-TT	43
	16	31	5	4	22-TT	43
	17	31	7	5	19-TT	43
	18	31	7	5	19-TT	43
	19	31	7	5	19-TT	43
	1	31	3	2	26-TT	43
	2	31	3	2	26-TT	43
	3	31	3	2	26-TT	43
	4	31	4.5	4	22.5-TT	43
	5	31	4.5	4	22.5-TT	43
	6	31	4.5	4	22.5-TT	43
	7	31	6.5	5	19.5-TT	43
	8	31	6.5	5	19.5-TT	43
Table 6.2.2.4.1-9	9	31	6.5	5	19.5-TT	43
Table 0.2.2.4.1-9	10	31	5	4	22-TT	43
	11	31	5	4	22-TT	43
	12	31	5	4	22-TT	43
	13	31	6.5	5	19.5-TT	43
	14	31	6.5	5	19.5-TT	43
	15	31	6.5	5	19.5-TT	43
	16	31	9	5	17-TT	43
	17	31	9	5	17-TT	43
	18	31	9	5	17-TT	43

6.2.3 UE maximum output power with additional requirements

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS.

- No test points are defined since there is no configuration where A-MPR is bigger than MPR
- Multiband relaxation is not considered in test requirements

6.2.3.1 Test purpose

Additional spectrum emission requirements can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction A-MPR is allowed for the output power.

6.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

NOTE: This test case can't be performed due to lack of appropriate test points.

6.2.3.3 Minimum conformance requirements

6.2.3.3.1 General

Additional emission requirements can be signalled by the network. Each additional emission requirement is associated with a unique network signalling (NS) value indicated in RRC signalling by an NR frequency band number of the applicable operating band and an associated value in the field *additionalSpectrumEmission*. Throughout this specification, the notion of indication or signalling of an NS value refers to the corresponding indication of an NR frequency band number of the applicable operating band (the IE field freqBandIndicatorNR) and an associated value of additionalSpectrumEmission in the relevant RRC information elements

To meet these additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in subclause 6.2.1.1.3. Unless stated otherwise, an A-MPR of 0 dB shall be used.

Table 6.2.3.3.1-1 specifies the additional requirements with their associated network signalling values and the allowed A-MPR and applicable operating band(s) for each NS value. The mapping of NR frequency band numbers and values of and the *additionalSpectrumEmission* to network signalling labels is specified in Table 6.2.3.3.1-2. Unless otherwise stated, the allowed total back off is maximum of A-MPR and MPR specified in subclause 6.2.2.

Table 6.2.3.3.1-1: Additional maximum power reduction (A-MPR)

Network Signalling value	Requirements (subclause)	NR Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_200					N/A
NS_201	6.5.3.2.2	n258			6.2.3.2

Table 6.2.3.3.1-2: Mapping of Network Signalling label

NR Band	Value of additionalSpectrumEmission / NS number							
	0	1	2	3	4	5	6	7
n257	NS_200							
n258	NS_200	NS_201						
n260	NS_200							
n261	NS_200							

NOTE: additionalSpectrumEmission corresponds to an information element of the same name defined in sub-clause 6.3.2 of TS 38.331 [19].

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2.3.1.

6.2.3.3.2 A-MPR for NS_201

6.2.3.3.2.1 A-MPR for NS_201 for power class 1

Table 6.2.3.3.2.1-1: AMPR for NS_201 for power class 1

	Channel Bandwidth, MHz				
Offset Frequency	50, 100, 200 400		00		
	Outer	Outer	Inner		
0 MHz	3.0	5.0	3.5		
>100 MHz, <=300 MHz	1.5	2.5	3.5		
>300 MHz	0	0	0		

NOTE 1: The Offset frequency is defined as the frequency from the lower band edge to the lower channel edge.

NOTE 2: The back off applied is the max(MPR, AMPR), where the MPR is defined in [Table 6.2.2.1-1]

NOTE 3: Any undefined region, MPR applies

6.2.3.3.2.2 A-MPR for NS_201 for power class 2

For power class 2, A-MPR specified in subclause 6.2.3.3.2.3 applies

6.2.3.3.2.3 A-MPR for NS_201 for power class 3

Table 6.2.3.3.2.3-1: AMPR for NS_201 for power class 3

	Channel Bandwidth, MHz
Offset Frequency	400
	Outer RB allocations
0 MHz	≤ 1.5
> 100 MHz, ≤ 300 MHz	0
> 300 MHz	0

NOTE 1: The Offset frequency is defined as the frequency from the lower band edge to the lower channel edge.

NOTE 2: The back off applied is the max(MPR, AMPR), where the MPR is defined in Table 6.2.2.3.3-1

NOTE 3: Any undefined region, MPR applies

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2.3.2.

6.2.3.4 Test description

6.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the Subscriber Station (SS) to take with the UE to reach the correct measurement state.

Table 6.2.3.4.1-1: Test configuration table for NS_201

FFS

Note: No test points are defined since there is no configuration where A-MPR is bigger than MPR

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.1.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.

- 4. The DL and UL Reference Measurement channels are set according to Table 6.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2.3.4.3

6.2.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.2.1.1.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in section 6.2.1.1.4.3.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec starting from the first TPC command in this step to ensure that the UE transmits at its maximum output power.
- 3. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K. Allow at least BEAM_SELECT_WAIT_TIME (Note 1) for the UE Tx beam selection to complete.
- 4. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 5. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.1.5-1. EIRP test procedure is defined in Annex K. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 6. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6, with the following exceptions for each network signalled value.

1. Information element AdditionalSpectrumEmission for NR can be set in SIB1 according to TS 38.331[19]. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement

Derivation Path: TS 38.508-1 [10] clause 4.6.3, Table 4.6.3-1					
Information Element	Value/remark	Comment	Condition		
AdditionalSpectrumEmission	1 (NS_201)	for band n258			

6.2.3.5 Test requirement

The UE EIRP derived in step 5 shall not exceed the values specified in Table 6.2.3.5-1.

Table 6.2.3.5-1: UE Power Class 1 test requirements (network signalled value "NS_201")

Note: No test points are defined since there is no configuration where A-MPR is bigger than MPR

Table 6.2.3.5-2: UE Power Class 2 and 3 test requirements (network signalled value "NS_201")

Note: No test points are defined since there is no configuration where A-MPR is bigger than MPR

6.2.4 Configured transmitted power

6.2.4.1 Test purpose

To verify the UE transmitted power $P_{UMAX,f,c}$ is within the range defined prescribed by the specified nominal maximum output power and tolerance.

6.2.4.2 Test applicability

The requirements of this test are covered in test cases 6.2.1 Maximum output power, 6.2.2 Maximum output power reduction and 6.2.3 UE maximum output power with additional requirements to all types of NR UE release 15 and forward.

6.2.4.3 Minimum conformance requirements

The UE can configure its maximum output power. The configured UE maximum output power $P_{CMAX,f,c}$ for carrier f of a serving cell c is defined as that available to the reference point of a given transmitter branch that corresponds to the reference point of the higher-layer filtered RSRP measurement as specified in TS 38.215 [24].

The configured UE maximum output power $P_{CMAX,f,c}$ for carrier f of a serving cell c shall be set such that the corresponding measured peak EIRP $P_{UMAX,f,c}$ is within the following bounds

$$\begin{split} &P_{Powerclass} - MAX(MAX(MPR_{f,c}, A\text{-}MPR_{f,c}) + \Delta MB_{P,n}, P\text{-}MPR_{f,c}) - MAX\{T(MAX(MPR_{f,c}, A\text{-}MPR_{f,c})), T(P\text{-}MPR_{f,c})\} \leq \\ &P_{UMAX,f,c} \leq EIRP_{max} \end{split}$$

while the corresponding measured total radiated power $P_{TMAX,f,c}$ is bounded by

$$P_{TMAX,f,c} \leq TRP_{max}$$

with $P_{Powerclass}$ the UE power class as specified in sub-clause 6.2.1.1.3, EIRP_{max} the applicable maximum EIRP as specified in sub-clause 6.2.1.1.3, MPR_{f,c} as specified in sub-clause 6.2.2.3, A-MPR_{f,c} as specified in sub-clause 6.2.3.3, Δ MB_{P,n} the peak EIRP relaxation as specified in section 6.2.1.1.3 and TRP_{max} the maximum TRP for the UE power class as specified in sub-clause 6.2.1.1.3.

maxUplinkDutyCycle-FR2 as defined in TS 38.306 [14] is the UEcapability to facilitate to electromagnetic power density exposure requirements.

If the field of UE capability maxUplinkDutyCycle-FR2 is present and the percentage of uplink symbols transmitted within any 1 s evaluation period is larger than maxUplinkDutyCycle-FR2, the UE follows the uplink scheduling and can apply P-MPR_{f,c}.

If the field of UE capability *maxUplinkDutyCycle-FR2* is absent, the compliance to electromagnetic power density exposure requirements are ensured by means of scaling down the power density or by other means.

 $P ext{-MPR}_{f,c}$ is the allowed maximum output power reduction. The UE shall apply $P ext{-MPR}_{f,c}$ for carrier f of serving cell c only for the cases described below. For UE conformance testing $P ext{-MPR}_{f,c}$ shall be 0 dB.

- a) ensuring compliance with applicable electromagnetic power density exposure requirements and addressing unwanted emissions / self-defence requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;
- b) ensuring compliance with applicable electromagnetic power density exposure requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.
- NOTE 1: P-MPR_{f,c} was introduced in the $P_{CMAX,f,c}$ equation such that the UE can report to the gNB the available maximum output transmit power. This information can be used by the gNB for scheduling decisions.
- NOTE 2: P-MPR_{f,c} and *maxUplinkDutyCycle-FR2* may impact the maximum uplink performance for the selected UL transmission path.

The tolerance $T(\Delta P)$ for applicable values of ΔP (values in dB) is specified in Table 6.2.4.3-1.

Tolerance T(ΔP) **Operating Band** ΔP (dB) (dB) $\Delta P = 0$ 0 [1.5] $0 < \Delta P \le 2$ $2 < \Delta P \le 3$ [2.0]3 < ΔP ≤ 4 [3.0]n257, n258, n260, n261 $4 < \Delta P \le 5$ [4.0]

Table 6.2.4.3-1: Pumax,f,c tolerance

NOTE: X is the value such that $P_{umax,f,c}$ lower bound, $P_{Powerclass}$ - ΔP - $T(\Delta P)$ = minimum output power specified in subclause 6.3.1

 $5 < \Delta P \le 10$

 $10 < \Delta P \le 15$

[5.0] [7.0]

6.2.4.4 Test description

This test is covered by clause 6.2.1 Maximum output power, 6.2.2 Maximum output power reduction and 6.2.3 UE maximum output power with additional requirements.

6.2.4.5 Test requirements

This test is covered by clause 6.2.1 Maximum output power, 6.2.2 Maximum output power reduction and 6.2.3 UE maximum output power with additional requirements.

6.2A Transmit power for CA

6.2A.1 UE maximum output power for CA

6.2A.1.0 Minimum conformance requirements

For downlink intra-band contiguous and non-contiguous carrier aggregation with a single uplink component carrier configured in the NR band, the maximum output power is specified in subclause 6.2.1.1.3.

For uplink intra-band contiguous carrier aggregation for any CA bandwidth class, the maximum output power is specified in subclause 6.2.1.1.3.

Power class 3 is default power class.

6.2A.1.1 UE maximum output power - EIRP and TRP for CA

6.2A.1.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances are FFS for power class 1, 2 and 4.
- Test Procedures for EIRP beam peak Extreme Conditions are FFS.

6.2A.1.1.1.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth for CA under the deployment scenarios where additional requirements are specified.

6.2A.1.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.2A.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.0.

6.2A.1.1.4 Test description

6.2A.1.1.4.1 Initial condition

CCj frequencies defined in TS38.508-1 [10]

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.2A.1.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2A.1.1.4.1-1: Intra-band Contiguous CA Test Configuration Table

Default Conditions

Test Envir	onment as specified in TS	Normal, TL/VL, TL/VH, TH/VL, TH/VH (NOTE 2)				
•	uencies as specified in TS 3	use [4.3.1.2.3] for	Low and High range			
	CA bandwidth classes					
	combination setting (aggreg	Highest aggregated BW of t	the CA configuration			
	n Table 5.5A.1-1 for the CA		s bandwidth			
combination	on sets supported by the U					
Test SCS	as specified in Table 5.3.5-	1		120 kHz		
		T	Test Parameters			
(CA Configuration / Aggreg	Uplink Configuration				
Configuration						
Test ID	CC & Mapping	CBW (MHz)	RB allocation	Modulation	RB allocation	
		` ′			(NIOTE 4)	
	(NOTE 4)				(NOTE 1)	
1	(NOTE 4) PCC/CC1	100	N/A for this test	DFT-s-OFDM QPSK	Inner Full	
1		100 100	N/A for this test	DFT-s-OFDM QPSK		
_	PCC/CC1		N/A for this test	DFT-s-OFDM QPSK - DFT-s-OFDM QPSK		
1 2	PCC/CC1 SCC/CC2	100	N/A for this test	-	Inner Full -	
	PCC/CC1 SCC/CC2 PCC/CC1	100 200 200		- DFT-s-OFDM QPSK	Inner Full -	
2 NOTE 1:	PCC/CC1 SCC/CC2 PCC/CC1 SCC/CC2	100 200 200 of each RF allocation	n is defined in Table 6.1-	- DFT-s-OFDM QPSK	Inner Full -	
2 NOTE 1:	PCC/CC1 SCC/CC2 PCC/CC1 SCC/CC2 The specific configuration Test environment for UE M	100 200 200 of each RF allocation Max TRP is normal or	n is defined in Table 6.1- nly.	DFT-s-OFDM QPSK -	Inner Full - Inner Full	
2 NOTE 1: NOTE 2:	PCC/CC1 SCC/CC2 PCC/CC1 SCC/CC2 The specific configuration Test environment for UE N CA Configuration Test cum	100 200 200 of each RF allocation Max TRP is normal or nulative aggregated E	n is defined in Table 6.1- nly. BW settings are checked	DFT-s-OFDM QPSK - 1. I separately for each CA Cont	Inner Full - Inner Full	
2 NOTE 1: NOTE 2: NOTE 3:	PCC/CC1 SCC/CC2 PCC/CC1 SCC/CC2 The specific configuration Test environment for UE N CA Configuration Test curr applicable aggregated cha	100 200 200 of each RF allocation Max TRP is normal or nulative aggregated E annel bandwidths are	n is defined in Table 6.1- nly. BW settings are checked specified in Table 5.5A.	DFT-s-OFDM QPSK - 1. I separately for each CA Cont	Inner Full - Inner Full strain figuration, which	

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.2A.1.1.1.4.1-1.

- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2A.1.1.1.4.3

6.2A.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] subclause 5.5.1. Message contents are defined in clause 6.2A.1.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [x], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.2A.1.1.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in section 6.2A.1.1.1.4.3.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec starting from the first TPC command in this step to ensure that the UE transmits at its maximum output power.
- 6. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (Note 1) for the UE Tx beam selection to complete.
- 7. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 8. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.2A.1.1.1.5-1. EIRP test procedure is defined in Annex K.1.3. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 9. Measure TRP of the transmitted signal for the assigned NR channel with a rectangular measurement filter with bandwidths according to Table 6.2A.1.1.1.5-1. Total radiated power is measured according to TRP measurement procedure defined in Annex K.1.7 and measurement grid specified in Annex M.4. TRP is calculated considering both polarizations, theta and phi.
- 10. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.2A.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.2A.1.1.1.5 Test Requirements

The EIRP derived in step 8 and TRP derived in step 9 shall not exceed the values specified in Table 6.2A.1.1.1.5-1 to Table 6.2A.1.1.1.5-4.Table 6.2A.1.1.1.5-1: Intra-band Contiguous CA UE maximum output test requirements for power class 1

UL CA configuration	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
CA_n257D	35+TT	55	40-TT
CA_n257G	35+TT	55	40-TT
CA_n260D	35+TT	55	38-TT
CA_n260G	35+TT	55	38-TT
CA_n260O	35+TT	55	38-TT
CA_n261D	35+TT	55	40-TT
CA_n261G	35+TT	55	40-TT
CA_n261O	35+TT	55	40-TT

Table 6.2A.1.1.5-2: Intra-band Contiguous CA UE maximum output test requirements for power class 2

UL CA configuration	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
CA_n257D	23+TT	43	29-TT
CA_n257G	23+TT	43	29-TT
CA_n261D	23+TT	43	29-TT
CA_n261G	23+TT	43	29-TT
CA_n261O	23+TT	43	29-TT

Table 6.2A.1.1.1.5-3: Intra-band Contiguous CA UE maximum output test requirements for power class 3

UL CA configuration	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
CA_n257D	23+TT	43	22.4-TT
CA_n257G	23+TT	43	22.4-TT
CA_n260D	23+TT	43	20.6-TT
CA_n260G	23+TT	43	20.6-TT
CA_n260O	23+TT	43	20.6-TT
CA_n261D	23+TT	43	22.4-TT
CA_n261G	23+TT	43	22.4-TT
CA_n261O	23+TT	43	22.4-TT

Table 6.2A.1.1.5-3a: UE maximum output test requirements for power class 3 for multi band UE declaring MBp>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)			Maximum sum of MB _p , ∑MB _P (dB) (Note 3)	Comments	
		CA_n257D/G	CA_n258	CA_n260D/G/	CA_n261D/G/]	
				0	0		
1	n257, n258	22.4-TT-MB _p				1.3	
2	n257, n260	22.4-TT-MB _p		20.6-TT-MB _p		1.0	
3	n258, n260			20.6-TT-MB _p		1.0	
4	n258, n261				22.4-TT-MB _p	1.0	
5	n260, n261					0.0	No relaxation factor allowed
6	n257, n258, n260	22.4-TT-MB _p		20.6-TT-MB _p		1.7	
7	n257, n258, n261	22.4-TT-MB _p			22.4-TT-MB _p	1.7	
8	n257, n260, n261	22.4-TT-MB _p		20.6-TT-MB _p	22.4-TT-MB _p	0.5	
9	n258, n260, n261	1		20.6-TT-MB _p	22.4-TT-MB _p	1.5	
10	n257, n258, n260, n261	22.4-TT-MB _p		20.6-TT-MB _p	22.4-TT-MB _p	1.7	

Note 1: MB_p is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-2 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_p over all supported FR2 bands as defined in clause 6.2.1.1.3.3

Table 6.2A.1.1.1.5-3b: Test Tolerance (Max TRP for Power class 3) (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	2.65 dB	2.77 dB

Table 6.2A.1.1.1.5-3c: Test Tolerance (Min peak EIRP for Power class 3) (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30cm	2.87 dB	2.87 dB

Table 6.2A.1.1.5-4: Intra-band Contiguous CA UE maximum output test requirements for power class 4

UL CA configuration	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
CA_n257D	23+TT	43	34-TT
CA_n257G	23+TT	43	34-TT
CA_n260B	23+TT	43	31-TT
CA_n260D	23+TT	43	31-TT
CA_n260G	23+TT	43	31-TT
CA_n260O	23+TT	43	31-TT
CA_n261B	23+TT	43	34-TT
CA_n261D	23+TT	43	34-TT
CA_n261G	23+TT	43	34-TT
CA_n261O	23+TT	43	34-TT

6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.2A.1.1.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth for CA under the deployment scenarios where additional requirements are specified.

6.2A.1.1.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.2A.1.1.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.1.0.

6.2A.1.1.2.4 Test description

Same as in clause 6.2A.1.1.1.4 with following exceptions:

- Instead of Table 6.2A.1.1.1.4.1-1 → use Table 6.2A.1.1.2.4.1-1.
- Instead of clause 6.2A.1.1.1.4.3 → use clause 6.2A.1.1.2.4.3.
- Instead of Table 6.2A.1.1.1.5-1 → use Table 6.2A.1.1.2.5-1.

Table 6.2A.1.1.2.4.1-1: Test Configuration Table [TBD]

6.2A.1.1.2.5 Test Requirements

The EIRP derived in step 8 and TRP derived in step 9 shall not exceed the values specified in Table 6.2A.1.1.2.5-1.

Table 6.2A.1.1.2.5-1: UE maximum output test requirements for power class 3

CA configuration	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
CA_n257H	23+TT	43	22.4-TT

Table 6.2A.1.1.2.5-1a: Test Tolerance (Max TRP for Power class 3) (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	2.65 dB	2.77 dB

Table 6.2A.1.1.2.5-1b: Test Tolerance (Min peak EIRP for Power class 3) (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	2.87 dB	2.87 dB

6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.2A.1.1.3.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth for CA under the deployment scenarios where additional requirements are specified.

6.2A.1.1.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.2A.1.1.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.1.0.

6.2A.1.1.3.4 Test description

6.2A.1.1.3.4.1 Initial condition

Same as in clause 6.2A.1.1.1.4 with following exceptions:

- Instead of Table 6.2A.1.1.1.4.1-1 → use Table 6.2A.1.1.3.4.1-1.
- Instead of clause 6.2A.1.1.1.4.3 → use clause 6.2A.1.1.3.4.3.
- Instead of Table 6.2A.1.1.1.5-1 → use Table 6.2A.1.1.3.5-1.

Table 6.2A.1.1.3.4.1-1: Test Configuration Table

[TBD]

6.2A.1.1.3.5 Test Requirements

The EIRP derived in step 8 and TRP derived in step 9 shall not exceed the values specified in Table 6.2A.1.1.3.5-1.

Table 6.2A.1.1.3.5-1: UE maximum output test requirements for power class 3

CA configuration	Max TRP (dBm)	Max EIRP (dBm)	Min peak EIRP (dBm)
CA_n257I	23+TT	43	22.4-TT

Table 6.2A.1.1.3.5-1a: Test Tolerance (Max TRP for Power class 3) (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	2.65 dB	2.77 dB

Table 6.2A.1.1.3.5-1b: Test Tolerance (Min peak EIRP for Power class 3) (Aggregated BW \leq 400MHz)

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	2.87 dB	2.87 dB

6.2A.1.2 UE maximum output power - Spherical coverage

6.2A.1.2.1 Spherical coverage for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.2A.1.2.1.1 Test purpose

To verify that the spatial coverage of the UE for CA in expected directions is acceptable.

6.2A.1.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.2A.1.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.0.

6.2A.1.2.1.4 Test description

6.2A.1.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.2A.1.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2A.1.2.1.4.1-1: Intra-band Contiguous CA Test Configuration Table (single CC requirement)

Default Conditions				
Test Environment as specified in TS 38.508-1 [10] subclause Normal, TL/VL, TL/VH, TH/VL, TH/VH (NOTE 2)				
[4.1]				
Test Frequencies as specified in TS 38.508-1 [10] subclause	Low and High range			
[4.3.1.2.3] for different CA bandwidth classes				
Test CC Combination setting (aggregated BW of the CA	Highest aggregated BW (≤ 400 MHz aggregated			
configuration) as specified in Table 5.5A.1-1 for the CA	channel bandwidth)			
Configuration across bandwidth combination sets supported				
by the UE				
Test SCS as specified in Table 5.3.5-1	120 kHz			
Test Parameters				

	iest Parameters					
CA Configuration / Aggregated BW		Downlink	Uplink Configuration			
			Configuration			
Test ID	CC & Mapping (NOTE	CBW (MHz)	RB allocation	Modulation	RB allocation	
	4)				(NOTE 1)	
1	PCC/CC1	100	N/A for this test	DFT-s-OFDM QPSK	Inner Full	
	SCC/CC2	100		-	-	
2	PCC/CC1	200		DFT-s-OFDM QPSK	Inner Full	
	SCC/CC2	200		-	-	

- NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.
- NOTE 2: CA Configuration Test cumulative aggregated BW settings are checked separately for each CA Configuration, which applicable aggregated channel bandwidths are specified in Table 5.5A.1-1.
- NOTE 3: If the UE supports multiple CC Combinations in the CA Configuration with the same cumulative aggregated BW, only the combination with the lowest PCC ChBW is tested.
- NOTE 4: PCC/CCi and SCC/CCj means PCC is on component carrier CCi and SCC is on component carrier CCj, with CCi or CCj frequencies defined in TS38.508-1 [10].
 - 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
 - 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
 - 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and C.3.0 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
 - 4. The UL Reference Measurement channels are set according to Table 6.2A.1.2.1.4.1-1.

- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2A.1.2.1.4.3

6.2A.1.2.1.4.2 Test procedure

- 1. Configure PCC and SCC according to Annex C.0, C.1, C.2 and Annex C.3.0 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1 Procedure to configure SCC(s) for NR RF CA testing. Message contents are defined in clause 6.2A.1.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321, clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2A.1.2.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in section 6.2A.1.2.1.4.3.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec to ensure that the UE transmits at its maximum output power.
- 6. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (Note 1) for the UE Tx beam selection to complete.
- 7. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration. Repeat EIRP measurements for all directions in the sphere according to EIRP measurement procedure defined in Annex K.1.3. After a rotation, allow at least BEAM_SELECT_WAIT_TIME (Note 1) for UE to find the best beam to use. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 8. Calculate a cumulative distribution function for the measured EIRP values.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.2A.1.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.2A.1.2.1.5 Test requirement

The defined %-tile EIRP in measurement distribution derived in step 8 shall exceed the values specified in Table 6.2A.1.2.1.5-1 to Table 6.2A.1.2.1.5-4.

Table 6.2A.1.2.1.5-1: Intra-band Contiguous CA UE spherical coverage for power class 1

Operating band	Min EIRP at 85%-tile CDF (dBm)
CA_n257D	32.0-TT
CA_n257G	32.0-TT
CA_n260D	30.0-TT
CA_n260G	30.0-TT
CA_n260O	30.0-TT
CA_n261D	32.0-TT
CA_n261G	32.0-TT
CA n2610	32.0-TT

Table 6.2A.1.2.1.5-2: Intra-band Contiguous CA UE spherical coverage for power class 2

Operating band	Min EIRP at 60%-tile CDF (dBm)
CA_n257D	18.0-TT
CA_n257G	18.0-TT
CA_n261D	18.0-TT
CA_n261G	18.0-TT
CA_n261O	18.0-TT

Table 6.2A.1.2.1.5-3: Intra-band Contiguous CA UE spherical coverage for power class 3 for single band UE or multiband UE declaring $MB_s = 0$ in all FR2 bands

Operating band	Min EIRP at 50 th -tile CDF (dBm)
CA_n257D	11.5-TT
CA_n257G	11.5-TT
CA_n260D	8-TT
CA_n260G	8-TT
CA_n260O	8-TT
CA_n261D	11.5-TT
CA_n261G	11.5-TT
CA_n261O	11.5-TT

Table 6.2A.1.2.1.5-3a: UE spherical coverage for power class 3 for multi band UE declaring MB₅>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)			Maximum sum of MB _s , ∑MB _s (dB) (Note 3)	Comments	
		CA_n257D/G	CA_n258	CA_n260D/ G/O	CA_n261D/G/ O		
1	n257, n258	11.5-TT-MB _s				1.25	
2	n257, n260	11.5-TT-MB _s		8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
3	n258, n260			8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
4	n258, n261				11.5-TT-MB _s	1.25	
5	n260, n261			8-TT-MB _s	11.5-TT-MBs	0.75	No relaxation allowed for n260
6	n257, n258, n260	11.5-TT-MB _s		8-TT-MB _s		1.75	Maximum 0.4 dB relaxation allowed for n260
7	n257, n258, n261	11.5-TT-MB _s			11.5-TT-MB _s	1.75	
8	n257, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
9	n258, n260, n261			8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
10	n257, n258, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.75	Maximum 0.4 dB relaxation allowed for n260

Note 1: MB_s is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-3 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_s over all supported FR2 bands as defined in clause 6.2.1.1.3.3

Table 6.2A.1.2.1.5-4: Intra-band Contiguous CA UE spherical coverage for power class 4

Operating band	Min EIRP at 20%-tile CDF (dBm)
CA_n257D	25-TT
CA_n257G	25-TT
CA_n260D	19-TT
CA_n260G	19-TT
CA_n260O	19-TT
CA_n261D	25-TT
CA_n261G	25-TT
CA_n261O	25-TT

Table 6.2A.1.2.1.5-5: Test Tolerance (Spherical coverage) (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	FFS	FFS

6.2A.1.2.2 Spherical coverage for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.2A.1.2.2.1 Test purpose

To verify that the spatial coverage of the UE for CA in expected directions is acceptable.

6.2A.1.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.2A.1.2.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.0.

6.2A.1.2.2.4 Test description

6.2A.1.2.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.2A.1.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2A.1.2.2.4.1-1: Intra-band Contiguous CA Test Configuration Table (single CC requirement)

Default Conditions					
Test Environment as specified in TS 38.508-1 [10] subclause [4.1]	Normal, TL/VL, TL/VH, TH/VL, TH/VH (NOTE 2)				
Test Frequencies as specified in TS 38.508-1 [10] subclause	Low and High range				
[4.3.1.2.3] for different CA bandwidth classes					
Test CC Combination setting (aggregated BW of the CA	Highest aggregated BW (≤ 400 MHz aggregated				
configuration) as specified in Table 5.5A.1-1 for the CA	channel bandwidth)				
Configuration across bandwidth combination sets supported by					
the UE					
Test SCS as specified in Table 5.3.5-1	120 kHz				

	Test Parameters					
CA Configuration / Aggregated BW		Downlink Configuration	Uplink Configuration			
Test ID	CC & Mapping (NOTE 4)	CBW (MHz)	RB allocation	Modulation	RB allocation (NOTE 1)	
	PCC/CC1	100	N/A for this test	DFT-s-OFDM QPSK	Inner Full	
1	SCC/CC2	100		-	-	
	SCC/CC3	100		-	-	

- NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.
- NOTE 2: CA Configuration Test cumulative aggregated BW settings are checked separately for each CA Configuration, which applicable aggregated channel bandwidths are specified in Table 5.5A.1-1.
- NOTE 3: If the UE supports multiple CC Combinations in the CA Configuration with the same cumulative aggregated BW, only the combination with the lowest PCC ChBW is tested.
- NOTE 4: PCC/CCi and SCC/CCj means PCC is on component carrier CCi and SCC is on component carrier CCj, with CCi or CCj frequencies defined in TS38.508-1 [10].
 - 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
 - 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
 - 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and C.3.0 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
 - 4. The UL Reference Measurement channels are set according to Table 6.2A.1.2.2.4.1-1.
 - 5. Propagation conditions are set according to Annex B.0
 - 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2A.1.2.2.4.3

6.2A.1.2.2.4.2 Test procedure

- 1. Configure PCC and SCCs according to Annex C.0, C.1, C.2 and Annex C.3.0 for all downlink physical channels.
- 2. The SS shall configure SCCs as per TS 38.508-1 [10] clause 5.5.1 Procedure to configure SCC(s) for NR RF CA testing. Message contents are defined in clause 6.2A.1.2.2.4.3.
- 3. SS activates SCCs by sending the activation MAC CE (Refer TS 38.321[x], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2A.1.2.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in section 6.2A.1.2.2.4.3.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec to ensure that the UE transmits at its maximum output power.
- 6. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (Note 1) for the UE Tx beam selection to complete.

- 7. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration. Repeat EIRP measurements for all directions in the sphere according to EIRP measurement procedure defined in Annex K.1.3. After a rotation, allow at least BEAM_SELECT_WAIT_TIME (Note 1) for UE to find the best beam to use. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 8. Calculate a cumulative distribution function for the measured EIRP values.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.2A.1.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.2A.1.2.2.5 Test requirement

The defined %-tile EIRP in measurement distribution derived in step 8 shall exceed the values specified in Table 6.2A.1.2.2.5-1 to Table 6.2A.1.2.2.5-4.

Table 6.2A.1.2.2.5-1: Intra-band Contiguous CA UE spherical coverage for power class 1

Operating band	Min EIRP at 85%-tile CDF (dBm)
CA_n257H	32.0-TT
CA_n260H	30.0-TT
CA_n260P	30.0-TT
CA_n261H	32.0-TT
CA_n261P	32.0-TT

Table 6.2A.1.2.2.5-2: Intra-band Contiguous CA UE spherical coverage for power class 2

Operating band	Min EIRP at 60%-tile CDF (dBm)
CA_n257H	18.0-TT
CA_n261H	18.0-TT
CA n261P	18.0-TT

Table 6.2A.1.2.2.5-3: Intra-band Contiguous CA UE spherical coverage for power class 3 for single band UE or multiband UE declaring $MB_s = 0$ in all FR2 bands

Operating band	Min EIRP at 50 th -tile CDF (dBm)
CA_n257H	11.5-TT
CA_n260H	8-TT
CA_n260P	8-TT
CA_n261H	11.5-TT
CA_n261P	11.5-TT

Table 6.2A.1.2.2.5-3a: UE spherical coverage for power class 3 for multi band UE declaring MB₅>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)			Maximum sum of MB₅, ∑MB₅ (dB) (Note 3)	Comments	
		CA_n257H	CA_n258	CA_n260H/ P	CA_n261H/P		
1	n257, n258	11.5-TT-MB _s				1.25	
2	n257, n260	11.5-TT-MB _s		8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
3	n258, n260			8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
4	n258, n261				11.5-TT-MB _s	1.25	
5	n260, n261			8-TT-MB _s	11.5-TT-MBs	0.75	No relaxation allowed for n260
6	n257, n258, n260	11.5-TT-MB _s		8-TT-MB _s		1.75	Maximum 0.4 dB relaxation allowed for n260
7	n257, n258, n261	11.5-TT-MB _s			11.5-TT-MB _s	1.75	
8	n257, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
9	n258, n260, n261			8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
10	n257, n258, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.75	Maximum 0.4 dB relaxation allowed for n260

Note 1: MB_s is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-3 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Table 6.2A.1.2.2.5-4: Intra-band Contiguous CA UE spherical coverage for power class 4

Operating band	Min EIRP at 20%-tile CDF (dBm)
CA_n257H	25-TT
CA_n260H	19-TT
CA_n260P	19-TT
CA_n261H	25-TT
CA_n261P	25-TT

Table 6.2A.1.2.2.5-5: Test Tolerance (Spherical coverage) (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Ouiet Zone size ≤ 30 cm)	FFS	FFS

6.2A.1.2.3 Spherical coverage for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.2A.1.2.3.1 Test purpose

To verify that the spatial coverage of the UE for CA in expected directions is acceptable.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_s over all supported FR2 bands as defined in clause 6.2.1.1.3.3

6.2A.1.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.2A.1.2.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.0.

6.2A.1.2.3.4 Test description

6.2A.1.2.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.2A.1.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2A.1.2.3.4.1-1: Intra-band Contiguous CA Test Configuration Table (single CC requirement)

CA Configuration / Aggregated BW	Downli	ink	Uplink Configuration	
	Test Param	neters		
Test SCS as specified in Table 5.3.5-1	1	120 kHz		
supported by the UE				
CA Configuration across bandwidth combination	sets			
the CA configuration) as specified in Table 5.5A.1		bandwidth)		
Test CC Combination setting (cumulative aggregation)				
according to Table 6.1-2				
and PCC and SCC are mapped onto physical fre				
subclause [4.3.1.2.3] for different CA bandwidth of				
Test Frequencies as specified in TS 38.508-1 [10)] L	Low and Hi	gh range	
subclause [4.1]	'			
Test Environment as specified in TS 38.508-1 [10	01 [0	Normal		
Default Conditions				

	Tool Latamotoro					
CA Configuration / Aggregated BW		Downlink Uplink Config Configuration		guration		
Test ID	CC & Mapping (NOTE 4)	ChBw	RB allocation	Modulation	RB allocation (NOTE 1)	
	PCC/CC1	100	N/A for this test	DFT-s-OFDM QPSK	Inner Full	
1	SCC/CC2	100		-	-	
1	SCC/CC3	100		-	-	
	SCC/CC4	100		-	-	

- NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.
- NOTE 2: CA Configuration Test cumulative aggregated BW settings are checked separately for each CA Configuration, which applicable aggregated channel bandwidths are specified in Table 5.5A.1-1.
- NOTE 3: If the UE supports multiple CC Combinations in the CA Configuration with the same cumulative aggregated BW, only the combination with the lowest PCC ChBW is tested.
- NOTE 4: PCC/CCi and SCC/CCj means PCC is on component carrier CCi and SCC is on component carrier CCj, with CCi or CCj frequencies defined in TS38.508-1 [10].
 - 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
 - 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
 - 3. Downlink signals for PCC are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
 - 4. The UL Reference Measurement channels are set according to Table 6.2A.1.2.3.4.1-1.
 - 5. Propagation conditions are set according to Annex B.0

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2A.1.2.3.4.3

6.2A.1.2.3.4.2 Test procedure

- 1. Configure PCC and SCC according to Annex C.0, C.1, C.2 and Annex C.3.0 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1 Procedure to configure SCC(s) for NR RF CA testing. Message contents are defined in clause 6.2A.1.2.3.4.3.
- 3. SS activates SCCs by sending the activation MAC CE (Refer TS 38.321, clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2A.1.2.3.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in section 6.2A.1.2.3.4.3.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec to ensure that the UE transmits at its maximum output power.
- 6. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (Note 1) for the UE Tx beam selection to complete.
- 7. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration. Repeat EIRP measurements for all directions in the sphere according to EIRP measurement procedure defined in Annex K.1.3. After a rotation, allow at least BEAM_SELECT_WAIT_TIME (Note 1) for UE to find the best beam to use. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 8. Calculate a cumulative distribution function for the measured EIRP values.

NOTE 1: The BEAM SELECT WAIT TIME default value is defined in Annex K.1.1.

6.2A.1.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.2A.1.2.3.5 Test requirement

The defined %-tile EIRP in measurement distribution derived in step 8 shall exceed the values specified in Table 6.2A.1.2.3.5-1 to Table 6.2A.1.2.3.5-4.

Table 6.2A.1.2.3.5-1: Intra-band Contiguous CA UE spherical coverage for power class 1

Operating band	Min EIRP at 85%-tile CDF (dBm)
CA_n257I	32.0-TT
CA_n260I	30.0-TT
CA_n260Q	30.0-TT
CA_n261I	32.0-TT
CA_n261Q	32.0-TT

Table 6.2A.1.2.3.5-2: Intra-band Contiguous CA UE spherical coverage for power class 2

Operating band	Min EIRP at 60%-tile CDF (dBm)
CA_n257I	32.0-TT
CA_n261I	32.0-TT
CA_n261Q	32.0-TT

Table 6.2A.1.2.3.5-3: Intra-band Contiguous CA UE spherical coverage for power class 3 for single band UE or multiband UE declaring $MB_s = 0$ in all FR2 bands

Operating band	Min EIRP at 50%-tile CDF (dBm)
CA_n257I	11.5-TT
CA_n260I	8-TT
CA_n260Q	8-TT
CA_n261I	11.5-TT
CA_n261Q	11.5-TT

Table 6.2A.1.2.3.5-3a: UE spherical coverage for power class 3 for multi band UE declaring MB₅>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)			Maximum sum of MB _s , ∑MB _s (dB) (Note 3)	Comments	
		CA_n257I	CA_n258	CA_n260I/Q	CA_n261I/Q		
1	n257, n258	11.5-TT-MB _s				1.25	
2	n257, n260	11.5-TT-MB _s		8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
3	n258, n260			8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
4	n258, n261				11.5-TT-MB _s	1.25	
5	n260, n261			8-TT-MB _s	11.5-TT-MBs	0.75	No relaxation allowed for n260
6	n257, n258, n260	11.5-TT-MB _s		8-TT-MB _s		1.75	Maximum 0.4 dB relaxation allowed for n260
7	n257, n258, n261	11.5-TT-MBs			11.5-TT-MB _s	1.75	
8	n257, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
9	n258, n260, n261			8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
10	n257, n258, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.75	Maximum 0.4 dB relaxation allowed for n260

Note 1: MB_s is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-3 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_s over all supported FR2 bands as defined in clause 6.2.1.1.3.3

Table 6.2A.1.2.3.5-4: Intra-band Contiguous CA UE spherical coverage for power class 4

Operating band	Min EIRP at 20%-tile CDF (dBm)
CA_n257I	25-TT
CA_n260I	19-TT
CA_n260Q	19-TT
CA_n261I	25-TT
CA_n261Q	25-TT

Table 6.2A.1.2.3.5-5: Test Tolerance (Spherical coverage) (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	FFS	FFS

6.2A.1.2.4 Spherical coverage for CA (5UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

Measurement Uncertainties and Test Tolerances are FFS.

- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.2A.1.2.4.1 Test purpose

To verify that the spatial coverage of the UE for CA in expected directions is acceptable.

6.2A.1.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 5UL CA.

6.2A.1.2.4.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.0.

6.2A.1.2.4.4 Test description

Same as in clause 6.2A.1.2.1.4 with following exceptions:

- Instead of Table 6.2A.1.1.2.4.1-1 → use Table 6.2A.1.2.4.4.1-1.
- Instead of Table 6.2A.1.2.1.5-1 to 5→ use Table 6.2A.1.2.4.5-1 to 5.

Table 6.2A.1.2.4.4.1-1: Test Configuration Table

FFS

6.2A.1.2.4.5 Test requirement

The defined %-tile EIRP in measurement distribution derived in step 8 shall exceed the values specified in Table 6.2A.1.2.4.5-1 to Table 6.2A.1.2.4.5-4.

Table 6.2A.1.2.4.5-1: Intra-band Contiguous CA UE spherical coverage for power class 1

Operating band	Min EIRP at 85%-tile CDF (dBm)
CA_n257J	32.0-TT
CA_n260J	30.0-TT
CA n261J	32.0-TT

Table 6.2A.1.2.4.5-2: Intra-band Contiguous CA UE spherical coverage for power class 2

Operating band	Min EIRP at 60%-tile CDF (dBm)
CA_n257J	18.0-TT
CA n261J	18.0-TT

Table 6.2A.1.2.4.5-3: Intra-band Contiguous CA UE spherical coverage for power class 3 for single band UE or multiband UE declaring $MB_s = 0$ in all FR2 bands

Operating band	Min EIRP at 50 ^t %-tile CDF (dBm)
CA_n257J	11.5-TT
CA_n260J	8-TT
CA n261J	11.5-TT

Table 6.2A.1.2.4.5-3a: UE spherical coverage for power class 3 for multi band UE declaring MB₅>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)			Maximum sum of MB _s , ∑MB _s (dB) (Note 3)	Comments	
		CA_n257J	CA_n258	CA_n260J	CA_n261J		
1	n257, n258	11.5-TT-MB _s				1.25	
2	n257, n260	11.5-TT-MB _s		8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
3	n258, n260			8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
4	n258, n261				11.5-TT-MB _s	1.25	
5	n260, n261			8-TT-MB _s	11.5-TT-MBs	0.75	No relaxation allowed for n260
6	n257, n258, n260	11.5-TT-MB _s		8-TT-MB _s		1.75	Maximum 0.4 dB relaxation allowed for n260
7	n257, n258, n261	11.5-TT-MB _s			11.5-TT-MB _s	1.75	
8	n257, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
9	n258, n260, n261		_	8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
10	n257, n258, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.75	Maximum 0.4 dB relaxation allowed for n260

Note 1: MB_s is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-3 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Table 6.2A.1.2.4.5-4: Intra-band Contiguous CA UE spherical coverage for power class 4

Operating band	Min EIRP at 20%-tile CDF (dBm)
CA_n257J	25-TT
CA_n260J	19-TT
CA n261J	25-TT

Table 6.2A.1.2.4.5-5: Test Tolerance (Spherical coverage) (400MHz < Aggregated BW ≤ 800MHz)

Test Metric	FR2a	FR2b	
IFF (Quiet Zone size ≤ 30 cm)	FFS	FFS	

6.2A.1.2.5 Spherical coverage for CA (6UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.2A.1.2.5.1 Test purpose

To verify that the spatial coverage of the UE for CA in expected directions is acceptable.

6.2A.1.2.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 6UL CA.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_s over all supported FR2 bands as defined in clause 6.2.1.1.3.3

6.2A.1.2.5.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.0.

6.2A.1.2.5.4 Test description

Same as in clause 6.2A.1.2.1.4 with following exceptions:

- Instead of Table 6.2A.1.1.2.4.1-1 → use Table 6.2A.1.2.5.4.1-1.
- Instead of Table 6.2A.1.2.1.5-1 to 5 → use Table 6.2A.1.2.5.5-1 to 5.

Table 6.2A.1.2.5.4.1-1: Test Configuration Table

FFS

6.2A.1.2.5.5 Test requirement

The defined %-tile EIRP in measurement distribution derived in step 8 shall exceed the values specified in Table 6.2A.1.2.5.5-1 to Table 6.2A.1.2.5.5-4.

Table 6.2A.1.2.5.5-1: Intra-band Contiguous CA UE spherical coverage for power class 1

Operating band	Min EIRP at 85%-tile CDF (dBm)
CA_n257K	32.0-TT
CA_n260K	30.0-TT
CA n261K	32.0-TT

Table 6.2A.1.2.5.5-2: Intra-band Contiguous CA UE spherical coverage for power class 2

Operating band	Min EIRP at 60%-tile CDF (dBm)
CA_n257K	18.0-TT
CA_n261K	18.0-TT

Table 6.2A.1.2.5.5-3: Intra-band Contiguous CA UE spherical coverage for power class 3 for single band UE or multiband UE declaring $MB_s = 0$ in all FR2 bands

Operating band	Min EIRP at 50 ¹ %-tile CDF (dBm)
CA_n257K	11.5-TT
CA_n260K	8-TT
CA_n261K	11.5-TT

Table 6.2A.1.2.5.5-3a: UE spherical coverage for power class 3 for multi band UE declaring MB₅>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)			Maximum sum of MB₅, ∑MB₅ (dB) (Note 3)	Comments	
		CA_n257J	CA_n258	CA_n260J	CA_n261J		
1	n257, n258	11.5-TT-MB _s				1.25	
2	n257, n260	11.5-TT-MB _s		8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
3	n258, n260			8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
4	n258, n261				11.5-TT-MB _s	1.25	
5	n260, n261			8-TT-MB _s	11.5-TT-MBs	0.75	No relaxation allowed for n260
6	n257, n258, n260	11.5-TT-MB _s		8-TT-MB _s		1.75	Maximum 0.4 dB relaxation allowed for n260
7	n257, n258, n261	11.5-TT-MB _s			11.5-TT-MB _s	1.75	
8	n257, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
9	n258, n260, n261			8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
10	n257, n258, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.75	Maximum 0.4 dB relaxation allowed for n260

Note 1: MB_s is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-3 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_s over all supported FR2 bands as defined in clause 6.2.1.1.3.3

Table 6.2A.1.2.5.5-4: Intra-band Contiguous CA UE spherical coverage for power class 4

Operating band	Min EIRP at 20%-tile CDF (dBm)
CA_n257K	25-TT
CA_n260K	19-TT
CA n261K	25-TT

Table 6.2A.1.2.5.5-5: Test Tolerance (Spherical coverage) (400MHz < Aggregated BW ≤ 800MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	FFS	FFS

6.2A.1.2.6 Spherical coverage for CA (7UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.2A.1.2.6.1 Test purpose

To verify that the spatial coverage of the UE for CA in expected directions is acceptable.

6.2A.1.2.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 7UL CA.

6.2A.1.2.6.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.0.

6.2A.1.2.6.4 Test description

Same as in clause 6.2A.1.2.1.4 with following exceptions:

- Instead of Table 6.2A.1.1.2.4.1-1 → use Table 6.2A.1.2.6.4.1-1.
- Instead of Table 6.2A.1.2.1.5-1 to Table 6.2A.1.2.1.5-5 → use Table 6.2A.1.2.6.5-1 to Table 6.2A.1.2.6.5-5.

Table 6.2A.1.2.6.4.1-1: Test Configuration Table

FFS

6.2A.1.2.6.5 Test requirement

The defined %-tile EIRP in measurement distribution derived in step 8 shall exceed the values specified in Table 6.2A.1.2.6.5-1 to Table 6.2A.1.2.6.5-4.

Table 6.2A.1.2.6.5-1: Intra-band Contiguous CA UE spherical coverage for power class 1

Operating band	Min EIRP at 85%-tile CDF (dBm)
CA_n257L	32.0-TT
CA_n260L	30.0-TT
CA n261L	32.0-TT

Table 6.2A.1.2.6.5-2: Intra-band Contiguous CA UE spherical coverage for power class 2

Operating band	Min EIRP at 60%-tile CDF (dBm)
CA_n257L	18.0-TT
CA_n261L	18.0-TT

Table 6.2A.1.2.6.5-3: Intra-band Contiguous CA UE spherical coverage for power class 3 for single band UE or multiband UE declaring $MB_s = 0$ in all FR2 bands

Operating band	Min EIRP at 50 ^t %-tile CDF (dBm)
CA_n257L	11.5-TT
CA_n260L	8-TT
CA_n261L	11.5-TT

Table 6.2A.1.2.6.5-3a: UE spherical coverage for power class 3 for multi band UE declaring MB₅>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)			Maximum sum of MB₅, ∑MB₅ (dB) (Note 3)	Comments	
		CA_n257L	CA_n258	CA_n260L	CA_n261L		
1	n257, n258	11.5-TT-MB _s				1.25	
2	n257, n260	11.5-TT-MB _s		8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
3	n258, n260			8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
4	n258, n261				11.5-TT-MB _s	1.25	
5	n260, n261			8-TT-MB _s	11.5-TT-MBs	0.75	No relaxation allowed for n260
6	n257, n258, n260	11.5-TT-MB _s		8-TT-MB _s		1.75	Maximum 0.4 dB relaxation allowed for n260
7	n257, n258, n261	11.5-TT-MB _s			11.5-TT-MB _s	1.75	
8	n257, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
9	n258, n260, n261			8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
10	n257, n258, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.75	Maximum 0.4 dB relaxation allowed for n260

Note 1: MB_s is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-3 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_s over all supported FR2 bands as defined in clause 6.2.1.1.3.3

Table 6.2A.1.2.6.5-4: Intra-band Contiguous CA UE spherical coverage for power class 4

Operating band	Min EIRP at 20%-tile CDF (dBm)
CA_n257L	25-TT
CA_n260L	19-TT
CA n261L	25-TT

Table 6.2A.1.2.6.5-5: Test Tolerance (Spherical coverage) (400MHz < Aggregated BW ≤ 800MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	FFS	FFS

6.2A.1.2.7 Spherical coverage for CA (8UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.2A.1.2.7.1 Test purpose

To verify that the spatial coverage of the UE for CA in expected directions is acceptable.

6.2A.1.2.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 8UL CA.

6.2A.1.2.7.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.1.0.

6.2A.1.2.7.4 Test description

Same as in clause 6.2A.1.2.1.4 with following exceptions:

- Instead of Table 6.2A.1.1.2.4.1-1 → use Table 6.2A.1.2.7.4.1-1.
- Instead of Table 6.2A.1.2.1.5-1 to Table 6.2A.1.2.1.5-5 → use Table 6.2A.1.2.7.5-1 to Table 6.2A.1.2.7.5-5.

Table 6.2A.1.2.7.4.1-1: Test Configuration Table

FFS

6.2A.1.2.7.5 Test requirement

The defined %-tile EIRP in measurement distribution derived in step 8 shall exceed the values specified in Table 6.2A.1.2.7.5-1 to Table 6.2A.1.2.7.5-4.

Table 6.2A.1.2.7.5-1: Intra-band Contiguous CA UE spherical coverage for power class 1

Operating band	Min EIRP at 85%-tile CDF (dBm)
CA_n257M	32.0-TT
CA_n260M	30.0-TT
CA_n261M	32.0-TT

Table 6.2A.1.2.7.5-2: Intra-band Contiguous CA UE spherical coverage for power class 2

Operating band	Min EIRP at 60%-tile CDF (dBm)
CA_n257M	18.0-TT
CA_n261M	18.0-TT

Table 6.2A.1.2.7.5-3: Intra-band Contiguous CA UE spherical coverage for power class 3 for single band UE or multiband UE declaring $MB_s = 0$ in all FR2 bands

Operating band	Min EIRP at 50 ^t %-tile CDF (dBm)
CA_n257M	11.5-TT
CA_n260M	8-TT
CA n261M	11.5-TT

Table 6.2A.1.2.7.5-3a: UE spherical coverage for power class 3 for multi band UE declaring MB₅>0 in any FR2 band

ID	Supported FR2 bands set	Test requirement (dB) (Note 1)			Maximum sum of MB _s , ∑MB _s (dB) (Note 3)	Comments	
		CA_n257M	CA_n258	CA_n260M	CA_n261M		
1	n257, n258	11.5-TT-MB _s				1.25	
2	n257, n260	11.5-TT-MB _s		8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
3	n258, n260			8-TT-MB _s		0.75	Maximum 0.4 dB relaxation allowed for n260
4	n258, n261				11.5-TT-MB _s	1.25	
5	n260, n261			8-TT-MB _s	11.5-TT-MBs	0.75	No relaxation allowed for n260
6	n257, n258, n260	11.5-TT-MB _s		8-TT-MB _s		1.75	Maximum 0.4 dB relaxation allowed for n260
7	n257, n258, n261	11.5-TT-MB _s			11.5-TT-MB _s	1.75	
8	n257, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
9	n258, n260, n261			8-TT-MB _s	11.5-TT-MB _s	1.25	Maximum 0.4 dB relaxation allowed for n260
10	n257, n258, n260, n261	11.5-TT-MB _s		8-TT-MB _s	11.5-TT-MB _s	1.75	Maximum 0.4 dB relaxation allowed for n260

Note 1: MB_s is the Multiband Relaxation factor declared by the UE for the tested band in table A.4.3.9-3 of TS38.508-2. This declaration shall fulfil the requirements in clause 6.2.1.1.3.3.

Note 2: All UE supported bands needs to be tested to ensure the multiband relaxation declaration is compliant

Note 3: Max allowed sum of MB_s over all supported FR2 bands as defined in clause 6.2.1.1.3.3

Table 6.2A.1.2.7.5-4: Intra-band Contiguous CA UE spherical coverage for power class 4

Operating band	Min EIRP at 20%-tile CDF (dBm)
CA_n257M	25-TT
CA_n260M	19-TT
CA n261M	25-TT

Table 6.2A.1.2.7.5-5: Test Tolerance (Spherical coverage) (400MHz < Aggregated BW ≤ 800MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	FFS	FFS

6.2A.2 UE maximum output power reduction for CA

6.2A.2.0 Minimum conformance requirements

6.2A.2.0.1 General

The UE is defined to be configured for CA operation when it has at least one of UL or DL configured for CA. In CA operation, the UE may reduce its maximum output power due to higher order modulations and transmit bandwidth configurations. This Maximum Power Reduction (MPR) is defined in subclauses below.

The cumulative aggregated channel bandwidth is defined as the frequency band from the lowest edge of the lowest CC to the upper edge of the highest CC of all UL and DL configured CCs. When the maximum output power of a UE is modified by MPR, the power limits specified in subclause 6.2A.4.0 apply.

The requirements in the following subclauses are only applicable to intra-band contiguous uplink CA, with the aggregated channel bandwidth up to 800 MHz.

6.2A.2.0.2 Maximum output power reduction for power class 1

For power class 1, MPR for UL contiguous allocations within the cumulative aggregated bandwidth is defined as:

$$MPR_{C CA} = max(MPR_{WT C CA}, MPR_{narrow})$$

Where,

 $MPR_{narrow} = 14.4 \text{ dB}$, when $BW_{alloc,RB}$ is less than or equal to 1.44 MHz, $MPR_{narrow} = 10 \text{ dB}$, when 1.44 MHz < $BW_{alloc,RB} \le 10.8 \text{ MHz}$, where $BW_{alloc,RB}$ is the bandwidth of the RB allocation size.

 $MPR_{WT_C_CA}$ is the maximum power reduction due to modulation orders, transmit bandwidth configurations, and waveform types. $MPR_{WT_contiguous}$ is defined in Table 6.2A.2.2-1.

Table 6.2A.2.0-1: Maximum power reduction (MPR_{WT C CA}) for UE power class 1

Wavefo	rm Type	Cumulative a	ggregated channel	bandwidth
			≥ 400 MHz and	≥ 800 MHz and
			< 800 MHz	≤ 1400 MHz
	Pi/2 BPSK	≤ 5.5 ¹	7.7 ¹	[8.2]
DFT-s-OFDM	QPSK	≤ 6.5 ¹	8.71	[9.7]
DF1-S-OFDIVI	16 QAM	≤ 6.5	8.7	[9.2]
	64 QAM	≤ 9.0	10.7	[11.2]
	QPSK	≤ 6.5	8.7	[8.7]
CP-OFDM	16 QAM	≤ 6.5	8.7	[8.7]
	64 QAM	≤ 9.0	10.7	[11.2]

NOTE 1: The following condition applies only when the cumulative aggregated BW of the CA configuration ≤ 400MHz. For a contiguous RB allocation in a single CC of the CA configuration, the single CC MPR of subclause 6.2.2.1 applies. The cumulative aggregated bandwidth shall be used as BW_{channel} in Tables 6.2.2.1-1 and 6.2.2.1-2. The applicable column in Tables 6.2.2.1-1 and 6.2.2.1-2 shall be determined based on the transmission bandwidth of the CA allocation in relation to the allocation regions defined in the tables.

When different waveform types exist across CCs, the requirement is set by the waveform type used in the configuration with the largest MPR_{C_CA} .

For non-contiguous RB allocations, the following rule for MPR applies:

$$MPR = max(MPR_{C_CA}, -10*A + [14.4])$$

Where:

 $A = N_{RB_alloc} / N_{RB_agg_C.}$

 $N_{\text{RB_alloc}}$ is the total number of allocated UL RBs

 $N_{RB_agg_C}$ is the number of the aggregated RBs within the fully allocated cumulative aggregated channel bandwidth

6.2A.2.0.3 Maximum output power reduction for power class 2

For power class 2, MPR specified in sub-clause 6.2A.2.0.4 applies.

Table 6.2A.2.0.3-1: (Void)

6.2A.2.0.4 Maximum output power reduction for power class 3

For power class 3, MPR for UL contiguous allocations within the cumulative aggregated bandwidth is denoted as MPR_{C_CA} and is defined in Table 6.2A.2.4-1.

Table 6.2A.2.0.4-1: Maximum power reduction (MPR_{C_CA}) for UE power class 3

		Cumulative aggregated bandwidth configuration				
		< 400 MHz	≥ 400 MHz and <	≥ 800 MHz and ≤		
			800 MHz	1400 MHz		
	Pi/2 BPSK	≤ 5.0¹	≤ 7.7 ¹	≤ [8.2]		
DFT-s-OFDM	QPSK	≤ 5.0¹	≤ 7.7 ¹	≤ [8.2]		
DF1-5-OFDIVI	16 QAM	≤ 6.5	≤ 8.7	≤ [9.3]		
	64 QAM	≤ 9.0	≤ 10.7	≤ [11.2]		
	QPSK	≤ 5.0	≤ 7.5	≤ [8.0]		
CP-OFDM	16 QAM	≤ 6.5	≤ 8.7	≤ [9.2]		
	64 QAM	≤ 9.0	≤ 10.7	≤ [11.2]		

NOTE 1: The following condition applies only when the cumulative aggregated BW of the CA configuration ≤ 400 MHz. For a contiguous RB allocation in a single CC of the CA configuration, the single CC MPR of subclause 6.2.2.1 applies. The cumulative aggregated bandwidth shall be used as BW_{channel} in Tables 6.2.2.1-1 and 6.2.2.1-2. The applicable column in Tables 6.2.2.1-1 and 6.2.2.1-2 shall be determined based on the transmission bandwidth of the CA allocation in relation to the allocation regions defined in the tables.

When different waveform types exist across CCs, the requirement is set by the waveform type used in the configuration with the highest contiguous MPR.

For non-contiguous RB allocations, the following rule for MPR applies:

$$MPR = max(MPR_{C_CA}, -10*A +7.0)$$

Where:

 $A = N_{RB alloc} / N_{RB agg C.}$

 $N_{RB \ alloc}$ is the total number of allocated UL RBs

 $N_{RB_agg_C}$ is the number of the aggregated RBs within the fully allocated cumulative aggregated channel bandwidth

6.2A.2.0.5 Maximum output power reduction for power class 4

For power class 4, MPR specified in sub-clause 6.2A.2.0.4 applies.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2A.2.

6.2A.2.1 UE maximum output power reduction for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS for power class 1, 2 and 4.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz and intra-band non-contiguous CA are TBD.
- Whether to further divide this test case considering the number of DL CC is FFS
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- TP analysis needs further update to relect the selection of applicable cumulative aggregated BW
- Following aspects are pending RAN4

Minimum requirements for cumulative aggregated bandwidth >=800MHz are within brackets T(MPR) in 6.2A.4 configured output power is within brackets.

6.2A.2.1.1 Test purpose

The number of RB identified in 6.2.2.3 is based on meeting the requirements for the maximum power reduction (MPR) due to Cubic Metric (CM).

6.2A.2.1.2 Test applicability

The requirements of this test apply to all types of NR UE release 15 and forward supporting 2UL CA.

6.2A.2.1.3 Minimum conformance requirements

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2A.2.0.

6.2A.2.1.4 Test description

6.2A.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and CC combinations based on NR operating bands specified in Table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each CA configuration and subcarrier spacing, are shown in table 6.2A.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2A.2.1.4.1-1: Intra-band Contiguous UL CA Test Configuration Table (Power Class 1, MPR_{narrow})

					- Table (1			
Test F	nvironment as spec	rified in TS 38 508		Normal				
	ause [4.1]	,iiica iii 13 30.300	J-1 [10]	Noma				
	requencies as spec	ified in TS 38.508	3-1 [10]	Refer to "Test 1	frequency" column			
	ause [4.3.1.2.3] for o				,			
	C Combination sett			Highest aggreg	gated channel band	width of the CA		
	uration) as specified			configuration				
	5A.2-2 for the CA C		ss bandwidth					
	nation sets support							
Test S	CS as specified in	Table 5.3.5-1		120 kHz				
				Parameters				
Test ID	CC & Mapping (NOTE 2)	ChBw(MHz)	Test frequency	DL RB allocation	UL Modulation	UL RB allocation (NOTE 1)		
		t Test Settings fo	or a CA nXB,	CA nXD, CA n	XG, CA_nXO Conf	iguration		
	PCC/CC1	Default	Low	N/A for this	CP-OFDM			
1					64QAM	Outer_1RB_Left		
	SCC/CC2		Low	test	-	-		
	PCC/CC1		High		CP-OFDM	Outer_1RB_Right		
2			<u> </u>		64QAM	Gator_ind_inight		
	SCC/CC2		High		-	-		
	PCC/CC1		Low		CP-OFDM	7@0		
3	SCC/CC2		Low		64QAM			
	SCC/CC2		Low		-	-		
4	PCC/CC1		High		CP-OFDM 64QAM	7@N _{RB} -7		
4	SCC/CC2		High		04QAIVI	_		
		s for a CA nX(D		CA nX(D-G) II	I nYG CA nY/D-(D)_UL_nXD, CA_nX(D-		
	ciault iest octing	ש)אוו_אט א וטו כ		O Configuratio)_0L_IIND, 0A_IIN(D-		
	PCC/CC1	Default	Low	N/A for this	CP-OFDM			
	. 00,002	20.00.0		,,	64QAM	Outer_1RB_Left		
	SCC1/CC2		Low	test	-	-		
1	Wgap		Max Wgap		N/A	N/A		
	SCC2/CC3		Low		N/A	N/A		
	SCC3/CC4		Low		N/A	N/A		
	PCC/CC1		High		CP-OFDM	Outer_1RB_Right		
					64QAM	Outer_INB_INIght		
2	SCC1/CC2		High		-	-		
_	Wgap		Max Wgap		N/A	N/A		
	SCC2/CC3		High		N/A	N/A		
	SCC3/CC4		High		N/A	N/A		
	PCC/CC1		Low		CP-OFDM	7@0		
	SCC1/CC2		Low		64QAM			
3					N/A	N/A		
	Wgap SCC2/CC3		Max Wgap Low		N/A N/A	N/A N/A		
	SCC3/CC4		Low		N/A	N/A		
	PCC/CC1		High		CP-OFDM			
	. 50,551		9.1		64QAM	7@N _{RB} -7		
	SCC1/CC2		High	1		-		
4	Wgap		Max Wgap		N/A	N/A		
	SCC2/CC3		High	1	N/A	N/A		
	SCC3/CC4		High		N/A	N/A		
De		for a CA_nX(D-F		A_nX(D-P)_UL_	nXD, CA_nX(E-O)_	UL_nXO Configuration		
	PCC/CC1	Default	Low	N/A for this	CP-OFDM	Outer_1RB_Left		
					64QAM	Outel_TRD_Left		
	SCC1/CC2		Low	test	-	-		
1	Wgap		Max Wgap		N/A	N/A		
	SCC2/CC3		Low		N/A	N/A		
	SCC3/CC4		Low		N/A	N/A		
	SCC4/CC5		Low		N/A	N/A		
2	PCC/CC1		High		CP-OFDM	Outer_1RB_Right		
	SCC1/CC2		High		64QAM			
	SCC1/CC2		High May Wgan		- N/A	- N/A		
	Wgap		Max Wgap	j	IN/A	IN/A		

SCC3/CC4			1		ı		
SCC4/CC5		SCC2/CC3		High		N/A	N/A
PCC/CC1		SCC3/CC4		High		N/A	N/A
PCC/CC1		SCC4/CC5		High		N/A	N/A
SCC1/CC2		PCC/CC1		Low		CP-OFDM	7.00
SCC1/CC2						64QAM	7@0
N/A	Ī	SCC1/CC2		Low		-	-
SCC2/CC3	3	Wgap		Max Wgap		N/A	N/A
SCC3/CC4 SCC4/CC5 High SCC4/CC5 PCC/CC1 High SCC1/CC2 4 Wgap Max Wgap High N/A N/A N/A SCC3/CC4 SCC3/CC4 SCC3/CC4 High N/A N/A N/A SCC3/CC5 SCC3/CC4 SCC3/CC5 High N/A N/A N/A Default Test Settings for a CA_nX(D-I)_UL_nXD, CA_nX(D-O)_UL_nXD, CA_nX(G-I)_UL_nXG Configuration PCC/CC1 Default Low N/A for this CP-OFDM 64QAM Outer_1RB_Left SCC1/CC2 Low Max Wgap N/A N/A N/A SCC3/CC4 SCC4/CC5 Low N/A N/A N/A SCC3/CC6 Low N/A N/A N/A SCC3/CC6 High SCC3/CC6 High N/A N/A SCC3/CC6 High N/A N/A N/A SCC3/CC6 SCC5/CC6 Low N/A N/A N/A SCC3/CC6 SCC5/CC6 High N/A N/A N/A SCC3/CC6 SCC5/CC6 Low N/A N/A N/A SCC3/CC6 SCC5/CC6 High N/A N/A N/A SCC3/CC6 Low N/A N/A N/A SCC3/CC6 SCC5/CC6 Low N/A N/A N/A SCC5/CC6 SCC5/CC5 SCC5/CC6 SCC5/CC5 SCC5/CC5	_ [
SCCI/CC1	Ī						
PCC/CC1	T T						
SCC1/CC2							
SCC1/CC2		1 00/001		1.1.911			7@N _{RB} -7
A Wgap SCC2/CC3 High High N/A N/A	T T	SCC1/CC2		High			-
SCC2/CC3 High High N/A N/A N/A SCC3/CC4 SCC4/CC5 High N/A N/A N/A Default Test Settings for a CA_nX(D-I)_UL_nXD, CA_nX(D-Q)_UL_nXD, CA_nX(G-I)_UL_nXG Configuration PCC/CC1	α						
SCC3/CC4 SCC4/CC5 High High N/A N/A	7						
SCC4/CC5	-						
Default Test Settings for a CA_nX(D-1) UL_nXD, CA_nX(D-Q) UL_nXD, CA_nX(G-I) UL_nXG Configuration	-						
PCC/CC1	Do		c for a CA nV/D		Λ »V/D O) III		
SCC1/CC2	De						UL_IIAG Comiguration
SCC1/CC2 Wgap Max Wgap Low N/A N/A		PCC/CC1	Delault	LOW	IN/A IOI IIIIS		Outer_1RB_Left
1 Wgap SCC2/CC3 Low N/A	-	0001/000		Low	toot		
SCC2/CC3					lesi		-
SCC3/CC4	1						
SCC4/CC5 Low N/A N/A	-						
SCC5/CC6	-						
PCC/CC1	-						
SCC1/CC2							N/A
SCC1/CC2		PCC/CC1		High			Outer 1RB Right
N/A N/A N/A						64QAM	
SCC2/CC3					,	-	-
SCC2/CC3	2						
SCC4/CC5							
SCC5/CC6		SCC3/CC4		High			
PCC/CC1		SCC4/CC5		High		N/A	N/A
SCC1/CC2		SCC5/CC6		High		N/A	N/A
SCC1/CC2		PCC/CC1		Low		CP-OFDM	7@0
N/A N/A N/A						64QAM	7.60
SCC2/CC3		SCC1/CC2		Low		-	-
SCC2/CC3	_ [Wgap		Max Wgap		N/A	N/A
SCC4/CC5 Low N/A N/A SCC5/CC6 Low N/A N/A PCC/CC1 High CP-OFDM 64QAM 7@N _{RB} -7 SCC1/CC2 High - -	3	SCC2/CC3		Low		N/A	N/A
SCC4/CC5 Low N/A N/A SCC5/CC6 Low N/A N/A PCC/CC1 High CP-OFDM 64QAM 7@N _{RB} -7 SCC1/CC2 High - -	Ī			Low			N/A
SCC5/CC6 Low N/A N/A PCC/CC1 High CP-OFDM 64QAM 7@N _{RB} -7 SCC1/CC2 High - -	İ						
PCC/CC1 High CP-OFDM 64QAM 7@N _{RB} -7 SCC1/CC2 High - -	İ						
SCC1/CC2 High 64QAM 7@N _{RB} -7							
SCC1/CC2 High				3			/@N _{RB} -/
	İ	SCC1/CC2		Hiah		•	-
Wgap Max Wgap N/A N/A				Max Wgap		N/A	N/A
4 SCC2/CC3 High N/A N/A	4						
SCC3/CC4 High N/A N/A	ŀ						
SCC4/CC5	ŀ						
	ŀ	SCC5/CC6		High		N/A	N/A

SCC5/CC6 High N/A N/A

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.

NOTE 2: PCC/CCi and SCC/CCj means PCC is on component carrier CCi and SCC is on component carrier CCj, with CCi or CCj frequencies defined in TS38.508-1 [10].

Table 6.2A.2.1.4.1-2: Intra-band Contiguous UL CA Test Configuration Table (Power Class 1, single CC MPR requirement)

			onditions			
1	nvironment as specifie	d in TS 38.508-1 [2	10]	Normal		
	ause [4.1]					
	requencies as specifie			Lowest range, H	lighest range	
	ause [4.3.1.2.3] for diffe					
	CC Combination setting				ated channel bandwidth	of the CA
	uration) as specified in			configuration		
5.5A.2-2 for the CA Configuration across bandwidth			vidth			
combination sets supported by the UE						
Test SCS as specified in Table 5.3.5-1				120 kHz		
		<u> </u>	Test Par			
Test	CC & Mapping	ChBw(MHz)	Test	DL RB	UL Modulation	UL RB allocation
ID	(NOTE 2)		frequency	allocation		
Def	ault Test Settings for	a CA_nXG, CA_n	XO Configur	ation (Cumulativ	e aggregated BWchar	nel <= 200MHz)
	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM PI/2	Outer_Full
1				ī	BPSK	
	SCC/CC2			test	-	-
2	PCC/CC1				DFT-s-OFDM QPSK	Inner_Full
	SCC/CC2				-	-
	Default Test Setting	s for a CA_nXD C	onfiguration	(Cumulative agg	gregated BWchannel <	
	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM PI/2	Outer_Full
1					BPSK	
	SCC/CC2			test	-	-
	PCC/CC1				DFT-s-OFDM PI/2	Inner_Full
2					BPSK	
	SCC/CC2				-	-
3	PCC/CC1				DFT-s-OFDM QPSK	Inner_Full
	SCC/CC2				-	-
NOTE						
NOTE					nd SCC is on componen	t carrier CCj, with
NOTE	CCi or CCj freque	ncies defined in TS			. If D' DDOK', ED4	

NOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

Table 6.2A.2.1.4.1-3: Intra-band Contiguous UL CA Test Configuration Table (Power Class 1, MPR_{C_CA})

			Default Cond	litions		
Test E [4.1]	Environment as spec	cified in TS 38.508-1		Normal		
Test F [4.3.1	.2.3] for different CA	cified in TS 38.508-1 A bandwidth classes	-	For intra-band no Max Wgap, High	ontiguous CA: Mid ra on-contiguous CA: Lo lest range with Max V	owest range with Vgap.
config 5.5A.2	juration) as specifie	ting (aggregated BW d in Table 5.5A.1-1, 5 guration across band red by the UE	5.5A.2-1 and	Highest aggrega configuration	ted channel bandwid	th of the CA
	SCS as specified in			120 kHz		
Test	CC9 Manning	ChBw(MHz)	Test Paramo	eters DL RB	UL Modulation	UL RB
ID	CC& Mapping (NOTE 2)	CHBW(IVIHZ)	frequency	allocation	OL MOdulation	allocation
D	efault Test Setting	s for a CA_nXB, CA			MHz <= Cumulative	e aggregated
	PCC/CC1	Default	BWchannel <= 1	L400MHz) N/A for this	DFT-s-OFDM	Outor Full
1		Delault	Default		Pi/2 BPSK	Outer_Full
_	SCC/CC2			test	DFT-s-OFDM Pi/2 BPSK	Outer_Full
	PCC/CC1				DFT-s-OFDM QPSK	Outer_Full
2	SCC/CC2				DFT-s-OFDM QPSK	Outer_Full
	PCC/CC1				DFT-s-OFDM 16QAM	Outer_Full
3	SCC/CC2				DFT-s-OFDM	Outer_Full
	PCC/CC1				16QAM CP-OFDM	Outer_Full
4	SCC/CC2				16QAM CP-OFDM	Outer_Full
	PCC/CC1				16QAM CP-OFDM	Outer_Full
5	SCC/CC2				64QAM CP-OFDM	Outer_Full
Dof	foult Toot Cottings	for a CA_nXD Conf	iguration (400MH)	- <- Cumulativa	64QAM	mal < 000MH=)
Dei	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM	Outer Full
1		Belaun	Beidalt		Pi/2 BPSK	
	SCC/CC2			test	DFT-s-OFDM Pi/2 BPSK	Outer_Full
2	PCC/CC1				CP-OFDM 16QAM	Outer_Full
۷	SCC/CC2				CP-OFDM 16QAM	Outer_Full
_	PCC/CC1				CP-OFDM 64QAM	Outer_Full
3	SCC/CC2				CP-OFDM 64QAM	Outer_Full
Def	ault Test Settings	for a CA_nXB Conf	iguration (400MH	z <= Cumulative a		nnel < 800MHz)
	PCC/CC1	200MHz	Default	N/A for this	DFT-s-OFDM Pi/2 BPSK	Outer_Full
1	SCC/CC2	400MHz		test	DFT-s-OFDM Pi/2 BPSK	Outer_Full
	PCC/CC1	200MHz			CP-OFDM	Outer_Full
2	SCC/CC2	400MHz			16QAM CP-OFDM	Outer_Full
	PCC/CC1	200MHz			16QAM CP-OFDM	Outer_Full
3	SCC/CC2	400MHz			64QAM CP-OFDM	Outer_Full
D-	fault Toet Cattings	for a CA nVC CA	nYO Configuration	on (Cumulativa a	64QAM	nel < 400MU=\
1	PCC/CC1	of for a CA_nXG, CA_ Default	_nxO Configuration Default	N/A for this	DFT-s-OFDM	Outer_Full
					Pi/2 BPSK	

	3001/002			test	Pi/2 BPSK	Outei_Full
_	SCC1/CC2	Bolault	Dolault		Pi/2 BPSK DFT-s-OFDM	Outer_Full
1	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM	Outer_Full
De	tault Test Settings	for a CA_nX(D-H)_U	UL_nXD, CA_nX(I ulative aggregate			Configuration
	SCC3/CC4	61		<u> </u>	N/A	N/A
	SCC2/CC3				N/A	N/A
	Wgap				N/A	N/A
5	3001/002				64QAM	Outel_rull
	SCC1/CC2				64QAM CP-OFDM	Outer_Full
	PCC/CC1				CP-OFDM	Outer_Full
	SCC3/CC4				N/A	N/A
	SCC2/CC3				N/A	N/A
	Wgap				N/A	N/A
4					16QAM	- a.co un
	SCC1/CC2				CP-OFDM	Outer_Full
	FCC/CC1				16QAM	Outer_Full
	SCC3/CC4 PCC/CC1				N/A CP-OFDM	N/A Outer_Full
	SCC2/CC3				N/A	N/A
	Wgap				N/A	N/A
3					16QAM	
	SCC1/CC2				DFT-s-OFDM	Outer_Full
					16QAM	
	PCC/CC1				DFT-s-OFDM	Outer_Full
	SCC3/CC4				N/A	N/A
	SCC2/CC3				N/A	N/A
	Wgap				N/A	N/A
2					QPSK	<u>-</u> v
	SCC1/CC2				DFT-s-OFDM	Outer_Full
	30,001				QPSK	
	PCC/CC1				DFT-s-OFDM	Outer_Full
	SCC3/CC4				N/A	N/A
	SCC2/CC3				N/A	N/A
1	Wgap				N/A	N/A
1	3001/002			test	Pi/2 BPSK	Outer_Full
	SCC1/CC2			test	Pi/2 BPSK DFT-s-OFDM	Outer_Full
	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM	Outer_Full
		Configuration (800				
D		s for a CA_nX(D-G)				
					64QAM	_
3	SCC/CC2	200MHz			CP-OFDM	Outer_Full
					64QAM	
	PCC/CC1	100MHz			CP-OFDM	Outer Full
	300/002	ZUUIVIMZ			16QAM	Outel_Full
2	SCC/CC2	200MHz			16QAM CP-OFDM	Outer_Full
	PCC/CC1	100MHz			CP-OFDM	Outer_Full
	D00/001	4001411			Pi/2 BPSK	0
1	SCC/CC2	200MHz		test	DFT-s-OFDM	Outer_Full
1					Pi/2 BPSK	
	PCC/CC1	100MHz	Default	N/A for this	DFT-s-OFDM	Outer Full
	Default Test Set	tings for a CA_nXD	Configuration (C	umulative aggred		400MHz)
	300/002				64QAM	Outor_Full
3	SCC/CC2				CP-OFDM	Outer_Full
	PCC/CC1				CP-OFDM 64QAM	Outer_Full
	DCC/CC1				16QAM	Outor Full
_	SCC/CC2				CP-OFDM	Outer_Full
2					16QAM	
	PCC/CC1				CP-OFDM	Outer_Full
					Pi/2 BPSK	
	SCC/CC2			test	DFT-s-OFDM	Outer_Full

	Wgap			1	N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	PCC/CC1				DFT-s-OFDM	Outer Full
					QPSK	
	SCC1/CC2				DFT-s-OFDM QPSK	Outer_Full
2	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	PCC/CC1				DFT-s-OFDM 16QAM	Outer_Full
	SCC1/CC2				DFT-s-OFDM	Outer_Full
3					16QAM	
	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	PCC/CC1				CP-OFDM 16QAM	Outer_Full
	SCC1/CC2				CP-OFDM 16QAM	Outer_Full
4	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
_	SCC4/CC5				N/A	N/A
	PCC/CC1				CP-OFDM 64QAM	Outer_Full
_	SCC1/CC2				CP-OFDM 64QAM	Outer_Full
5	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
D	efault Test Settings	s for a CA_nX(D-I)_l (800MHz <= Cum				Configuration
	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM Pi/2 BPSK	Outer_Full
	SCC1/CC2			test	DFT-s-OFDM Pi/2 BPSK	Outer_Full
1	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	SCC5/CC6				N/A	N/A
	PCC/CC1				DFT-s-OFDM QPSK	Outer_Full
	SCC1/CC2				DFT-s-OFDM	Outer_Full
2	Wgap				QPSK N/A	N/A
-						
	SCC2/CC3 SCC3/CC4				N/A N/A	N/A N/A
					N/A N/A	N/A N/A
	SCC4/CC5 SCC5/CC6				N/A N/A	N/A N/A
	PCC/CC1				DFT-s-OFDM	Outer_Full
	SCC1/CC2				16QAM DFT-s-OFDM	Outer_Full
3	Wgap				16QAM N/A	N/A
]	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	SCC5/CC6				N/A	N/A
] 5555,555	l .		I	1 1/71	1 1// 1

	PCC/CC1				CP-OFDM	Outer_Full
	SCC1/CC2				16QAM CP-OFDM	Outer Full
	3001/002				16QAM	Outel_Full
4	Wgap				N/A	N/A
4	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	SCC5/CC6				N/A	N/A
	PCC/CC1				CP-OFDM	Outer_Full
	1 00/001				64QAM	Outci_i uii
	SCC1/CC2				CP-OFDM	Outer Full
	0002,002				64QAM	o ato a
5	Wgap				N/A	N/A
-	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	SCC5/CC6				N/A	N/A
Def	ault Test Settings fo	or a CA_nX(D-G)_	UL_nXD, CA_nX(D	OO)_UL_nXD Cor	nfiguration (400MHz	<= Cumulative
	-	aç	gregated BWchan	nel <800MHz)		
	PCC/CC1	200MHz	Default	N/A for this	DFT-s-OFDM	Outer_Full
					Pi/2 BPSK	
	SCC1/CC2	200MHz		test	DFT-s-OFDM	Outer_Full
1					Pi/2 BPSK	
	Wgap	190MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	PCC/CC1	200MHz			CP-OFDM	Outer_Full
	2221/222				16QAM	
_	SCC1/CC2	200MHz			CP-OFDM	Outer_Full
2	14/	1001411-			16QAM	N1/A
	Wgap	190MHz 100MHz			N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	PCC/CC1	200MHz			CP-OFDM 64QAM	Outer_Full
	SCC1/CC2	200MHz			CP-OFDM	Outer Full
3	3001/002	200111112			64QAM	Outci_i uii
3	Wgap	190MHz			N/A	N/A
	SCC2/CC3	100MHz	_		N/A	N/A
	SCC3/CC4	100MHz	_		N/A	N/A
Def			III nXC CA nX(C	-O) UL nXO Cor	nfiguration (400MHz	
		aç	gregated BWchan		3 (
	PCC/CC1	100MHz			DFT-s-OFDM	Outer_Full
		100MHz	gregated BWchan	nel <800MHz)		Outer_Full
	PCC/CC1 SCC1/CC2		gregated BWchan	nel <800MHz)	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM	
1	SCC1/CC2	100MHz 100MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK	Outer_Full Outer_Full
1	SCC1/CC2 Wgap	100MHz 100MHz 190MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A	Outer_Full Outer_Full N/A
1	SCC1/CC2 Wgap SCC2/CC3	100MHz 100MHz 190MHz 200MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A	Outer_Full Outer_Full N/A N/A
1	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	100MHz 100MHz 190MHz 200MHz 200MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A	Outer_Full Outer_Full N/A N/A N/A
1	SCC1/CC2 Wgap SCC2/CC3	100MHz 100MHz 190MHz 200MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM	Outer_Full Outer_Full N/A N/A
1	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM	Outer_Full Outer_Full N/A N/A N/A Outer_Full
	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	100MHz 100MHz 190MHz 200MHz 200MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM	Outer_Full Outer_Full N/A N/A N/A
1 2	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM	Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full
	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A	Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A
	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz 200MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A	Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A
	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz 200MHz 200MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A N/A	Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A
	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz 200MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A CP-OFDM	Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A
	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz 100MHz 190MHz 200MHz 200MHz 200MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 16QAM OV/A N/A N/A CP-OFDM 64QAM	Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A Over_Full N/A N/A Outer_Full
2	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz 200MHz 200MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM	Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A
	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz 100MHz 190MHz 200MHz 200MHz 100MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM	Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full Outer_Full Outer_Full
2	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz 100MHz 190MHz 200MHz 100MHz 100MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A	Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full N/A N/A Outer_Full Outer_Full
2	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	100MHz 100MHz 190MHz 200MHz 200MHz 100MHz 100MHz 100MHz 190MHz 200MHz 200MHz 100MHz	gregated BWchan	nel <800MHz) N/A for this	DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM	Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full Outer_Full Outer_Full

	1					
	PCC/CC1	200MHz	Default	N/A for this	DFT-s-OFDM	Outer_Full
]		Pi/2 BPSK	
	SCC1/CC2	200MHz		test	DFT-s-OFDM	Outer_Full
					Pi/2 BPSK	_
1	Wgap	90MHz	1		N/A	N/A
	SCC2/CC3	100MHz	•		N/A	N/A
	SCC3/CC4		1		N/A	N/A
		100MHz				
	SCC4/CC5	100MHz	_		N/A	N/A
	PCC/CC1	200MHz			CP-OFDM	Outer_Full
					16QAM	
	SCC1/CC2	200MHz			CP-OFDM	Outer_Full
					16QAM	_
2	Wgap	90MHz	1		N/A	N/A
	SCC2/CC3	100MHz	1		N/A	N/A
	SCC3/CC4	100MHz	1		N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	PCC/CC1	200MHz			CP-OFDM	Outer_Full
					64QAM	<u> </u>
	SCC1/CC2	200MHz			CP-OFDM	Outer_Full
					64QAM	
3	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz	1		N/A	N/A
	SCC3/CC4	100MHz	1		N/A	N/A
	SCC4/CC5	100MHz	•		N/A	N/A
- · ·				/ 400 \ 411 \		
Detai	lit lest Settings to	r a CA_nx(O-E)_UL			Cumulative aggregat	ed Bwcnannei <
			800MHz		T T	
	PCC/CC1	100MHz	Default	N/A for this	DFT-s-OFDM	Outer_Full
					Pi/2 BPSK	I
	SCC1/CC2	100MHz		test	DFT-s-OFDM	Outer_Full
					Pi/2 BPSK	_
1	Wgap	90MHz	1		N/A	N/A
	SCC2/CC3	100MHz	•		N/A	N/A
	SCC3/CC4	200MHz			N/A	N/A
	SCC4/CC5	200MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM	Outer_Full
					16QAM	<u> </u>
	SCC1/CC2	100MHz			CP-OFDM	Outer_Full
					16QAM	
2	Wgap	90MHz	1		N/A	N/A
	SCC2/CC3	100MHz	1		N/A	N/A
	SCC3/CC4	200MHz	1		N/A	N/A
	SCC4/CC5	200MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM	Outer_Full
			_		64QAM	
	SCC1/CC2	100MHz			CP-OFDM	Outer_Full
3]		64QAM	
3	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	200MHz	1		N/A	N/A
	SCC4/CC5	200MHz	1		N/A	N/A
Dof			I nYD CA nY/D	0) III	figuration (400MHz	
Dei	auit iest Settings	ιοι α CA_ΠΛ(D-I)_U	regated BWchan	-ん)_OF_UYD COU	nguration (400MHZ	~- Cumulative
	D00/004				DET - OFFI	Out
	PCC/CC1	100MHz	Default	N/A for this	DFT-s-OFDM	Outer_Full
					Pi/2 BPSK	<u> </u>
	SCC1/CC2	200MHz		test	DFT-s-OFDM	Outer_Full
					Pi/2 BPSK	
1	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
2	PCC/CC1	100MHz			CP-OFDM	Outer_Full
					16QAM	
	SCC1/CC2	200MHz			CP-OFDM	Outer_Full
1	·		i	I	16QAM	ı
					10QAM	1
	Wgap	90MHz			N/A	N/A

	SCC2/CC3 SCC3/CC4	100MHz			N/A	N/A N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM 64QAM	Outer_Full
	SCC1/CC2	200MHz			CP-OFDM 64QAM	Outer_Full
3	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
Defa	ult Test Settings fo	r a CA_nX(G-I)_UL	_nXG Configuration		umulative aggregate	ed BWchannel <
	PCC/CC1	100MHz	Default	N/A for this	DFT-s-OFDM Pi/2 BPSK	Outer_Full
	SCC1/CC2	100MHz		test	DFT-s-OFDM Pi/2 BPSK	Outer_Full
1	Wgap	190MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM 16QAM	Outer_Full
	SCC1/CC2	100MHz			CP-OFDM 16QAM	Outer_Full
2	Wgap	190MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM 64QAM	Outer_Full
	SCC1/CC2	100MHz			CP-OFDM 64QAM	Outer_Full
3	Wgap	190MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
Def					aggregated BWcha	
	PCC/CC1	50MHz	Default	N/A for this	DFT-s-OFDM Pi/2 BPSK	Outer_Full
1	SCC1/CC2	200MHz		test	DFT-s-OFDM Pi/2 BPSK	Outer_Full
	Wgap	40MHz]		N/A	N/A
	SCC2/CC3	50MHz]		N/A	N/A
	SCC3/CC4	50MHz]		N/A	N/A
	PCC/CC1	50MHz	1		CP-OFDM	Outer_Full
					16QAM	
2	SCC1/CC2	200MHz			CP-OFDM 16QAM	Outer_Full
2	SCC1/CC2 Wgap	40MHz			CP-OFDM 16QAM N/A	N/A
2	SCC1/CC2 Wgap SCC2/CC3	40MHz 50MHz			CP-OFDM 16QAM N/A N/A	N/A N/A
2	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	40MHz 50MHz 50MHz			CP-OFDM 16QAM N/A N/A N/A	N/A N/A N/A
2	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1	40MHz 50MHz 50MHz 50MHz			CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM	N/A N/A N/A Outer_Full
2	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	40MHz 50MHz 50MHz 50MHz 200MHz			CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM	N/A N/A N/A Outer_Full Outer_Full
	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap	40MHz 50MHz 50MHz 50MHz			CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A	N/A N/A N/A Outer_Full
	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz			CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A
3	SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz		3	CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A

	SCC1/CC2	200MHz	test	N/A	N/A
	Wgap	40MHz		N/A	N/A
	SCC2/CC3	50MHz		DFT-s-OFDM	Outer_Full
				Pi/2 BPSK	
	SCC3/CC4	50MHz		DFT-s-OFDM	Outer_Full
				Pi/2 BPSK	
2	PCC/CC1	50MHz		N/A	N/A
	SCC1/CC2	200MHz		N/A	N/A
	Wgap	40MHz		N/A	N/A
	SCC2/CC3	50MHz		CP-OFDM	Outer_Full
				16QAM	
	SCC3/CC4	50MHz		CP-OFDM	Outer_Full
				16QAM	
3	PCC/CC1	50MHz		N/A	N/A
	SCC1/CC2	200MHz		N/A	N/A
	Wgap	40MHz		N/A	N/A
	SCC2/CC3	50MHz		CP-OFDM	Outer_Full
				64QAM	
	SCC3/CC4	50MHz		CP-OFDM	Outer_Full
				64QAM	

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.

NOTE 2: PCC/CCi and SCC/CCj means PCC is on component carrier CCi and SCC is on component carrier CCj, with CCi or CCj frequencies defined in TS38.508-1 [10].

Table 6.2A.2.1.4.1-4: Intra-band Contiguous UL CA Test Configuration Table (Power Class 1, Non-contiguous allocation)

			Default Co	onditions			
	nvironment as specifie .use [4.1]	ed in TS 38.508-1 [2		Normal			
Test Fi subcla	Test Frequencies as specified in TS 38.508-1 [10] subclause [4.3.1.2.3] for different CA bandwidth classes			For intra-band contiguous CA: Mid range. For intra-band non-contiguous CA: Lowest range with Max Wgap, Highest range with Max Wgap.			
Test CC Combination setting (aggregated BW of the CA configuration) as specified in Table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2 for the CA Configuration across bandwidth			Highest aggregation	ated channel bandwidth	of the CA		
	nation sets supported						
Test S	CS as specified in Tab	le 5.3.5-1	Toot Dor	120 kHz			
Test	CC 9 Manning	ChBw(MHz)	Test Par	DL RB	UL Modulation	UL RB allocation	
ID	CC & Mapping (NOTE 2)		frequency	allocation			
					CA_nXO Configuration		
1	PCC/CC1	Default	Default	N/A for this	CP-OFDM 64QAM	Outer_1RB_Left	
_	SCC/CC2	1		test	CP-OFDM 64QAM	Outer_1RB_Right	
2	PCC/CC1				DFT-s-OFDM Pi/2 BPSK	[Outer_0.9_Left]	
2	SCC/CC2				DFT-s-OFDM Pi/2 BPSK	[Outer_0.9_Right]	
	PCC/CC1				DFT-s-OFDM Pi/2 QPSK	[Outer_0.9_Left]	
3	SCC/CC2				DFT-s-OFDM Pi/2 OPSK	[Outer_0.9_Right]	
	Def	ault Test Settings	for a CA_nX	(D-G), CA_nX(D-	O) Configuration		
	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM QPSK	Outer 1RB Left	
	SCC1/CC2			test	DFT-s-OFDM QPSK	Outer_1RB_Right	
1	Wgap				N/A	N/A	
	SCC2/CC3				N/A	N/A	
	SCC3/CC4				N/A	N/A	
	PCC/CC1				DFT-s-OFDM Pi/2 BPSK	[Outer_0.9_Left]	
2	SCC1/CC2				DFT-s-OFDM Pi/2 BPSK	[Outer_0.9_Right]	
_	Wgap	1			N/A	N/A	
ļ	SCC2/CC3	1			N/A	N/A	
ľ	SCC3/CC4	1			N/A	N/A	
	PCC/CC1				DFT-s-OFDM Pi/2 OPSK	[Outer_0.9_Left]	
3	SCC1/CC2	-			DFT-s-OFDM Pi/2 QPSK	[Outer_0.9_Right]	
Ť	Wgap	1			N/A	N/A	
ŀ	SCC2/CC3	1			N/A	N/A	
ľ	SCC3/CC4	1			N/A	N/A	
NOTE NOTE		guration of each REC/CCj means PCC			6.1-1. nd SCC is on componer	nt carrier CCj, with	

NOTE 2: PCC/CCi and SCC/CCj means PCC is on component carrier CCi and SCC is on component carrier CCj, with CCi or CCj frequencies defined in TS38.508-1 [10].

Table 6.2A.2.1.4.1-5: Intra-band Contiguous UL CA Test Configuration Table (Power Class 2, 3 and 4, single CC MPR requirement)

	Default Conditions								
Test E	Environment as specifie	d in TS 38.508-1 [2	10]	Normal					
subcla	ause [4.1]								
Test Frequencies as specified in TS 38.508-1 [10]				Lowest range, F	Highest range				
subcla	ause $[4.3.1.2.3]$ for diffe	erent CA bandwidth	classes						
	CC Combination setting			Highest aggrega	ated channel bandwidth	of the CA			
	juration) as specified in			configuration					
5.5A.2	2-2 for the CA Configura	ation across bandv	vidth						
	ination sets supported b								
Test S	SCS as specified in Tab	le 5.3.5-1		120 kHz					
			Test Par	ameters					
Test	CC & Mapping	ChBw(MHz)	Test	DL RB	UL Modulation	UL RB allocation			
ID	(NOTE 2)		frequency	allocation					
De	fault Test Settings for	a CA_nXG, CA_n	XO Configur	ation (Cumulativ	e aggregated BWchar	nnel <= 200MHz)			
1	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM QPSK	Inner_Full			
	SCC/CC2			test	-	-			
2	PCC/CC1				DFT-s-OFDM QPSK	Outer_Full			
	SCC/CC2				-	-			
	Default Test Setting	s for a CA_nXD C	onfiguration	(Cumulative ag	gregated BWchannel <	<= 400MHz)			
1	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM QPSK	Inner_Full			
	SCC/CC2			test	-	-			
2	PCC/CC1				DFT-s-OFDM QPSK	Outer_Full			
	SCC/CC2				-	-			
NOTE	1: The specific config	guration of each RE	3 allocation is	defined in Table	6.1-1.				
NOTE	2: PCC/CCi and SCC	C/CCj means PCC	is on compon	ent carrier CCi a	nd SCC is on componer	nt carrier CCj, with			
	CCi or CCi frequencies defined in TS38.508-1 [10].								

Table 6.2A.2.1.4.1-6: Intra-band Contiguous UL CA Test Configuration Table (Power Class 2, 3 and 4, $$\rm MPR_{C_CA}$)$

			Default Cond	litions			
	Environment as spec	cified in TS 38.508-1		Normal			
		cified in TS 38.508-1 A bandwidth classes	[10] subclause	For intra-band contiguous CA: Mid range. For intra-band non-contiguous CA: Lowest range with Max Wgap, Highest range with Max Wgap.			
config 5.5A.2	juration) as specifie	ting (aggregated BW d in Table 5.5A.1-1, 5 guration across band red by the UE	Highest aggregated channel bandwidth of the CA configuration				
	SCS as specified in			120 kHz			
			Test Param				
Test ID	CC & Mapping (NOTE 2)	ChBw(MHz)	Test frequency	DL RB allocation	UL Modulation	UL RB allocation	
Defa	ult Test Settings fo	or a CA_nXB, nXC_U			Cumulative aggreg	ated BWchannel	
	D00/004	D ()	<= 1400M		DET OFFIN	0 1 5 1	
1	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM QPSK	Outer_Full	
-	SCC/CC2			test	DFT-s-OFDM QPSK	Outer_Full	
	PCC/CC1				DFT-s-OFDM 16QAM	Outer_Full	
2	SCC/CC2				DFT-s-OFDM	Outer_Full	
	PCC/CC1				16QAM CP-OFDM	Outer_Full	
3	SCC/CC2				QPSK CP-OFDM	Outer_Full	
	PCC/CC1				QPSK CP-OFDM	Outer_Full	
4					16QAM	_	
	SCC/CC2				CP-OFDM 16QAM	Outer_Full	
_	PCC/CC1				CP-OFDM 64QAM	Outer_Full	
5	SCC/CC2				CP-OFDM 64QAM	Outer_Full	
Def	ault Test Settings	for a CA_nXD Conf	iguration (400MH	z <= Cumulative		nnel < 800MHz)	
	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM QPSK	Outer_Full	
1	SCC/CC2			test	DFT-s-OFDM	Outer_Full	
	PCC/CC1				QPSK CP-OFDM	Outer_Full	
2	SCC/CC2				QPSK CP-OFDM	Outer Full	
	PCC/CC1				QPSK CP-OFDM	Outer_Full	
3	SCC/CC2				16QAM		
					CP-OFDM 16QAM	Outer_Full	
	PCC/CC1				CP-OFDM 64QAM	Outer_Full	
4	SCC/CC2				CP-OFDM 64QAM	Outer_Full	
Def	ault Test Settings	for a CA_nXB Conf	iguration (400MH	z <= Cumulative		nnel < 800MHz)	
	PCC/CC1	200MHz	Default	N/A for this	DFT-s-OFDM QPSK	Outer_Full	
1	SCC/CC2	400MHz		test	DFT-s-OFDM	Outer_Full	
	PCC/CC1	200MHz			QPSK CP-OFDM	Outer_Full	
2	SCC/CC2	400MHz			QPSK CP-OFDM	Outer_Full	
3	PCC/CC1	200MHz			QPSK CP-OFDM	Outer_Full	
Ĺ		20012			16QAM		

4	SCC/CC2				1	
1	000/002	400MHz			CP-OFDM 16QAM	Outer_Full
1	PCC/CC1	200MHz			CP-OFDM 64QAM	Outer_Full
4	SCC/CC2	400MHz			CP-OFDM 64QAM	Outer_Full
Do	fault Toet Sottings	for a CA_nXG, CA	nYO Configurati	on (Cumulative ac		nol < 400MHz)
DE						
1	PCC/CC1	Default	Default	N/A for this	CP-OFDM QPSK	Outer_Full
	SCC/CC2			test	CP-OFDM QPSK	Outer_Full
	PCC/CC1				CP-OFDM 16QAM	Outer_Full
2	SCC/CC2				CP-OFDM 16QAM	Outer_Full
	PCC/CC1				CP-OFDM 64QAM	Outer_Full
3	SCC/CC2				CP-OFDM	Outer_Full
					64QAM	
		tings for a CA_nXD				
	PCC/CC1	100MHz	Default	N/A for this	CP-OFDM QPSK	Outer_Full
1	SCC/CC2	200MHz		test	CP-OFDM QPSK	Outer_Full
	PCC/CC1	100MHz			CP-OFDM 16QAM	Outer_Full
2	SCC/CC2	200MHz			CP-OFDM	Outer_Full
	DCC/CC4	100141-			16QAM	Outon Full
3	PCC/CC1	100MHz			CP-OFDM 64QAM	Outer_Full
	SCC/CC2	200MHz			CP-OFDM 64QAM	Outer_Full
De	efault Test Settings	s for a CA_nX(D-G))_UL_nXD, CA_n	$X(D-G)_UL_nXG, O$	CA_nX(D-O)_UL_n	XD, CA_nX(D-
	O) UL nX(Configuration (80	0MHz <= Cumulat	ive aggregated B	Wchannel <= 1400	MHz)
	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM QPSK	Outer_Full
1	SCC1/CC2			test	DFT-s-OFDM	Outer_Full
1	Macn			-	QPSK	
-	Wgap					NI/A
	SCC2/CC3			l -	N/A	N/A
					N/A N/A	N/A
	SCC3/CC4				N/A N/A	N/A N/A
					N/A	N/A
	SCC3/CC4 PCC/CC1				N/A N/A	N/A N/A Outer_Full
2	SCC3/CC4 PCC/CC1 SCC1/CC2				N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM	N/A N/A Outer_Full Outer_Full
2	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap				N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A	N/A N/A Outer_Full Outer_Full N/A
2	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3				N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A
2	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap				N/A N/A N/A DFT-S-OFDM 16QAM DFT-S-OFDM 16QAM N/A N/A N/A CP-OFDM	N/A N/A Outer_Full Outer_Full N/A
-	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4				N/A N/A N/A DFT-S-OFDM 16QAM DFT-S-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM	N/A N/A Outer_Full Outer_Full N/A N/A N/A
2	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1				N/A N/A N/A DFT-S-OFDM 16QAM DFT-S-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full
-	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2				N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full
-	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3				N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A
-	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap				N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A N/A CP-OFDM CPSK N/A N/A N/A N/A CP-OFDM	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A
3	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4				N/A N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A N/A CP-OFDM CPSK N/A N/A N/A CP-OFDM CPSK N/A N/A N/A N/A CP-OFDM	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A
-	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2				N/A N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A CP-OFDM CPSK N/A N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A Outer_Full Outer_Full Outer_Full Outer_Full Outer_Full
3	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap				N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A CP-OFDM CPSK N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full N/A N/A Outer_Full N/A N/A Outer_Full Outer_Full
3	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1				N/A N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A N/A N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A
3 4	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC1/CC2				N/A N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A Outer_Full N/A N/A N/A N/A N/A N/A N/A N
3	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1				N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A Outer_Full Outer_Full Outer_Full Outer_Full Outer_Full Outer_Full Outer_Full N/A N/A Outer_Full
3 4	SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC1/CC2				N/A N/A N/A DFT-s-OFDM 16QAM DFT-s-OFDM 16QAM N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A Outer_Full N/A N/A N/A N/A N/A N/A N/A N

	SCC2/CC3]		Γ	N/A	N/A
	SCC3/CC4			-	N/A	N/A
De		for a CA_nX(D-H)_U	II nYD CA nY/F	I-D) III nYD CA		
De	iault lest settings	800MHz <= Cumi				Comiguration
	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM	Outer Full
	PCC/CC1	Delault	Delault	IN/A IOI UIIS	QPSK	Outel_Full
	0001/000			toot		Outon Full
	SCC1/CC2			test	DFT-s-OFDM	Outer_Full
1	111				QPSK	21/2
-	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	PCC/CC1				DFT-s-OFDM	Outer_Full
					16QAM	
	SCC1/CC2				DFT-s-OFDM	Outer_Full
					16QAM	_
2	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	PCC/CC1				CP-OFDM	Outer_Full
	PCC/CC1					Outel_Full
	CCC1/CC2				QPSK	Outor Full
	SCC1/CC2				CP-OFDM	Outer_Full
3	14/				QPSK	N 1 / A
	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	PCC/CC1				CP-OFDM	Outer_Full
	CCC1/CC2				16QAM	Outor Full
	SCC1/CC2				CP-OFDM	Outer_Full
4	144				16QAM	N1/A
	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	PCC/CC1				CP-OFDM	Outer_Full
					64QAM	
	SCC1/CC2				CP-OFDM	Outer_Full
_					64QAM	
5	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
De		s for a CA_nX(D-I)_U	II nXD CA nX(C	-O) III nXD CA		
-`	ordant root ootimig	(800MHz <= Cum				oomigaraon
	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM	Outer Full
	. 33,331		Joiadh		QPSK	- a.c uii
	SCC1/CC2			test	DFT-s-OFDM	Outer_Full
	3001/002			icsi	QPSK	Outci_i uii
1	Waan				N/A	N/A
1	Wgap					N/A N/A
	SCC2/CC3				N/A	
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
	SCC5/CC6				N/A	N/A
	PCC/CC1				DFT-s-OFDM	Outer_Full
	SCC1/CC2				16QAM DFT-s-OFDM	Outer Full
	3001/002				16QAM	Outer_i uii
2	Wgap				N/A	N/A
	SCC2/CC3				N/A	N/A
	SCC3/CC4				N/A	N/A
	SCC4/CC5				N/A	N/A
1	SCC5/CC6				N/A	N/A
_	B C C (C C)					(3)tou [[]]
3	PCC/CC1				CP-OFDM QPSK	Outer_Full

SCCI/CC2 SCCI/CC3			(F)	•			
SC2/CC3 SC3/CC4 N/A N		SCC1/CC2				CP-OFDM	Outer Full
SC2/CC3 SC3/CC4 N/A N						OPSK	_
SCC2/CC3 SCC3/CC4 SCC4/CC5 SCC5/CC6	\Man					NI/A	
SCC3/CC4 SCC4/CC5 SCC5/CC6							
SCC4/CC5 SCC5/CC6 N/A							
SCC5/CC6		SCC3/CC4				N/A	N/A
SCC5/CC6		SCC4/CC5				N/A	N/A
PCC/CC1							
SCC1/CC2 SCC2/CC3 SCC3/CC4							
SCCI/CC2 SCC2/CC3		PCC/CC1					Outer_Full
SCCI/CC2 SCC2/CC3						16QAM	
16QAM		SCC1/CC2					Outer Full
SCC2/CC2 SCC3/CC4 SCC4/CC5 SCC5/CC6	0001,002					Guter_r un	
SCC2/CC3							21/4
SCC3/CC4 SCC3/CC5 SCC5/CC6 4					N/A		
SCC3/CC4 SCC3/CC5 SCC5/CC6	SCC2/CC3				N/A	N/A	
SCC4/ICC5 SCC5/ICC6 SCC		SCC3/CC4				N/A	N/A
SCCSICC6 PCC/CC1 SCC1/CC2 SCC2/CC3 SCC3/CC4 SCC3/CC4 SCC3/CC5							<u> </u>
PCC/CC1							
SCC1/CC2 SCC3/CC4 SCC3/CC5 SCC3/CC5 SCC3/CC5 SCC3/CC5 SCC3/CC5 SCC3/CC6	SCC5/CC6					N/A	
SCC1/CC2 SCC3/CC4 SCC3/CC5 SCC3/CC5 SCC3/CC5 SCC3/CC5 SCC3/CC5 SCC3/CC6	PCC/CC1				CP-OFDM	Outer Full	
SCC1/CC2							
SCC2/CC3 SCC4/CC5 SCC5/CC6 SCC4/CC5 SCC4/CC2 SCC4/CC2 SCC4/CC2 SCC4/CC2 SCC4/CC2 SCC4/CC3 SCC5/CC4 SCC5/CC4 SCC5/CC4 SCC5/CC5	0004/000					0.4	
SCC2/CC3 SCC1/CC2 SCC1/CC3 SCC2/CC3 SCC3/CC4 SCC3/CC3	SCC1/CC2					Outer_Full	
SCC2/CC3						64QAM	
SCC2/CC3	5	Wgan				N/A	N/A
SCC3/CC4 SCC4/CC5 SCC5/CC6 N/A	-						
SCC4/CC5 SCC5/CC6 N/A							
SCC5/CC6							
Default Test Settings for a CA_nX(D-G)_UL_nXD, CA_nX(D-O)_UL_nXD Configuration (400MHz <= Cumulative aggregated BWchannel <800MHz) PCC/CC1		SCC4/CC5				N/A	N/A
Default Test Settings for a CA_nX(D-G)_UL_nXD, CA_nX(D-O)_UL_nXD Configuration (400MHz <= Cumulative aggregated BWchannel <800MHz) PCC/CC1		SCC5/CC6				N/A	N/A
PCC/CC1	Dof		for a CA mV/D C) I	II PAN CV PAND	O) III mVD Com		
PCC/CC1	Del	auit lest Settiligs				ilguration (400MHz	2 <- Cumulative
SCC1/CC2 200MHz test						I	
SCC1/CC2		PCC/CC1	200MHz	Default	N/A for this	DFT-s-OFDM	Outer_Full
SCC1/CC2						OPSK	
Ngap		SCC1/CC2	2001411-7		toct		Outor Full
Wgap	_	3001/002	ZUUIVITZ		เธรเ		Outei_Fuii
SCC2/CC3	1						
SCC2/CC3		Wgap	190MHz			N/A	N/A
SCC3/CC4			100MHz			N/A	N/A
PCC/CC1				1			
SCC1/CC2 200MHz							
SCC1/CC2		PCC/CC1	200MHz				Outer_Full
SCC1/CC2						QPSK	
PCC/CC1		SCC1/CC2	200MHz				Outer Full
Wgap	2	3001/002	200111112				Outci_i uii
SCC2/CC3	2						
SCC3/CC4				_			
SCC3/CC4						N/A	
PCC/CC1				-		N/A	
SCC1/CC2 200MHz CP-OFDM Outer_Full		SCC2/CC3	100MHz	-		N/A N/A	N/A
SCC1/CC2		SCC2/CC3 SCC3/CC4	100MHz 100MHz	-		N/A N/A N/A	N/A N/A
N/A N/A		SCC2/CC3 SCC3/CC4	100MHz 100MHz			N/A N/A N/A CP-OFDM	N/A N/A
N/A N/A		SCC2/CC3 SCC3/CC4	100MHz 100MHz			N/A N/A N/A CP-OFDM	N/A N/A
Wgap 190MHz SCC2/CC3 100MHz N/A	SCC2/CC3 SCC3/CC4 PCC/CC1	100MHz 100MHz 200MHz			N/A N/A N/A CP-OFDM 16QAM	N/A N/A Outer_Full	
SCC2/CC3	2	SCC2/CC3 SCC3/CC4 PCC/CC1	100MHz 100MHz 200MHz			N/A N/A N/A CP-OFDM 16QAM CP-OFDM	N/A N/A Outer_Full
SCC3/CC4	3	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	100MHz 100MHz 200MHz 200MHz			N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM	N/A N/A Outer_Full Outer_Full
SCC3/CC4	3	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap	100MHz 100MHz 200MHz 200MHz 190MHz			N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A	N/A N/A Outer_Full Outer_Full N/A
PCC/CC1 200MHz CP-OFDM 64QAM CP-OFDM 64QAM CP-OFDM 64QAM CP-OFDM 64QAM CP-OFDM 64QAM CP-OFDM 64QAM N/A 3	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz			N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A	N/A N/A Outer_Full Outer_Full N/A	
SCC1/CC2 200MHz CP-OFDM G4QAM G4QAM G4QAM G4QAM N/A N/	3	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz			N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A
SCC1/CC2 200MHz CP-OFDM 64QAM N/A N/	3	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 100MHz			N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A
A Bygap 190MHz	3	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 100MHz			N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM	N/A N/A Outer_Full Outer_Full N/A N/A N/A
A Bygap 190MHz	3	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 100MHz 200MHz			N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full
Wgap	3	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 100MHz 200MHz			N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full
SCC2/CC3		SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 100MHz 200MHz			N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full
SCC3/CC4		SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 100MHz 200MHz			N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full
Default Test Settings for a CA_nX(D-G)_UL_nXG, CA_nX(D-O)_UL_nXO Configuration (400MHz <= Cumulative aggregated BWchannel <800MHz) PCC/CC1		SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 190MHz			N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A
Default Test Settings for a CA_nX(D-G)_UL_nXG, CA_nX(D-O)_UL_nXO Configuration (400MHz <= Cumulative aggregated BWchannel <800MHz) PCC/CC1		SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 190MHz 100MHz			N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A
PCC/CC1	4	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 190MHz 100MHz 100MHz			N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A
PCC/CC1	4	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	100MHz 100MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 190MHz 100MHz 100MHz	JL nXG, CA nX/D-	O) UL nXO Con	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A
1 SCC1/CC2 100MHz test DFT-s-OFDM QPSK QPSK QPSK QPSK N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	4	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 100MHz 100MHz 100MHz 100MHz 100MHz 100MHz			N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A
1 SCC1/CC2 100MHz test DFT-s-OFDM QPSK QPSK N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	4	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 ault Test Settings (1986)	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 100MHz	gregated BWchanr	nel <800MHz)	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A	N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full Outer_Full A/A N/A N/A N/A N/A N/A N/A N/A N/A
1 QPSK Wgap 190MHz SCC2/CC3 200MHz SCC3/CC4 200MHz N/A N/A N/A N/A N/A N/A CP-OFDM Outer_Full	4	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 ault Test Settings (1986)	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 100MHz	gregated BWchanr	nel <800MHz)	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A TP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A TOP-OFDM N/A N/A N/A N/A N/A TOP-OFDM	N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full Outer_Full A/A N/A N/A N/A N/A N/A N/A N/A N/A
1 QPSK Wgap 190MHz SCC2/CC3 200MHz SCC3/CC4 200MHz N/A N/A N/A N/A N/A N/A CP-OFDM Outer_Full	4	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings to the setting to the s	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 100MHz	gregated BWchanr	nel <800MHz)	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A TP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A Siguration (400MHz	N/A N/A N/A Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A Outer_Full Outer_Full Outer_Full Outer_Full
Wgap 190MHz N/A N/A SCC2/CC3 200MHz N/A N/A SCC3/CC4 200MHz N/A N/A PCC/CC1 100MHz CP-OFDM Outer_Full	4	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings to the setting to the s	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 100MHz	gregated BWchanr	N/A for this	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A TP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A Siguration (400MHz	N/A N/A N/A Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A Outer_Full Outer_Full Outer_Full Outer_Full
SCC2/CC3 200MHz N/A N/A SCC3/CC4 200MHz N/A N/A PCC/CC1 100MHz CP-OFDM Outer_Full	4 Defa	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings to the setting to the s	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 100MHz	gregated BWchanr	N/A for this	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A TP-OFDM 64QAM N/A N/A N/A N/A N/A N/A DFT-S-OFDM QPSK DFT-S-OFDM	N/A N/A N/A Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A Outer_Full Outer_Full Outer_Full Outer_Full
SCC3/CC4 200MHz N/A N/A 2 PCC/CC1 100MHz CP-OFDM Outer_Full	4 Defa	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings to the second se	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 200MHz 100MHz	gregated BWchanr	N/A for this	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A DFT-S-OFDM QPSK DFT-S-OFDM QPSK	N/A N/A N/A Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A Outer_Full Outer_Full Outer_Full Outer_Full Outer_Full Outer_Full
SCC3/CC4 200MHz N/A N/A 2 PCC/CC1 100MHz CP-OFDM Outer_Full	4 Defa	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 ault Test Settings PCC/CC1 SCC1/CC2 Wgap	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 200MHz 100MHz	gregated BWchanr	N/A for this	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A DFT-S-OFDM QPSK DFT-S-OFDM QPSK N/A	N/A
2 PCC/CC1 100MHz CP-OFDM Outer_Full	4 Defa	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 ault Test Settings PCC/CC1 SCC1/CC2 Wgap	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 200MHz 100MHz	gregated BWchanr	nel <800MHz) N/A for this	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A DFT-S-OFDM QPSK DFT-S-OFDM QPSK N/A	N/A
	4 Defa	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 ault Test Settings PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC2/CC3 SCC2/CC3 SCC2/CC3	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 200MHz 100MHz 200MHz	gregated BWchanr	nel <800MHz) N/A for this	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A DFT-S-OFDM QPSK DFT-S-OFDM QPSK N/A N/A N/A	N/A
QPSK	4 Defa	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 ault Test Settings PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 200MHz 100MHz 100MHz 100MHz 100MHz 100MHz 100MHz 100MHz 200MHz 200MHz 200MHz	gregated BWchanr	nel <800MHz) N/A for this	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A
	4 Defa	SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 ault Test Settings PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4 SCC3/CC4	100MHz 100MHz 200MHz 200MHz 200MHz 190MHz 100MHz 200MHz 200MHz 200MHz 100MHz 100MHz 100MHz 100MHz 100MHz 100MHz 100MHz 200MHz 200MHz 200MHz	gregated BWchanr	nel <800MHz) N/A for this	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A DFT-S-OFDM QPSK DFT-S-OFDM QPSK N/A N/A N/A CP-OFDM	N/A

	SCC1/CC2	100MHz			CP-OFDM QPSK	Outer_Full
	Wgap	190MHz			N/A	N/A
	SCC2/CC3	200MHz			N/A	N/A
	SCC3/CC4	200MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM	Outer_Full
					16QAM	
3	SCC1/CC2	100MHz			CP-OFDM 16QAM	Outer_Full
	Wgap	190MHz			N/A	N/A
	SCC2/CC3	200MHz			N/A	N/A
	SCC3/CC4	200MHz			N/A	N/A
	PCC/CC1	100MHz			С	Outer_Full
	SCC1/CC2	100MHz			CP-OFDM	Outer_Full
4					64QAM	_
	Wgap	190MHz			N/A	N/A
	SCC2/CC3	200MHz			N/A	N/A
	SCC3/CC4	200MHz			N/A	N/A
Defa	ault Test Settings		L_nXD, CA_nX(D- regated BWchanr		nfiguration (400MHz	: <= Cumulative
	PCC/CC1	200MHz	Default	N/A for this	DFT-s-OFDM	Outer_Full
	0004/000	2001411		44	QPSK	O.:t-:
1	SCC1/CC2	200MHz		test	DFT-s-OFDM QPSK	Outer_Full
1	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	PCC/CC1	200MHz			CP-OFDM QPSK	Outer_Full
	SCC1/CC2	200MHz			CP-OFDM QPSK	Outer_Full
2	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	PCC/CC1	200MHz			CP-OFDM 16QAM	Outer_Full
	SCC1/CC2	200MHz			CP-OFDM 16QAM	Outer_Full
3	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	PCC/CC1	200MHz			CP-OFDM	Outer_Full
					16QAM	_
	SCC1/CC2	200MHz			CP-OFDM 16QAM	Outer_Full
4	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
Defa		or a CA_nX(O-E)_UL			umulative aggrega	
	PCC/CC1	100MHz	800MHz) Default	N/A for this	DFT-s-OFDM	Outer_Full
			Belaut		QPSK	
1	SCC1/CC2	100MHz		test	DFT-s-OFDM QPSK	Outer_Full
-	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	200MHz			N/A	N/A
	SCC4/CC5	200MHz			N/A	N/A
2	PCC/CC1	100MHz			CP-OFDM QPSK	Outer_Full
	SCC1/CC2	100MHz			CP-OFDM QPSK	Outer_Full
	I				¥. 5.,	<u> </u>

	Г Г		l	l		
	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	200MHz			N/A	N/A
	SCC4/CC5	200MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM	Outer Full
	1 00/001	10011112			16QAM	outer_r un
	SCC1/CC2	100MHz			CP-OFDM 16QAM	Outer_Full
3	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	200MHz			N/A	N/A
	SCC4/CC5	200MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM 16QAM	Outer_Full
	SCC1/CC2	100MHz			CP-OFDM 16QAM	Outer_Full
4	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4					
		200MHz			N/A	N/A
	SCC4/CC5	200MHz			N/A	N/A
Det	fault Test Settings		L_nXD, CA_nX(D- regated BWchanı		figuration (400MHz	<= Cumulative
	PCC/CC1	100MHz	Default	N/A for this	DFT-s-OFDM QPSK	Outer_Full
	SCC1/CC2	200MHz		test	DFT-s-OFDM	Outer_Full
					QPSK	_
1	Wgap	90MHz			N/A	N/A
-	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4				N/A	N/A
		100MHz				
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM QPSK	Outer_Full
	SCC1/CC2	200MHz			CP-OFDM QPSK	Outer_Full
2	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM 16QAM	Outer_Full
	SCC1/CC2	200MHz			CP-OFDM 16QAM	Outer_Full
3	Wgap	90MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM	Outer_Full
	SCC1/CC2	200MHz			16QAM CP-OFDM 16QAM	Outer_Full
4	Wgap	90MHz			N/A	N/A
-	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz		<u> </u>	N/A	N/A
Defa	ult Test Settings fo	or a CA_nX(G-I)_UL	nXG Configuratio_ 800MHz		umulative aggregat	ed BWchannel <
1	PCC/CC1	100MHz	Default	N/A for this	DFT-s-OFDM QPSK	Outer_Full
	SCC1/CC2	100MHz		test	DFT-s-OFDM QPSK	Outer_Full
	Wgap	190MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
				ı		*

			_			
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
-						
	PCC/CC1	100MHz			CP-OFDM	Outer_Full
					QPSK	
	0001/000	4001411				0 1 5 5 11
	SCC1/CC2	100MHz			CP-OFDM	Outer_Full
					QPSK	
	14/	1001411-				N1/A
2	Wgap	190MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
	PCC/CC1	100MHz			CP-OFDM	Outer_Full
	FCC/CCI	TOOMI IZ			1	Outer_Full
					16QAM	
	SCC1/CC2	100MHz			CP-OFDM	Outer_Full
	3001/002	1001011 12			1	Outci_i uii
					16QAM	
3	Wgap	190MHz			N/A	N/A
٦						
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
1	SCC4/CC5	100MHz			N/A	N/A
1	SCC5/CC6	100MHz			N/A	N/A
						
1	PCC/CC1	100MHz			CP-OFDM	Outer_Full
					16QAM	-
1	0001/000	4001				0 : = "
	SCC1/CC2	100MHz			CP-OFDM	Outer_Full
1					16QAM	_
4	Wgap	190MHz			N/A	N/A
	SCC2/CC3	100MHz			N/A	N/A
	SCC3/CC4	100MHz			N/A	N/A
	SCC4/CC5	100MHz			N/A	N/A
	SCC5/CC6	100MHz			N/A	N/A
Def	ault Test Settings	for a CA_nX(D-O)_U	I nXD Configura	tion (Cumulative	angregated RWcha	nnel 100MHz)</td
Dei						
	PCC/CC1	50MHz	Default	N/A for this	CP-OFDM QPSK	Outer_Full
1	0004/000	0001111		44	OD OFFILE OFFI	O 1
	I SCCT/CC2	200MHz		iesi	LCP-OFDM OPSK	Outer Full
	SCC1/CC2	200MHz		test	CP-OFDM QPSK	Outer_Full
1	Wgap	40MHz		test	N/A	N/A
1	Wgap	40MHz		test	N/A	N/A
1	Wgap SCC2/CC3	40MHz 50MHz		test	N/A N/A	N/A N/A
1	Wgap SCC2/CC3 SCC3/CC4	40MHz 50MHz 50MHz		test	N/A N/A N/A	N/A N/A N/A
1	Wgap SCC2/CC3 SCC3/CC4	40MHz 50MHz 50MHz		test	N/A N/A N/A	N/A N/A N/A
1	Wgap SCC2/CC3	40MHz 50MHz		test	N/A N/A N/A CP-OFDM	N/A N/A
1	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1	40MHz 50MHz 50MHz 50MHz		test	N/A N/A N/A CP-OFDM 16QAM	N/A N/A N/A Outer_Full
1	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1	40MHz 50MHz 50MHz		test	N/A N/A N/A CP-OFDM 16QAM	N/A N/A N/A Outer_Full
	Wgap SCC2/CC3 SCC3/CC4	40MHz 50MHz 50MHz 50MHz		test	N/A N/A N/A CP-OFDM 16QAM CP-OFDM	N/A N/A N/A
2	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	40MHz 50MHz 50MHz 50MHz 200MHz		test	N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM	N/A N/A N/A Outer_Full Outer_Full
	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	40MHz 50MHz 50MHz 50MHz 200MHz		test	N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM	N/A N/A N/A Outer_Full Outer_Full
	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap	40MHz 50MHz 50MHz 50MHz 200MHz		test	N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A	N/A N/A N/A Outer_Full Outer_Full N/A
	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz		test	N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A
	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap	40MHz 50MHz 50MHz 50MHz 200MHz		test	N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A	N/A N/A N/A Outer_Full Outer_Full N/A
	Wgap	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz		test	N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A
	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz		test	N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM	N/A N/A N/A Outer_Full Outer_Full N/A N/A
	Wgap	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz		test	N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A
	Wgap	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz		test	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM	N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full
2	Wgap	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz		test	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM	N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A
	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 40MHz 50MHz 50MHz 50MHz 200MHz		test	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM	N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full
2	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 40MHz 50MHz 50MHz 50MHz 200MHz		test	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM	N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full
2	Wgap	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz		test	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full Outer_Full Outer_Full
2	Wgap	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz		test	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full Outer_Full N/A N/A N/A N/A N/A
2	Wgap	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz		test	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full Outer_Full N/A N/A N/A N/A N/A
2	Wgap	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz			N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A
2	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings SCC3/CC4 SC	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A A RY/A N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A A N/A A N/A N/A N/A N/A N/A N/A N/	
2	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings SCC3/CC4 SC	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz	IL_nXO Configura		N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A
2	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings PCC/CC1 SCC1/CC1 SCC1/CC2 SCC3/CC4 SCC	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full AN/A N/A N/A N/A N/A N/A N/A N/A N/A N
2 3 Def	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings PCC/CC1 SCC1/CC2 SCC1/CC1/CC2 SCC1/CC1/CC1/CC1/CC1/CC1/CC1/CC1/CC1/CC1	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A A N/A N/A N/A N/A N/A N/A N/A N/A
2	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings PCC/CC1 SCC1/CC2 SCC1/CC1/CC2 SCC1/CC1/CC1/CC1/CC1/CC1/CC1/CC1/CC1/CC1	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full AN/A N/A N/A N/A N/A N/A N/A N/A N/A N
2 3 Def	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC1/CC2 Wgap SCC1/CC2 SCC1/CC2 Wgap SCC1/CC2 Wgap SCC2/CC3 SCC1/CC2 40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz 40MHz 40MHz 40MHz 40MHz 40MHz 40MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	
2 3 Def	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC1/CC2 Wgap SCC2/CC3 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC2/CC3	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 40MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
2 3 Def	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC1/CC2 Wgap SCC1/CC2 SCC1/CC2 Wgap SCC1/CC2 Wgap SCC2/CC3 SCC1/CC2 40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz 40MHz 40MHz 40MHz 40MHz 40MHz 40MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	
2 3 Def	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC3/CC	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM N/A N/A N/A N/A N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
3 Def	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC1/CC2 Wgap SCC2/CC3 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC3/CC4 40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	
3 Def	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 Ault Test Settings PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 SCC3/CC	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM N/A N/A N/A N/A N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK	N/A
3 Def	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 S	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 40MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
2 3 Def.	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC1/CC2 Wgap SCC1/CC2 Wgap SCC1/CC2 Wgap SCC1/CC2 SCC1/CC2 Wgap SCC1/CC2 SCC1/C2 40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 200MHz 40MHz 40MHz 40MHz 50MHz 40MHz 40MHz 50MHz 40MHz 40MHz 40MHz 40MHz 40MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	
3 Def	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 SCC1/C2 S	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 40MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM CP-OFDM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
2 3 Def.	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC1/CC2 Wgap SCC1/CC2 Wgap SCC1/CC2 Wgap SCC1/CC2 SCC1/CC2 Wgap SCC1/CC2 SCC1/C2 40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 200MHz 40MHz 40MHz 40MHz 50MHz 40MHz 40MHz 50MHz 40MHz 40MHz 40MHz 40MHz 40MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	
2 3 Def.	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC1/CC2 SCC1/CC2 Wgap SCC2/CC3 SCC2/CC3 SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC2/CC3 40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	
2 3 Def.	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC1/CC2 Wgap SCC1/CC2 Wgap SCC1/CC2 Wgap SCC1/CC2 SCC1/CC2 Wgap SCC1/CC2 SCC1/C2 40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 200MHz 40MHz 40MHz 40MHz 50MHz 40MHz 40MHz 50MHz 40MHz 40MHz 40MHz 40MHz 40MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	
2 3 Def.	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC1/CC2 SCC1/CC2 Wgap SCC2/CC3 SCC2/CC3 SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC2/CC3 40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A N/A Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	
2 3 Def. 1	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC1/CC3 SCC3/CC4 SCC3/CC3/CC3/CC4 SCC3/CC4 40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM	N/A	
2 3 Def.	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC3/CC4 PCC3/CC4 PCC/CC1 PCC/CC1 PCC/CC1 PCC/CC1 PCC/CC1 PCC/CC1	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 40MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
2 3 Def. 1	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC3/CC4 PCC3/CC4 PCC/CC1 PCC/CC1 PCC/CC1 PCC/CC1 PCC/CC1 PCC/CC1	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 40MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
2 3 Def. 1	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC1/C2 S	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 40MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A Outer_Full Outer_Full Outer_Full Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
2 3 Def. 1	Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 Wgap SCC2/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC1/CC2 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC3 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC1/CC2 SCC3/CC4 PCC/CC1 SCC3/CC4 PCC3/CC4 PCC/CC1 PCC/CC1 PCC/CC1 PCC/CC1 PCC/CC1 PCC/CC1	40MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 50MHz 50MHz 50MHz 200MHz 40MHz 50MHz 40MHz 50MHz		tion (Cumulative	N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM 16QAM N/A N/A N/A CP-OFDM 64QAM CP-OFDM 64QAM N/A N/A N/A N/A N/A N/A N/A N/A CP-OFDM QPSK CP-OFDM QPSK N/A N/A N/A N/A N/A CP-OFDM 16QAM CP-OFDM	N/A N/A N/A N/A Outer_Full Outer_Full N/A N/A Outer_Full Outer_Full N/A N/A N/A N/A N/A N/A N/A N/A N/A N/

	SCC2/CC3	50MHz		CP-OFDM	Outer_Full			
				64QAM				
	SCC3/CC4	50MHz		CP-OFDM	Outer_Full			
				64QAM	_			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.								
NOTE	2 PCC/CCi and	SCC/CCi means PC0	C is on component carrier CCi.	and SCC is on component	carrier CCi_with			

CCi or CCj frequencies defined in TS38.508-1 [10].

Table 6.2A.2.1.4.1-7: Intra-band Contiguous UL CA Test Configuration Table (Power Class 2, 3 and 4, Non-contiguous allocation)

			Default C					
	Environment as specifie	d in TS 38.508-1 [2	10]	Normal				
	ause [4.1]							
	requencies as specified			Mid range				
	ause [4.3.1.2.3] for diffe							
	CC Combination setting			Highest aggregation	ated channel bandwidth	of the CA		
	uration) as specified in			configuration				
	2-2 for the CA Configura		vidth					
	ination sets supported t							
Test S	SCS as specified in Tab	le 5.3.5-1		120 kHz				
			Test Par	ameters				
Test	CC & Mapping	ChBw(MHz)	Test	DL RB	UL Modulation	UL RB allocation		
ID	(NOTE 2)		frequency	allocation				
D	efault Test Settings fo	r a CA_XG, CA_n	XO Configur	ation (Cumulativ	e aggregated BWchar	nnel < 400MHz)		
1	PCC/CC1	Default	Default	N/A for this	DFT-s-OFDM QPSK	Outer_1RB_Left		
1	SCC/CC2			test	DFT-s-OFDM QPSK	Outer_1RB_Right		
	PCC/CC1				DFT-s-OFDM Pi/2	[Outer_0.9_Left]		
2					BPSK			
2	SCC/CC2				DFT-s-OFDM Pi/2	[Outer_0.9_Right]		
					BPSK			
	PCC/CC1				DFT-s-OFDM Pi/2	[Outer_0.9_Left]		
3					QPSK			
3	SCC/CC2				DFT-s-OFDM Pi/2	[Outer_0.9_Right]		
					QPSK			
	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.							
NOTE	2: PCC/CCi and SCC	C/CCj means PCC	is on compon	ent carrier CCi a	nd SCC is on componer	t carrier CCj, with		

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.2A.2.1.4.1-1 to Table 6.2A.2.1.4.1-7.
- 5. Propagation conditions are set according to Annex B.0

CCi or CCj frequencies defined in TS38.508-1 [10].

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2A.2.1.4.3.

6.2A.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 and Annex C.3.0 for all downlink physical channels
- 2. The SS shall configure SCC as per TS 38.508-1 [10] subclause 5.5.1 Procedure to configure SCC(s) for NR RF CA testing. Message contents are defined in subclause 6.2A.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321, clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).

- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2A.2.1.4.1-1 to Table 6.2A.2.1.4.1-7. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec starting from the first TPC command in this step to ensure that the UE transmits at its maximum output power.
- 6. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 7. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 8. Measure UE EIRP in the Tx beam peak direction in the accumulative aggregated channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in 6.2A.2.1.5. EIRP test procedure is defined in Annex K.1.3. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 9. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.
- NOTE 2: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.2A.2.1.4.1-1 to Table 6.2A.2.1.4.1-7, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.2A.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6. In test procedure step 1, for SCC configuration there are no additional message contents.

6.2A.2.1.5 Test requirement

The EIRP derived in step 8 shall be within the range prescribed by the nominal maximum output power and tolerance in the applicable table from Table 6.2A.2.1.5-1 to Table 6.2A.2.1.5-17.

Table 6.2A.2.1.5-1: MPR requirements for Intra-band Contiguous UL CA (Power Class 1, MPR_{narrow})

Test	Band	Min peak EIRP	MPR	T(MPR)	Lower limit	Upper limit
ID		(dBm)	(dB)	(dB)	(dBm)	(dBm)
1	n257, n258, n261	40.0	14.4	[7.0]	[18.6]-TT	55
1	n260	38.0	14.4	[7.0]	[16.6]-TT	55
2	n257, n258, n261	40.0	14.4	[7.0]	[18.6]-TT	55
2	n260	38.0	14.4	[7.0]	[16.6]-TT	55
3	n257, n258, n261	40.0	10	[5]	[25.0]-TT	55
3	n260	38.0	10	[5]	[23.0]-TT	55
4	n257, n258, n261	40.0	10	[5]	[25.0]-TT	55
4	n260	38.0	10	[5]	[23.0]-TT	55
NOTE 1:	TT for each band ar	nd accumulative aggre	gated bandv	vidth is specified	l in Table 6.2A.2.1.5-5).

Table 6.2A.2.1.5-2: MPR requirements for Intra-band Contiguous UL CA (Power Class 1, single CC MPR requirement)

Test ID	Band	Min peak EIRP (dBm)	MPR (dB)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)
Test	requirements for a	CA_nXG, CA_nXO Co	nfiguration	(Cumulative a	ggregated BWchanr	nel <= 200MHz)
1	n257, n258, n261	40.0	5.5	[5.0]	[29.5]-TT	55
1	n260	38.0	5.5	[5.0]	[27.5]-TT	55
2	n257, n258, n261	40.0	3.0	[2.0]	[35.0]-TT	55
2	n260	38.0	3.0	[2.0]	[33.0]-TT	55
	Test requirements f	or a CA_nXD Configu	uration (Cum	nulative aggreg	ated BWchannel <=	= 400MHz)
1	n257, n258, n261	40.0	5.5	[5.0]	[29.5]-TT	55
1	n260	38.0	5.5	[5.0]	[27.5]-TT	55
2	n257, n258, n261	40.0	3.0	[2.0]	[35.0]-TT	55
2	n260	38.0	3.0	[2.0]	[33.0]-TT	55
3	n257, n258, n261	40.0	3.5	[3.0]	[33.5]-TT	55
3	n260	38.0	3.5	[3.0]	[31.5]-TT	55
NOTE 1:	TT for each band a	nd accumulative aggre	gated bandw	idth is specified	l in Table 6.2A.2.1.5-5	5.

Table 6.2A.2.1.5-3: MPR requirements for Intra-band Contiguous UL CA (Power Class 1, MPR_{C_CA})

Test ID	Band	Min peak EIRP (dBm)	MPR (dB)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)
	Test requirements for a CA_nXB, CA_	_nXC_UL_nXB Configuration (800I BWchannel <= 1400MHz)	MHz <= Cu	mulative a	aggregate	ed
1	n257, n258, n261	40.0	[8.2]	[5.0]	[26.8]- TT	55
1	n260	38.0	[8.2]	[5.0]	[24.8]- TT	55
2	n257, n258, n261	40.0	[9.7]	[5.0]	[25.3]- TT	55
2	n260	38.0	[9.7]	[5.0]	[23.3]- TT	55
3	n257, n258, n261	40.0	[9.2]	[5.0]	[25.8]- TT	55
3	n260	38.0	[9.2]	[5.0]	[23.8]- TT	55
4	n257, n258, n261	40.0	[8.7]	[5.0]	[26.3]- TT	55
4	n260	38.0	[8.7]	[5.0]	[24.3]- TT	55
5	n257, n258, n261	40.0	[11.2]	[7.0]	[21.8]- TT	55
5	n260	38.0	[11.2]	[7.0]	[19.8]- TT	55
Te	est requirements for a CA_nXD, CA_n	XB Configuration (400MHz <= Cum 800MHz)	nulative ag	gregated l		nel <
1	n257, n258, n261	40.0	7.7	[5.0]	[27.3]- TT	55
1	n260	38.0	7.7	[5.0]	[25.3]- TT	55
2	n257, n258, n261	40.0	8.7	[5.0]	[26.3]- TT	55
2	n260	38.0	8.7	[5.0]	[24.3]- TT	55
3	n257, n258, n261	40.0	10.7	[7.0]	[22.3]- TT	55
3	n260	38.0	10.7	[7.0]	[20.3]- TT	55
Т	est requirements for a CA_nXG, CA_r	nXO, CA_nXD Configuration (Cum 400MHz)	ulative ago	regated B		el <
1	n257, n258, n261	40.0	5.5	[5.0]	[29.5]- TT	55
1	n260	38.0	5.5	[5.0]	[27.5]- TT	55
2	n257, n258, n261	40.0	6.5	[5.0]	[28.5]- TT	55
2	n260	38.0	6.5	[5.0]	[26.5]- TT	55
3	n257, n258, n261	40.0	9.0	[5.0]	[26.0]- TT	55
3	n260	38.0	9.0	[5.0]	[24.0]- TT	55
					CA_nX(
Q)_	UL_nXD, CA_nX(G-I)_UL_nXG Config	uration ($800MHz \le Cumulative ag$	gregated	BWchanne	el <= 1400	OMHz)
1	n257, n258, n261	40.0	[8.2]	[5.0]	[26.8] -TT	55
1	n260	38.0	[8.2]	[5.0]	[24.8] –TT	55
2	n257, n258, n261	40.0	[9.7]	[5.0]	[25.3] –TT	55
2	n260	38.0	[9.7]	[5.0]	[23.3] –TT	55

			1	i							
3	n257, n258, n261	40.0	[9.2]	[5.0]	[25.8] –TT	55					
3	n260	38.0	[9.2]	[5.0]	[23.8] –TT	55					
4	n257, n258, n261	40.0	[8.7]	[5.0]	[26.3] –TT	55					
4	n260	38.0	[8.7]	[5.0]	[24.3] –TT	55					
5	n257, n258, n261	40.0	[11.2]	[7.0]	[21.8] –TT	55					
5	n260	38.0	[11.2]	[7.0]	[19.8] –TT	55					
	Test requirements for a CA_nX(D-G)_UL_nXD, CA_nX(D-O)_UL_nXD, CA_nX(D-G)_UL_nXG, CA_nX(D-O)_UL_nXO, CA_nX(D-H)_UL_nXD, CA_nX(D-P)_UL_nXD, CA_nX(O-E)_UL_nXO, CA_nX(D-I)_UL_nXD, CA_nX(D-O-D)_UL_nXD, C										
(Q)	_UL_nXD, CA_nX(G-I)_UL_nXG Confi	guration (400MHz <= Cumulative ag	gregated	l BWchan	nel <800N	/IHz)					
1	n257, n258, n261	40.0	7.7	[5.0]	[27.3]- TT	55					
1	n260	38.0	7.7	[5.0]	[25.3]- TT	55					
2	n257, n258, n261	40.0	8.7	[5.0]	[26.3]- TT	55					
2	n260	38.0	8.7	[5.0]	[24.3]- TT	55					
3	n257, n258, n261	40.0	10.7	[7.0]	[22.3]- TT	55					
3	n260	38.0	10.7	[7.0]	[20.3]- TT	55					
Tes	st requirements for a CA_nX(D-O)_UL	_nXD, CA_nX(D-O)_UL_nXO Config BWchannel <400MHz)	uration (Cumulativ	e aggreg	ated					
1	n257, n258, n261	40.0	5.5	[5.0]	[29.5]- TT	55					
1	n260	38.0	5.5	[5.0]	[27.5]- TT	55					
2	n257, n258, n261	40.0	6.5	[5.0]	[28.5]- TT	55					
2	n260	38.0	6.5	[5.0]	[26.5]- TT	55					
3	n257, n258, n261	40.0	9.0	[5.0]	[26.0]- TT	55					
3	n260	38.0	9.0	[5.0]	[24.0]- TT	55					
NOTE	1: TT for each band and accumulative	aggregated bandwidth is specified in	Table 6.2	A.2.1.5-5.							

Table 6.2A.2.1.5-4: MPR requirements for Intra-band Contiguous UL CA (Power Class 1, Non-contiguous allocation)

Test ID	Band	Min peak EIRP (dBm)	MPR (dB)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)
	Test requir	ements for a CA_n	XB, CA_nXD	, CA_XG, CA_	nXO Configuration	` '
1	n257, n258, n261	40.0	[14.4]	[7.0]	[18.6] -TT	55
1	n260	38.0	[14.4]	[7.0]	[16.6] -TT	55
2	n257, n258, n261	FFS	FFS	FFS	FFS	FFS
2	n260	FFS	FFS	FFS	FFS	FFS
3	n257, n258, n261	FFS	FFS	FFS	FFS	FFS
3	n260	FFS	FFS	FFS	FFS	FFS
	Test i	requirements for a (CA_nX(D-G)	, CA_nX(D-O) (Configuration	
1	n257, n258, n261	40.0	[14.4]	[7.0]	[18.6] -TT	55
1	n260	38.0	[14.4]	[7.0]	[16.6] -TT	55
2	n257, n258, n261	FFS	FFS	FFS	FFS	FFS
2	n260	FFS	FFS	FFS	FFS	FFS
3	n257, n258, n261	FFS	FFS	FFS	FFS	FFS
3	n260	FFS	FFS	FFS	FFS	FFS
NOTE 1:	TT for each band and	l accumulative aggre	gated bandw	idth is specified	l in Table 6.2A.2.1.5-5	5.

Table 6.2A.2.1.5-5: Test Tolerance (MPR for CA for Power class 1)

FFS

Table 6.2A.2.1.5-6: MPR requirements for Intra-band Contiguous UL CA (Power Class 2, single CC MPR requirement)

Test ID	Band	Min peak EIRP (dBm)	MPR (dB)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)		
Test	Test requirements for a CA_nXG, CA_nXO Configuration (Cumulative aggregated BWchannel <= 200MHz)							
1	n257, n258, n261	29	0	0	29.0-TT	43		
2	n257, n258, n261	29	2	[1.5]	[25.5]-TT	43		
	Test requirements f	or a CA_nXD Configu	iration (Cun	nulative aggreg	ated BWchannel <=	400MHz)		
1	n257, n258, n261	29	0	0	29.0-TT	43		
2	n257, n258, n261	29	3	[2.0]	[24.0]-TT	43		
NOTE 1:	TT for each band ar	nd accumulative aggre	gated bandw	idth is specified	in Table 6.2A.2.1.5-9).		

Table 6.2A.2.1.5-7: MPR requirements for Intra-band Contiguous UL CA (Power Class 2, MPR_{C_CA})

Test requirements for a CA_nXB, nXC_UL_nXB Configuration (800MHz <= Cumulative aggregated BWchamel <	Test ID	Band	Min peak EIRP (dBm)	MPR (dB)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)				
29	Test	requirements for a CA_nXB, nXC_UL_		nulative a	aggregate	d BWcha	nnel <=				
193 19.0 17.7 43 43 18.0 15.0 16.0 16.0 16.0 17.1 43 44 18.257, 18.258, 18.61 29 19.2 15.0 16.0 17.1 43 43 18.257, 18.258, 18.61 29 19.2 18.0 18.0 17.1 43 43 18.257, 18.258, 18.61 29 7.7 18.0 1	1	n257, n258, n261	29	[8.2]	[5.0]		43				
4	2	n257, n258, n261	29	[9.3]	[5.0]		43				
Part	3	n257, n258, n261	29	[8.0]	[5.0]		43				
Test requirements for a CA_nXD, CA_nXB Configuration (400MHz <= Cumulative aggregated Bwtchannel <= 1	4	n257, n258, n261	29	[9.2]	[5.0]		43				
1	5	n257, n258, n261	29	[11.2]	[7.0]	l	43				
29	• • • • • • • • • • • • • • • • • • • •										
29	1	n257, n258, n261	29	7.7	[5.0]		43				
1	2	n257, n258, n261	29	7.5	[5.0]		43				
Test requirements for a CA_nXG, CA_nXD Configuration (Cumulative aggregated BVChannel 1	3	n257, n258, n261	29	8.7	[5.0]		43				
1	4	n257, n258, n261	29	10.7	[7.0]		43				
29 5 [4-U] TT 43 2 n257, n258, n261 29 6.5 [5.0] [17.5] TT 43 3 n257, n258, n261 29 9 [5.0] [15.0] TT 43 Test requirements for a CA_nX(D-G)_UL_nXD, CA_nX(D-G)_UL_nXG, CA_nX(D-O)_UL_nXD, CA_nX(D-O)_UL_nX	T										
1	1	n257, n258, n261	29	5	[4.0]		43				
Test requirements for a CA_nX(D-G) UL_nXD, CA_nX(D-G)_UL_nXG, CA_nX(D-O)_UL_nXD, CA_n	2	n257, n258, n261	29	6.5	[5.0]		43				
O) UL_nXO, CA_nX(D-H)_UL_nXD, CA_nX(D-P)_UL_nXD, CA_nX(E-O)_UL_nXO, CA_nX(D-I)_UL_nXD, CA_IXD-I)_UL_nXD, CA_IXD-I]	3	n257, n258, n261	29	9	[5.0]		43				
1 n257, n258, n261 29 [8.2] [5.0] ∏5.8] TT 43 2 n257, n258, n261 29 [9.3] [5.0] ∏4.7] 43 3 n257, n258, n261 29 [8.0] [5.0] ∏6.0] TT 43 4 n257, n258, n261 29 [11.2] [7.0] ∏14.8] 17 43 5 n257, n258, n261 29 [11.2] [7.0] ∏10.8] 17 43 Test requirements for a CA_nX(D-G)_UL_nXD, CA_nX(D-O)_UL_nXD, CA_nX(D-G)_UL_nXG, CA_nX(D-O)_UL_nXG, CA_nX(D-O)_UL_nXG, CA_nX(D-O)_UL_nXD, CA_nXD,	O)_U	L_nXO, CA_nX(D-H)_UL_nXD, CA_nX	(D-P)_UL_nXD, CA_nX(E-O)_UL_nX	O, CA_n	X(D-I)_UL	_nXD, CA	_nX(D-				
29 [9.3] [5.0] TT 43 1						[15.8]-					
4	2	n257, n258, n261	29	[9.3]	[5.0]		43				
4 n257, n258, n261 29 [9.2] [5.0] [14.8]- TT 43 5 n257, n258, n261 29 [11.2] [7.0] [10.8]- TT 43 Test requirements for a CA_nX(D-G)_UL_nXD, CA_nX(D-O)_UL_nXD, CA_nX(D-G)_UL_nXG, CA_nX(D-O)_UL_nXD,	3	n257, n258, n261	29	[8.0]	[5.0]		43				
Test requirements for a CA_nX(D-G)_UL_nXD, CA_nX(D-O)_UL_nXD, CA_nX(D-G)_UL_nXG, CA_nX(D-O)_UL_nXO, CA_nX(D-H)_UL_nXD, CA_nX(D-P)_UL_nXD, CA_nX(O-E)_UL_nXO, CA_nX(D-I)_UL_nXD, CA_nX(D-Q)_UL_nXD, CA_nX(G-I)_UL_nXD, CA_nX(D-I)_UL_nXD, CA_nX(D-	4	n257, n258, n261	29	[9.2]	[5.0]	[14.8]-	43				
O)_UL_nXO, CA_nX(D-H)_UL_nXD, CA_nX(D-P)_UL_nXD, CA_nX(O-E)_UL_nXO, CA_nX(D-I)_UL_nXD, CA_nX(D-Q)_UL_nXD, CA_nX(G-I)_UL_nXD, CA_nX(D-P)_UL_nXD, CA_nX(D-I)_UL_nXD,	5	n257, n258, n261	29	[11.2]	[7.0]		43				
Q) UL_nXD, CA_nX(G-I)_UL_nXG Configuration (400MHz <= Cumulative aggregated BWchannel < 800MHz) 1 n257, n258, n261 29 7.7 [5.0] [16.3]-TT 43 2 n257, n258, n261 29 7.5 [5.0] [16.5]-TT 43 3 n257, n258, n261 29 8.7 [5.0] [15.3]-TT 43 4 n257, n258, n261 29 10.7 [7.0] [11.3]-TT 43 Test requirements for a CA_nX(D-O)_UL_nXD, CA_nX(D-O)_UL_nXO Configuration (Cumulative aggregated BWchannel < 400MHz)											
29 7.7 [5.0] TT 43 2 n257, n258, n261 29 7.5 [5.0] [16.5] TT 43 3 n257, n258, n261 29 8.7 [5.0] [15.3] TT 43 4 n257, n258, n261 29 10.7 [7.0] [11.3] TT 43 Test requirements for a CA_nX(D-O)_UL_nXD, CA_nX(D-O)_UL_nXO Configuration (Cumulative aggregated BWchannel < 400MHz) 1 n257, n258, n261 29 7.7 [5.0] [16.3] TT 43 2 n257, n258, n261 29 7.5 [5.0] [16.5] TT 43 3 n257, n258, n261 29 7.5 [5.0] [16.5] TT 43	Q) <u>.</u>	_UL_nXD, CA_nX(G-I)_UL_nXG Config				nel < 8001					
29 7.5 [5.0] TT 43 3 1257, n258, n261 29 8.7 [5.0] [15.3]- TT 43 44 1257, n258, n261 29 10.7 [7.0] [11.3]- TT 43 43 44 1257, n258, n261 29 7.7 [5.0] [16.3]- TT 43 43 44 44 44 44 44			29	7.7	[5.0]	TT	43				
29 8.7 [5.0] TT 43 43 44 n257, n258, n261 29 10.7 [7.0] [11.3]- TT 43 43 Test requirements for a CA_nX(D-O)_UL_nXD, CA_nX(D-O)_UL_nXO Configuration (Cumulative aggregated BWchannel < 400MHz) 1 n257, n258, n261 29 7.7 [5.0] [16.3]- TT 43 43 43 43 43 43 43			29	7.5	[5.0]	TT	43				
Test requirements for a CA_nX(D-O)_UL_nXD, CA_nX(D-O)_UL_nXO Configuration (Cumulative aggregated BWchannel < 400MHz) 1			29	8.7	[5.0]	TT	43				
BWchannel < 400MHz) 1 n257, n258, n261 29 7.7 [5.0] [16.3]- TT 43 2 n257, n258, n261 29 7.5 [5.0] [16.5]- TT 43 3 n257, n258, n261 29 8.7 [5.0] [15.3]- 43						TT					
1 n257, n258, n261 29 7.7 [5.0] [16.3]- TT 43 2 n257, n258, n261 29 7.5 [5.0] [16.5]- TT 43 3 n257, n258, n261 29 8.7 [5.0] [15.3]- 43	Te	st requirements for a CA_nX(D-O)_UL		uration (Cumulativ	e aggreg	ated				
3 n257, n258, n261 29 7.5 [5.0] TT 43 3 n257, n258, n261 29 8.7 [5.0] [15.3]- 43	1	n257, n258, n261	•	7.7	[5.0]		43				
3 n257, n258, n261 29 8.7 [5.0] [15.3]- 43	2	n257, n258, n261	29	7.5	[5.0]		43				
	3	n257, n258, n261	29	8.7	[5.0]		43				

NOTE 1: TT for each band and accumulative aggregated bandwidth is specified in Table 6.2A.2.1.5-9.

Table 6.2A.2.1.5-8: MPR requirements for Intra-band Contiguous UL CA (Power Class 2, Non-contiguous allocation)

Test	Band	Min peak EIRP	MPR	T(MPR)	Lower limit	Upper limit						
ID		(dBm)	(dB)	(dB)	(dBm)	(dBm)						
	Test requirements for a CA_nXB, CA_nXD, CA_XG, CA_nXO Configuration											
1	n257, n258, n261	29	7	[5.0]	[17.0] -TT	43						
2	n257, n258, n261	FFS	FFS	FFS	FFS	FFS						
3	n257, n258, n261	FFS	FFS	FFS	FFS	FFS						
NOTE 1:	TT for each band and	accumulative aggre	gated bandw	NOTE 1: TT for each band and accumulative aggregated bandwidth is specified in Table 6.2A.2.1.5-9.								

Table 6.2A.2.1.5-9: Test Tolerance (MPR for CA for Power class 2)

FFS

Table 6.2A.2.1.5-10: MPR requirements for Intra-band Contiguous UL CA (Power Class 3, single CC MPR requirement)

Test ID	Band	Min peak EIRP (dBm)	MPR (dB)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)			
Test	requirements for a 0	CA_nXG, CA_nXO Co	nfiguration	(Cumulative a	ggregated BWchanr	nel <= 200MHz)			
1	n257, n258, n261	22.4	0	0	22.4-TT	43			
1	n260	20.6	0	0	20.6-TT	43			
2	n257, n258, n261	22.4	2	[1.5]	[18.9]-TT	43			
2	n260	20.6	2	[1.5]	[17.1]-TT	43			
	Test requirements f	or a CA_nXD Configu	iration (Cun	nulative aggreg	ated BWchannel <=	400MHz)			
1	n257, n258, n261	22.4	0	0	22.4-TT	43			
1	n260	20.6	0	0	20.6-TT	43			
2	n257, n258, n261	22.4	3	[2.0]	[17.4]-TT	43			
2	n260	20.6	3	[2.0]	[15.6]-TT	43			
NOTE 1:	TT for each band ar	NOTE 1: TT for each band and accumulative aggregated bandwidth is specified in Table 6.2A.2.1.5-13.							

Table 6.2A.2.1.5-11: MPR requirements for Intra-band Contiguous UL CA (Power Class 3, MPR_{C_CA})

Test ID	Band	Min peak EIRP (dBm)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)	
	requirements for a CA_nXB, nXC_UL_	nXB Configuration (Cumulative agg	regated	BWchann		OMHz)
1	n257, n258, n261	22.4	[8.2]	[5.0]	[9.2]- TT	43
1	n260	20.6	[8.2]	[5.0]	[7.4]- TT	43
2	n257, n258, n261	22.4	[9.3]	[5.0]	[8.1]- TT	43
2	n260	20.6	[9.3]	[5.0]	[6.3]- TT	43
3	n257, n258, n261	22.4	[8.0]	[5.0]	[9.4]- TT	43
З	n260	20.6	[8.0]	[5.0]	[7.6]- TT	43
4	n257, n258, n261	22.4	[9.2]	[5.0]	[8.2]- TT	43
4	n260	20.6	[9.2]	[5.0]	[6.4]- TT	43
5	n257, n258, n261	22.4	[11.2]	[7.0]	[4.2]- TT	43
5	n260	20.6	[11.2]	[7.0]	[2.4]- TT	43
Т	est requirements for a CA_nXD , CA_n	XB Configuration (Cumulative aggre	egated E	3Wchanne	l < 800MI	Hz)
1	n257, n258, n261	22.4	7.7	[5.0]	[9.7]- TT	43
1	n260	20.6	7.7	[5.0]	[7.9]- TT	43
2	n257, n258, n261	22.4	7.5	[5.0]	[9.9]- TT	43
2	n260	20.6	7.5	[5.0]	[8.1]- TT	43
3	n257, n258, n261	22.4	8.7	[5.0]	[8.7]- TT	43
3	n260	20.6	8.7	[5.0]	[6.9]- TT	43
4	n257, n258, n261	22.4	10.7	[7.0]	[4.7]- TT	43
4	n260	20.6	10.7	[7.0]	[2.9]- TT	43
T	est requirements for a CA_nXG, CA_n	XO, CA_nXD Configuration (Cumula 400MHz)	tive agg	regated B	Wchann	el <
1	n257, n258, n261	22.4	5	[4.0]	[13.4]- TT	43
1	n260	20.6	5	[4.0]	[11.6]- TT	43
2	n257, n258, n261	22.4	6.5	[5.0]	[10.9]- TT	43
2	n260	20.6	6.5	[5.0]	[9.1]- TT	43
3	n257, n258, n261	22.4	9	[5.0]	[8.4]- TT	43
3	n260	20.6	9	[5.0]	[6.6]- TT	43
	Fest requirements for a CA_nX(D-G))_ L_nXO, CA_nX(D-H)_UL_nXD, CA_nX(Q)_UL_nXD, CA_nX(G-I)_UL_nXG Co	D-P)_UL_nXD, CA_nX(E-O)_UL_nX(D, CA_n	X(D-I)_UL_	_nXD, CA	_nX(D-
1	n257, n258, n261	22.4	[8.2]	[5.0]	[9.2]- TT	43
1	n260	20.6	[8.2]	[5.0]	[7.4]- TT	43
2	n257, n258, n261	22.4	[9.3]	[5.0]	[8.1]- TT	43

					1					
2	n260	20.6	[9.3]	[5.0]	[6.3]- TT	43				
3	n257, n258, n261	22.4	[8.0]	[5.0]	[9.4]- TT	43				
3	n260	20.6	[8.0]	[5.0]	[7.6]- TT	43				
4	n257, n258, n261	22.4	[9.2]	[5.0]	[8.2]- TT	43				
4	n260	20.6	[9.2]	[5.0]	[6.4]- TT	43				
5	n257, n258, n261	22.4	[11.2]	[7.0]	[4.2]- TT	43				
5	n260	20.6	[11.2]	[7.0]	[2.4]- TT	43				
	Test requirements for a CA_nX(D-G)_U	L nXD, CA nX(D-O) UL nXD, CA	nX(D-G)	UL nXG	CA nX(I) -				
	O)_UL_nXO, CA_nX(D-H)_UL_nXD, CA_nX(D-P)_UL_nXD, CA_nX(O-E)_UL_nXO, CA_nX(D-I)_UL_nXD, CA_nX(D-									
	Q)_UL_nXD, CA_nX(G-I)_UL_nXG C									
1	n257, n258, n261	22.4	7.7	[5.0]	[9.7]- TT	43				
1	n260	20.6	7.7	[5.0]	[7.9]- TT	43				
2	n257, n258, n261	22.4	7.5	[5.0]	[9.9]- TT	43				
2	n260	20.6	7.5	[5.0]	[8.1]- TT	43				
3	n257, n258, n261	22.4	8.7	[5.0]	[8.7]- TT	43				
3	n260	20.6	8.7	[5.0]	[6.9]- TT	43				
4	n257, n258, n261	22.4	10.7	[7.0]	[4.7]- TT	43				
4	n260	20.6	10.7	[7.0]	[2.9]- TT	43				
Tes	st requirements for a CA_nX(D-O)_UL_		ration (Cumulativ	e aggreg	ated				
		BWchannel < 400MHz)		Г						
1	n257, n258, n261	22.4	5	[4.0]	[13.4]- TT	43				
1	n260	20.6	5	[4.0]	[11.6]- TT	43				
2	n257, n258, n261	22.4	6.5	[5.0]	[10.9]- TT	43				
2	n260	20.6	6.5	[5.0]	[9.1]- TT	43				
3	n257, n258, n261	22.4	9	[5.0]	[8.4]- TT	43				
3	n260	20.6	9	[5.0]	[6.6]- TT	43				
NOTE	1: TT for each band and accumulative	aggregated bandwidth is specified in 1	Table 6.2	A.2.1.5-13						

Table 6.2A.2.1.5-12: MPR requirements for Intra-band Contiguous UL CA (Power Class 3, Non-contiguous allocation)

Test	Band	Min peak EIRP	MPR	T(MPR)	Lower limit	Upper limit			
ID		(dBm)	(dB)	(dB)	(dBm)	(dBm)			
	Test requirements for a CA_nXB, CA_nXD, CA_XG, CA_nXO Configuration								
1	n257, n258, n261	22.4	7	[5.0]	[10.4]-TT	43			
1	n260	20.6	7	[5.0]	[8.6]-TT	43			
2	n257, n258, n261	FFS	FFS	FFS	FFS	FFS			
2	n260	FFS	FFS	FFS	FFS	FFS			
3	n257, n258, n261	FFS	FFS	FFS	FFS	FFS			
3	n260	FFS	FFS	FFS	FFS	FFS			
NOTE 1:	TT for each band and	accumulative aggre	gated bandw	idth is specified	l in Table 6.2A.2.1.5-1	L3.			

Table 6.2A.2.1.5-13: Test Tolerance (MPR for CA for Power class 3)

FFS

Table 6.2A.2.1.5-14: MPR requirements for Intra-band Contiguous UL CA (Power Class 4, single CC MPR requirement)

Test ID	Band	Min peak EIRP (dBm)	MPR (dB)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)
Test	requirements for a	CA_nXG, CA_nXO Co	nfiguration	(Cumulative a	ggregated BWchanr	nel <= 200MHz)
1	n257, n258, n261	34	0	0	34.0-TT	43
1	n260	31	0	0	31.0-TT	43
2	n257, n258, n261	34	2	[1.5]	[30.5]-TT	43
2	n260	31	2	[1.5]	[27.5]-TT	43
	Test requirements f	or a CA_nXD Configu	iration (Cun	านlative aggreç	gated BWchannel <=	= 400MHz)
1	n257, n258, n261	34	0	0	34.0-TT	43
1	n260	31	0	0	31.0-TT	43
2	n257, n258, n261	34	3	[2.0]	[29.0]-TT	43
2	n260	31	3	[2.0]	[26.0]-TT	43
NOTE 1:	TT for each band ar	nd accumulative aggre	gated bandw	idth is specified	l in Table 6.2A.2.1.5-2	17.

Table 6.2A.2.1.5-15: MPR requirements for Intra-band Contiguous UL CA (Power Class 4, MPR_{C_CA})

Test ID	Band	Min peak EIRP (dBm)	MPR (dB)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)	
	requirements for a CA_nXB, nXC_UL_	nXB Configuration (Cumulative agg	regated	BWchann		OMHz)	
1	n257, n258, n261	34	[8.2]	[5.0]	[20.8]- TT	43	
1	n260	31	[8.2]	[5.0]	[17.8]- TT	43	
2	n257, n258, n261	34	[9.3]	[5.0]	[19.7]- TT	43	
2	n260	31	[9.3]	[5.0]	[16.7]- TT	43	
3	n257, n258, n261	34	[8.0]	[5.0]	[21.0]- TT	43	
3	n260	31	[8.0]	[5.0]	[18.0]- TT	43	
4	n257, n258, n261	34	[9.2]	[5.0]	[19.8]- TT	43	
4	n260	31	[9.2]	[5.0]	[16.8]- TT	43	
5	n257, n258, n261	34	[11.2]	[7.0]	[15.8]- TT	43	
5	n260	31	[11.2]	[7.0]	[12.8]- TT	43	
Т	est requirements for a CA_nXD , CA_n	XB Configuration (Cumulative aggre	egated E	3Wchanne	l < 800MI	Hz)	
1	n257, n258, n261	34	7.7	[5.0]	[21.3]- TT	43	
1	n260	31	7.7	[5.0]	[18.3]- TT	43	
2	n257, n258, n261	34	7.5	[5.0]	[21.5]- TT	43	
2	n260	31	7.5	[5.0]	[18.5]- TT	43	
3	n257, n258, n261	34	8.7	[5.0]	[20.3]- TT	43	
3	n260	31	8.7	[5.0]	[17.3]- TT	43	
4	n257, n258, n261	34	10.7	[7.0]	[16.3]- TT	43	
4	n260	31	10.7	[7.0]	[13.3]- TT	43	
T	est requirements for a CA_nXG, CA_n	XO, CA_nXD Configuration (Cumula 400MHz)	tive agg	regated B	Wchann	el <	
1	n257, n258, n261	34	5	[4.0]	[25.0]- TT	43	
1	n260	31	5	[4.0]	[22.0]- TT	43	
2	n257, n258, n261	34	6.5	[5.0]	[22.5]- TT	43	
2	n260	31	6.5	[5.0]	[19.5]- TT	43	
3	n257, n258, n261	34	9	[5.0]	[20.0]- TT	43	
3	n260	31	9	[5.0]	[17.0]- TT	43	
	Test requirements for a CA_nX(D-G))_UL_nXD, CA_nX(D-G)_UL_nXG, CA_nX(D-O)_UL_nXD, CA_nX(D-O)_UL_nXD, CA_nX(D-H)_UL_nXD, CA_nX(D-P)_UL_nXD, CA_nX(E-O)_UL_nXO, CA_nX(D-I)_UL_nXD, CA_nX(D-Q)_UL_nXD, CA_nX(G-I)_UL_nXG Configuration (Cumulative aggregated BWchannel <= 1400MHz)						
1	n257, n258, n261	34	[8.2]	[5.0]	[20.8]- TT	43	
1	n260	31	[8.2]	[5.0]	[17.8]- TT	43	
2	n257, n258, n261	34	[9.3]	[5.0]	[19.7]- TT	43	

2	n260	31	[9.3]	[5.0]	[16.7]- TT	43
3	n257, n258, n261	34	[8.0]	[5.0]	[21.0]- TT	43
3	n260	31	[8.0]	[5.0]	[18.0]- TT	43
4	n257, n258, n261	34	[9.2]	[5.0]	[19.8]- TT	43
4	n260	31	[9.2]	[5.0]	[16.8]- TT	43
5	n257, n258, n261	34	[11.2]	[7.0]	[15.8]- TT	43
5	n260	31	[11.2]	[7.0]	[12.8]- TT	43
	Test requirements for a CA_nX(D-G)_U	JL nXD, CA nX(D-O) UL nXD, CA	nX(D-G)	UL nXG	CA nX(I	D-
	L_nXO, CA_nX(D-H)_UL_nXD, CA_nX(
-,	Q)_UL_nXD, CA_nX(G-I)_UL_nXG (_ \-
1	n257, n258, n261	,			[21.3]-	
	, ,	34	7.7	[5.0]	`TT´	43
1	n260	31	7.7	[5.0]	[18.3]- TT	43
2	n257, n258, n261	34	7.5	[5.0]	[21.5]- TT	43
2	n260	31	7.5	[5.0]	[18.5]- TT	43
3	n257, n258, n261	34	8.7	[5.0]	[20.3]- TT	43
3	n260	31	8.7	[5.0]	[17.3]- TT	43
4	n257, n258, n261	34	10.7	[7.0]	[16.3]- TT	43
4	n260	31	10.7	[7.0]	[13.3]- TT	43
Te	st requirements for a CA_nX(D-O)_UL_	nXD, CA_nX(D-O)_UL_nXO Configues BWchannel < 400MHz)	uration (Cumulativ	e aggreg	ated
1	n257, n258, n261	34	5	[4.0]	[25.0]- TT	43
1	n260	31	5	[4.0]	[22.0]- TT	43
2	n257, n258, n261	34	6.5	[5.0]	[22.5]- TT	43
2	n260	31	6.5	[5.0]	[19.5]- TT	43
3	n257, n258, n261	34	9	[5.0]	[20.0]- TT	43
3	n260	31	9	[5.0]	[17.0]- TT	43
NOTE	1: TT for each band and accumulative	aggregated bandwidth is specified in 7	Table 6.2	A.2.1.5-17		

Table 6.2A.2.1.5-16: MPR requirements for Intra-band Contiguous UL CA (Power Class 4, Non-contiguous allocation)

Test ID	Band	Min peak EIRP (dBm)	MPR (dB)	T(MPR) (dB)	Lower limit (dBm)	Upper limit (dBm)
	Test requirements for a CA_nXB, CA_nXD, CA_XG, CA_nXO Configuration					
1	n257, n258, n261	34	7	[5.0]	[22.0]-TT	43
1	n260	31	7	[5.0]	[19.0]-TT	43
2	n257, n258, n261	FFS	FFS	FFS	FFS	FFS
2	n260	FFS	FFS	FFS	FFS	FFS
3	n257, n258, n261	FFS	FFS	FFS	FFS	FFS
3	n260	FFS	FFS	FFS	FFS	FFS
NOTE 1	TT for each band and	accumulative aggre	gated bandy	idth is specified	l in Table 6.2A.2.1.5-1	17.

Table 6.2A.2.1.5-17: Test Tolerance (MPR for CA for Power class 4)

FFS

6.2A.3 UE maximum output power with additional requirements for CA FFS

6.2A.4 Configured transmitted power for CA

6.2A.4.0 Minimum conformance requirements

A UE configured with carrier aggregation can configure its maximum output power for each uplink carrier f of activated serving cell c and its total configured output power P_{CMAX} . The definition of the configured UE maximum output power $P_{CMAX,f,c}$ for each carrier f of a serving cell c is used for power headroom reporting for carrier f of serving cell c only and is in accordance with that specified in clause 6.2.4 with parameters MPR, A-MPR and P-MPR replaced with those specified below. The total configured power P_{CMAX} in a transmission occasion is the sum of the configured power for carrier f of serving cell c with non-zero granted transmission power in the respective reference point.

For uplink intra-band contiguous carrier aggregation, MPR is specified in subclause 6.2A.2. P_{CMAX} is calculated under the assumption that power spectral density for each RB in each component carrier is same.

The total configured UE maximum output power P_{CMAX} shall be set such that the corresponding measured total peak EIRP P_{UMAX} is within the following bounds

 $P_{Powerclass} - MAX(MAX(MPR, A_MPR), P-MPR) - MAX\{T(MAX(MPR, A_MPR)), T(P-MPR)\} \leq P_{UMAX} \leq EIRP_{max} + P_{UMAX} + P$

with $P_{Powerclass}$ the UE power class as specified in sub-clause 6.2A.1, EIRP_{max} the applicable maximum EIRP as specified in sub-clause 6.2A.1, MPR as specified in sub-clause 6.2A.3, P-MPR the power management term for the UE as described in 6.2.4 and TRP_{max} the maximum TRP for the UE power class as specified in sub-clause 6.2A.1.

 P_{UMAX} is defined as $10*log10(\sum p_{UMAX,fii),c(j)})$ for each carrier f (i=1...n) and serving cell c (j=1...m) where $p_{UMAX,fii),c(j)}$ is linear value of $P_{UMAX,fii),c(j)}$

The tolerance $T(\Delta P)$ for applicable values of ΔP (values in dB) is specified in Table 6.2A.4-1.

Table 6.2A.4-1: Pumax tolerance

Operating Band	ΔP (dB)	Tolerance T(ΔP) (dB)		
	$\Delta P = 0$	0		
	0 < ΔP ≤ 2	[1.5]		
	2 < ΔP ≤ 3	[2.0]		
n257, n258, n260,	3 < ΔP ≤ 4	[3.0]		
n261	4 < ΔP ≤ 5	[4.0]		
	5 < ΔP ≤ 10	[5.0]		
	10 < ΔP ≤ 15	[7.0]		
$15 < \Delta P \le X $ [8.0]				
NOTE: X is the value such that P_{umax} lower bound, $P_{Powerclass}$ - ΔP - $T(\Delta P)$ = minimum output power specified in subclause				

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2A.4.

6.3A.1

6.2A.4.1 Configured transmitted power for CA (2UL CA)

6.2A.4.1.1 Test purpose

To verify the UE transmitted power P_{UMAX} is within the range defined prescribed by the specified nominal maximum output power and tolerance.

6.2A.4.1.2 Test applicability

The requirements of this test are covered in test cases 6.2A.1.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA), 6.2A.2.1 Maximum output power reduction for CA (2UL CA) and 6.2A.3.1 UE maximum output power with additional requirements for CA (2UL CA) to all types of NR UE release 15 and forward supporting 2UL CA.

6.2A.4.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2A.4.0.

6.2A.4.1.4 Test description

This test is covered by clause 6.2A.1.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA), 6.2A.2.1 Maximum output power reduction for CA (2UL CA) and 6.2A.3.1 UE maximum output power with additional requirements for CA (2UL CA).

6.2A.4.1.5 Test requirements

This test is covered by clause 6.2A.1.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA), 6.2A.2.1 Maximum output power reduction for CA (2UL CA) and 6.2A.3.1 UE maximum output power with additional requirements for CA (2UL CA).

6.2D Transmit power for UL MIMO

6.2D.1UE maximum output power for UL MIMO

FFS

6.2D.2UE maximum output power reduction for UL MIMO

FFS

6.2D.3UE maximum output power with additional requirements for UL MIMO

FFS

6.2D.4 Configured transmitted power for UL MIMO

6.2D.4.1 Test purpose

To verify the UE transmitted power $P_{UMAX,f,c}$ is within the range defined prescribed by the specified nominal maximum output power and tolerance.

6.2D.4.2 Test applicability

The requirements of this test are covered in test cases 6.2D.1 UE Maximum output power for UL MIMO, 6.2D.2 UE maximum output power reduction for UL MIMO and 6.2D.3 UE Maximum output power with additional requirements for UL MIMO to all types of NR UE release 15 and forward that supports UL MIMO.

6.2D.4.3 Minimum conformance requirements

For UE configured with ULMIMO, the configured maximum output power $P_{\text{CMAX},c}$ for serving cell c is defined as sum of all streams and is bound by limits set in section 6.2.4.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.2D.4.

6.2D.4.4 Test description

This test is covered by clause 6.2D.1 UE Maximum output power for UL MIMO, 6.2D.2 UE maximum output power reduction for UL MIMO and 6.2D.3 UE Maximum output power with additional requirements for UL MIMO.

6.2D.4.5 Test requirements

This test is covered by clause 6.2D.1 UE Maximum output power for UL MIMO, 6.2D.2 UE maximum output power reduction for UL MIMO and 6.2D.3 UE Maximum output power with additional requirements for UL MIMO.

6.3 Output power dynamics

6.3.1 Minimum output power

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerances are FFS.
- Measurement period is pending RAN4.
- Testing of extreme conditions for FR2 is FFS.

6.3.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.1.3 Minimum conformance requirements

The minimum controlled output power of the UE is defined as the EIRP in the channel bandwidth for all transmit bandwidth configurations (resource blocks) when the power is set to a minimum value.

6.3.1.3.1 Minimum output power for power class 1

For power class 1 UE, the minimum output power shall not exceed the values specified in Table 6.3.1.3.1-1 for each operating band supported. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.3.1.3.1-1: Minimum output power for power class 1

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	4	47.52
	100	4	95.04
	200	4	190.08
	400	4	380.16

6.3.1.3.2 Minimum output power for power class 2, 3, and 4

The minimum output power shall not exceed the values specified in Table 6.3.1.3.2-1 for each operating band supported. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.3.1.3.2-1: Minimum output power for power class 2, 3, and 4

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)		
n257, n258, n260, n261	50	-13	47.52		
	100	-13	95.04		
	200	-13	190.08		
	400	-13	380.16		
NOTE 1: n260 is not applied for power class 2.					

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3.1.

6.3.1.4 Test description

6.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 6.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.1.4.1-1: Test Configuration Table

	Initial Conditions					
Test Enviro	nment as specified in TS 38.508-1 [10] 4.1	Normal				
Test Freque subclause	encies as specified in TS 38.508-1 [10] 4.3.1	Low range, Mid range, High range				
Test Channel Bandwidths as specified in TS 38.508-1 [10] subclause 4.3.1		Lowest, Mid, Highest				
Test SCS a	s specified in Table 5.3.5-1.	Highest				
	Test	Parameters				
	Downlink Configuration	Upli	nk Configuration			
Test ID	N/A for minimum output power test case	Modulation	RB allocation (NOTE 1)			
1 DFT-s-OFDM QPSK Outer_Full						
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.						

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] clause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3.1.4.3.

6.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 4. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 5. Measure UE EIRP in the Tx beam peak direction in the measurement bandwidth specified in Table 6.3.1.5-1 and Table 6.3.1.5-2 for the specific channel bandwidth under test. EIRP test procedure is defined in Annex K.1.3. The measuring duration is [one active uplink subframe]. EIRP is calculated considering both polarizations, theta and phi. For TDD, only slots consisting of only UL symbols are under test.
- 6. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.3.1.5 Test requirement

The maximum EIRP, derived in step 5 shall not exceed the values specified in Table 6.3.1.5-1 and Table 6.3.1.5-2.

Table 6.3.1.5-1: Minimum output power for power class 1

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	4+TT	47.52
	100	4+TT	95.04
	200	4+TT	190.08
	400	4+TT	380.16

Table 6.3.1.5-2: Minimum output power for power class 2, 3, and 4

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	-13+TT	47.52
	100	-13+TT	95.04
	200	-13+TT	190.08
	400	-13+TT	380.16

6.3.2 Transmit OFF power

Editor's note: This test case is not complete. Following aspects are either missing or not yet determined:

- Measurement grid for PC1/2/4 in Annex M.4 is TBD.

- The testability of this test case is pending further analysis on relaxation of the requirement.
- MU is left FFS.

6.3.2.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

6.3.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

6.3.2.3 Minimum conformance requirement

The transmit OFF power is defined as the TRP in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit on any of its ports.

The transmit OFF power shall not exceed the values specified in Table 6.3.2.3-1 for each operating band supported. The requirement is verified with the test metric of TRP (Link=TX beam peak direction).

Table 6.3.2.3-1: Transmit OFF power

Operating band	Channel bandwidth / Transmit OFF power (dBm) / measurement bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257, n258, n259,n261	-35	-35	-35	-35	
	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz	

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3.2.

An excess transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3.2.4 Test description

6.3.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.2.4.1-1: Test Configuration Table

		Initia	l Conditions	
Test Environment as specified in TS 38.508-1 [10] subclause 4.1			Normal	
Test Frequencies as specified in TS 38.508-1 [10] subclause 4.3.1			Low range, Mid range,	High range
Test Chann [10] subcla	el Bandwidths as spec use 4.3.1	cified in TS 38.508-1	Lowest	
Test SCS a	s specified in Table 5.3	3.5-1.	Highest	
		Test	Parameters	
	Downlink Co	onfiguration	Up	link Configuration
Test ID	Modulation	RB allocation	Modulation	RB allocation
1	N/A	0	N/A	0

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement Channels are set according to Table 6.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3.2.4.3.

6.3.2.4.2 Test procedure

- 1. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE) for the UE Tx beam selection to complete.
- 2. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 3. Measure UE TRP for the assigned NR channel with a rectangular measurement filter with bandwidths according to Table 6.3.2.5-1. Total radiated power is measured according to TRP measurement procedure defined in Annex K. TRP is calculated considering both polarizations, theta and phi.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.3.2.5 Test requirement

The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.2.5-1.

Table 6.3.2.5-1: Transmit OFF power

Operating band	Channel bandwidth / Transmit OFF power (dBm) / measurement bandwidth 50 MHz 100 MHz 200 MHz 400 MHz			
n257, n258, n261	-35+21.4	-35+24.4	-35+27.4	-35+30.4
	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz
n258, n261	-35+[21.4]	-35+[24.4]	-35+[27.4]	-35+[30.4]
	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz
n260	-35+[24.1]	-35+[27.1]	-35+[30.1]	-35+[33.1]
	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz

NOTE 1: Core requirement cannot be tested due to testability issue and test requirement includes relaxation to achieve impact from test system noise to measurement result = 1.0 dB (Minimum requirement + relaxation).

6.3.3 Transmit ON/OFF time mask

6.3.3.1 General

The transmit ON/OFF time mask defines the transient period(s) allowed

- between transmit OFF power and transmit ON power symbols (transmit ON/OFF)
- between continuous ON-power transmissions when power change or RB hopping is applied.

In case of RB hopping, transition period is shared symmetrically.

Unless otherwise stated the minimum requirements in clause 6.5 apply also in transient periods.

The transmit ON/OFF time mask is defined as a directional requirement. The requirement is verified in beam locked mode at beam peak direction. The maximum allowed EIRP OFF power level is -30dBm at beam peak direction. The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

In the following sub-clauses, following definitions apply:

- A slot transmission is a Type A transmission.
- A long subslot transmission is a Type B transmission with more than 2 symbols.
- A short subslot transmission is a Type B transmission with 1 or 2 symbols.

6.3.3.2 General ON/OFF time mask

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerances are FFS.
- Testability of OFF power needs further study.
- The method of setting UE transmitted power is FFS.
- TP analysis is FFS

6.3.3.2.1 Test purpose

To verify that the general ON/OFF time mask meets the requirements given in 6.3.3.2.5.

The transmit ON/OFF time mask defines the transient period(s) allowed

- between transmit OFF power and transmit ON power symbols (transmit ON/OFF)

Unless otherwise stated the minimum requirements in clause 6.5 apply also in transient periods.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.3.2.3 Minimum conformance requirements

The transmit ON/OFF time mask is defined as a directional requirement. The requirement is verified in beam locked mode at beam peak direction. The maximum allowed EIRP OFF power level is -30dBm at beam peak direction. The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle)

The general ON/OFF time mask defines the observation period allowed between transmit OFF and ON power. ON/OFF scenarios include: contiguous, and non-contiguous transmission, etc.

The OFF power measurement period is defined in a duration of at least one slot excluding any transient periods. The ON power is defined as the mean power over one slot excluding any transient period.

Figure 6.3.3.2.3-1: General ON/OFF time mask for NR UL transmission in FR2

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3.3.2.

6.3.3.2.4 Test description

6.3.3.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.3.2.4.1-1: Test Configuration Table

Initial Conditions				
Test Enviro	nment as specified in TS 38.508-1 [10]	Normal		
subclause	4.1			
	encies as specified in TS 38.508-1 [10]	Low range, Mid range, High range		
subclause				
Test Chanr	nel Bandwidths as specified in TS 38.508-1	Lowest, Mid, Highest		
[10] subclause 4.3.1				
Test SCS as specified in Table 5.3.5-1.		Highest		
Test Parameters				
Downlink Configuration		Upļi	nk Configuration	
Test ID	N/A for maximum output power test case	Modulation	RB allocation (NOTE 1)	
1		DFT-s-OFDM QPSK	Outer_Full	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement Channels are set according to Table 6.3.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3.3.2.4.3.

6.3.3.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.3.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 4) for the UE Tx beam selection to complete.
- 3. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 4. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.3.2.5-1. EIRP test procedure is defined in Annex K.1.3. The period of the measurement shall be the slot prior to the PUSCH transmission, excluding a transient period of 5 μs in the end of the slot and any DL periods. EIRP is calculated considering both polarizations, theta and phi.
- 5. For UE transmission ON power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.3.2.5-2. EIRP test procedure is defined in Annex K. The period of the measurement shall be one slot with PUSCH transmission. EIRP is calculated considering both polarizations, theta and phi. For TDD, only slots consisting of only UL symbols are under test.
- 6. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.3.2.5-1. EIRP test procedure is defined in Annex K.1.3 The period of the measurement shall be the slot following the PUSCH transmission, excluding a transient period of 5 µs at the beginning of the slot and any DL periods. EIRP is calculated considering both polarizations, theta and phi.
- 7. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

6.3.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with following exceptions.

Table 6.3.3.2.4.3-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[10], Table 4.6.3-119			
Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon ::= SEQUENCE {			
tpc-Accumulation	disabled		
p0-AlphaSets SEQUENCE (SIZE (1maxNrofP0-	1 entry		
PUSCH-AlphaSets)) OF SEQUENCE {			
p0-NominalWithGrant	-102		50MHz
	-106		100MHz
	-108		200MHz
	-112		400MHz
alpha	alpha1		
}			
}			

Table 6.3.3.2.4.3-2: ServingCellConfigCommon

Derivation Path: 38.508-1[5], Table 4.6.3-168			
Information Element	Value/remark	Comment	Condition
ServingCellConfigCommon ::= SEQUENCE {			
ss-PBCH-BlockPower	1		SCS_60kHz
	4		SCS_120kH
			Z
}			

Condition	Explanation
SCS_60kHz	SCS=60kHz for SS/PBCH block
SCS_120kHz	SCS=120kHz for SS/PBCH block

6.3.3.2.5 Test requirement

The requirement for the EIRP measured in steps 4, 5 and 6 of the test procedure shall not exceed the values specified in Table 6.3.3.2.5-1 and 6.3.3.2.5-2.

Table 6.3.3.2.5-1: Test requirement of OFF power of General ON/OFF time mask

	Channel bandwidth / minimum output power / measurement bandwidth			
	50 MHz	100 MHz	200 MHz	400 MHz
Transmit OFF power	≤ -30+TT dBm			
Transmission OFF Measurement bandwidth	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz

Table 6.3.3.2.5-2: Test requirement of ON power of General ON/OFF time mask

	scs		nel bandwid band	lth / measur lwidth	ement
	[kHz]	50 MHz	100 MHz	200 MHz	400 MHz
Expected Transmission ON	60	22.1	[21.1]	22.1	N/A
power for DFT-s- OFDM	120	22.1	[21.1]	22.1	21.1
Power tolerance		± (14+TT)dB			
Note 1: The low	The lower power limit shall not exceed the minimum output power				
requiren	requirements defined in sub-clause 6.3.2.3, and the higher power			gher power	
limit shall not exceed the Max EIRP defined in sub-clause 6.2.1.3			use 6.2.1.3.		

Table 6.3.3.2.5-3: Test Tolerance for OFF power

FFS

Table 6.3.3.2.5-4: Test Tolerance for ON power

FFS

6.3.3.3 Transmit power time mask for slot and short or long subslot boundaries

No test case details are specified. Current test procedures for time masks are based on power measurement in relatively long period compared with transient period. For time masks between 2 active time slots with different power level, the test procedure can't provide enough resolution to identify non-conformant UEs. Therefore the minimum requirement is not testable.

6.3.3.4 PRACH time mask

Editor's Notes: This clause is incomplete. The following aspects are either missing or not yet determined:

- Message contents are not complete
- Measurement uncertainty and Test tolerance are not complete
- Test requirements are not complete
- PRACH configuration index is not complete
- The further investigation is essential that how does beamforming affect the initial access procedure
- Testability needs further analysis on relaxation of the requirement

6.3.3.4.1 Test purpose

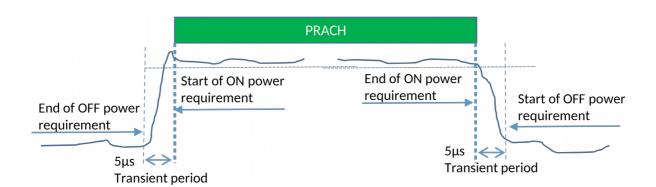
To verify that the PRACH time mask meets the requirements given in 6.3.3.4.5.

The time mask for PRACH time mask defines the transient period(s) allowed between transmit OFF power and transmit ON power when transmitting the PRACH.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.3.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.


6.3.3.4.3 Minimum conformance requirements

The transmit ON/OFF time mask is defined as a directional requirement. The requirement is verified in beam locked mode at beam peak direction. The maximum allowed EIRP OFF power level is -30dBm at beam peak direction. The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.3.4.3-1. The measurement period for different PRACH preamble format is specified in Table 6.3.3.4.3-1.

Format	SCS	Measurement period	
A_1	60 kHz	0.035677 ms	
	120 kHz	0.017839 ms	
A_2	60 kHz	0.071354 ms	
	120 kHz	0.035677 ms	
A_3	60 kHz	0.107031 ms	
A3	120 kHz	0.053516 ms	
D	60 kHz	0.035091 ms	
$B_{\scriptscriptstyle 1}$	120 kHz	0.0175455 ms	
B ₄	60 kHz	0.207617 ms	
D ₄	120 kHz	0.103809 ms	
	60 kHz	0.035677 ms for front X1 occasion	
		0.035091 ms for last occasion	
A_1/B_1		X1 = [2,5]	
Λ_1/D_1	120 kHz	0.017839 ms for front X1occasion	
		0.017546 ms for last occasion	
		X1 = [2,5]	
	60 kHz	0.071354 ms for front X2 occasion	
		0.069596 ms for last occasion	
A_2/B_2		X2 = [1,2]	
1 12/13/2	120 kHz	0.035677 ms for front X2 occasion	
		0.034798 ms for last occasion	
		X2 = [1,2]	
	60 kHz	0.107031 ms for first occasion	
A_3/B_3		0.104101 ms for second occasion	
	120 kHz	0.053515 ms for first occasion	
		0.052050 ms for second occasion	
$C_{\scriptscriptstyle{0}}$	60 kHz	0.026758 ms	
	120 kHz	0.013379 ms	
C_2	60 kHz	0.083333 ms	
	120 kHz	0.0416667 ms	
NOTE: For PRACH on PRACH occasion start from begin of 0ms or 0.5ms			

Table 6.3.3.4.3-1: PRACH ON power measurement period

boundary, the measurement period will plus 0.032552µs

Figure 6.3.3.4.3-1: PRACH ON/OFF time mask

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3.3.4.

6.3.3.4.4 Test description

6.3.3.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with

applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.3.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.3.4.4.1-1: Test Configuration Table

Initial Conditions			
Test Environment as specified in TS 38.508-1 [10] subclause 4.1	TBD		
Test Frequencies as specified in TS 38.508-1 [10] subclause 4.3.1	Mid range		
Test Channel Bandwidths as specified in TS 38.508-1 [10] subclause 4.3.1	Lowest, Mid, Highest		
Test SCS as specified in Table 5.3.5-1	SCS defined in TS 38.211 [8] subclause 6.3.3.2		
PRACH preamble format			
PRACH Configuration Index	[0]		

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3.3.4.4.3.

6.3.3.4.4.2 Test procedure

- 1. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 2. The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure.
- 3. The UE shall send the signalled preamble to the SS.
- 4. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.3.4.5-1. EIRP test procedure is defined in Annex K.1.3. The period of the measurement shall be the slot prior to the PRACH transmission, excluding a transient period of 5 μs in the end of the slot and any DL periods. EIRP is calculated considering both polarizations, theta and phi.
- 5. For UE transmission ON power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.3.4.5-1. EIRP test procedure is defined in Annex K.1.3. The period of the measurement shall be the slot during the PRACH preamble transmission. EIRP is calculated considering both polarizations, theta and phi. For TDD, only slots consisting of only UL symbols are under test.
- 6. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.3.2.5-1. EIRP test procedure is defined in Annex K.1.3. The period of the measurement shall be the slot following the PUSCH transmission, excluding a transient period of 5 µs at the beginning of the slot and any DL periods. EIRP is calculated considering both polarizations, theta and phi.

NOTE 1: The BEAM_SELEECT_WAIT_TIME default value is defined in Annex K.1.1.

6.3.3.4.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with following exceptions:

Table 6.3.3.4.4.3-1: RACH-ConfigCommon: PRACH measurement

Derivation Path: TS 38.508-1[5], Table 4.6.3-128			
Information Element	Value/remark	Comment	Condition
RACH-ConfigCommon::= SEQUENCE {			
rach-ConfigGeneric	RACH-ConfigGeneric		
totalNumberOfRA-Preambles	Not present		
ssb-perRACH-OccasionAndCB-PreamblesPerSSB			
CHOICE {			
one	n4		FR2
}			
groupBconfigured	Not present		
ra-ContentionResolutionTimer	sf64		
rsrp-ThresholdSSB	RSRP-Range		
rsrp-ThresholdSSB-SUL	Not present		
	RSRP-Range		SUL
prach-RootSequenceIndex CHOICE {			
1139	Set according to table		PRACH
	4.4.2-2 for the NR Cell.		Format A3
}			
msg1-SubcarrierSpacing	SubcarrierSpacing		
restrictedSetConfig	unrestrictedSet		
msg3-transformPrecoder	Not present	transform	
		precoding is	
		disabled for Msg3	
		PUSCH	
		transmission and	
		any PUSCH	
		transmission	
		scheduled with	
1		DCI format 0_0	
[]			

Table 6.3.3.4.4.3-2: RACH-ConfigGeneric: PRACH measurement

Derivation Path: TS 38.508-1[5], Table 4.6.3-130)		
Information Element	Value/remark	Comment	Condition
RACH-ConfigGeneric ::= SEQUENCE {			
prach-ConfigurationIndex	[TBD]	Unpaired	PRACH
		Spectrum	Format A3
msg1-FDM	one		FR2
msg1-FrequencyStart	0		
zeroCorrelationZoneConfig	15		
preambleReceivedTargetPower	[TBD]		PRACH
			Format A3
preambleTransMax	n7		
powerRampingStep	dB0		
ra-ResponseWindow	sl20		
}			

Table 6.3.3.4.4.3-3: ServingCellConfigCommonSIB: PRACH measurement

Derivation Path: TS 38.508-1[5], Table 4.6.3-169			
Information Element	Value/remark	Comment	Condition
ServingCellConfigCommonSIB ::= SEQUENCE {			
downlinkConfigCommon	DownlinkConfigCommon		
	SIB		
uplinkConfigCommon	UplinkConfigCommonSIB		
supplementaryUplink	Not present		
	UplinkConfigCommonSIB		SUL
n-TimingAdvanceOffset	Not present		
ssb-PositionsInBurst SEQUENCE {			
inOneGroup	'1000 0000'B		
groupPresence	Not present		
}			
tdd-UL-DL-ConfigurationCommon	TDD-UL-DL-		FR2_TDD
	ConfigCommon		
ss-PBCH-BlockPower	[TBD]		
}			

6.3.3.4.5 Test requirement

The requirement for the power measured in steps (3), (4) and (5) of the test procedure shall not exceed the values specified in Table 6.3.3.4.5-1.

Table 6.3.3.4.5-1: PRACH time mask

	Channel bandwidth / Output Power [dBm] / measurement bandwidth			
	50MHz 100MHz 200MHz 400MHz			
Transmit OFF power	≤ [-35+relaxation]			
Transmission OFF	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz
Measurement bandwidth				
Expected PRACH	FFS	FFS	FFS	FFS
Transmission ON				
Measured power				
ON power tolerance	FFS	FFS	FFS	FFS
FFS				
NOTE 1: Core requirement cannot be tested due to testability issue and test requirement includes relaxation to achieve SNR = [10] dB (Minimum requirement + relaxation).				

Table 6.3.3.4.5-2: Relaxations for OFF power

Operating band	50 MHz	100 MHz	200 MHz	400 MHz
n257, n258, n261	[14.9] dB	[17.9] dB	[20.9] dB	[23.9] dB
n260	[24.1] dB	[27.1] dB	[30.1] dB	[33.1] dB

Table 6.3.3.4.5-3: Relaxations for ON power

FFS

6.3.3.5 Void

6.3.3.6 SRS time mask

FFS

6.3.3.7 PUSCH-PUCCH and PUSCH-SRS time masks

No test case details are specified. Current test procedures for time masks are based on power measurement in relatively long period compared with transient period. For time masks between 2 active time slots with different power level, the test procedure can't provide enough resolution to identify non-conformant UEs. Therefore the minimum requirement is not testable.

6.3.3.8 Transmit power time mask for consecutive slot or long subslot transmission and short subslot transmission boundaries

No test case details are specified. Current test procedures for time masks are based on power measurement in relatively long period compared with transient period. For time masks between 2 active time slots with different power level, the test procedure can't provide enough resolution to identify non-conformant UEs. Therefore the minimum requirement is not testable.

6.3.3.9 Transmit power time mask for consecutive short subslot transmissions boundaries

No test case details are specified. Current test procedures for time masks are based on power measurement in relatively long period compared with transient period. For time masks between 2 active time slots with different power level, the test procedure can't provide enough resolution to identify non-conformant UEs. Therefore the minimum requirement is not testable.

6.3.4 Power control

6.3.4.1 General

The requirements on power control accuracy apply under normal conditions and are defined as a directional requirement. The requirements are verified in beam locked mode on beam peak direction.

6.3.4.2 Absolute power tolerance

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerances are FFS.
- Testing of extreme conditions for FR2 is FFS.
- TP analysis is FFS.
- UE transmitted power for PC 1, 2 and 4 are FFS

6.3.4.2.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3.4.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.4.2.3 Minimum conformance requirements

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame (1ms) at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20 ms. The tolerance includes the channel estimation error RSRP estimate.

The minimum requirements specified in Table 6.3.4.2.3-1 apply in the power range bounded by the minimum output power as specified in sub-clause 6.3.1.3 (' P_{min} ') and the maximum output power as specified in sub-clause 6.2.1.1 as minimum peak EIRP (' P_{max} '). The intermediate power point ' P_{int} ' is defined in table 6.3.4.2.3-2

Table 6.3.4.2.3-1: Absolute power tolerance

Power Range	Tolerance
$P_{int} \ge P \ge P_{min}$	± 14.0 dB
$P_{max} \ge P > P_{int}$	± 12.0 dB

Table 6.3.4.2.3-2: Intermediate power point

Power Parameter	Value	
P _{int}	$P_{max} - 12.0 \text{ dB}$	

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3.4.2.

6.3.4.2.4 Test description

6.3.4.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.2.4.1-1: Test Configuration Table

Initial Conditions				
	nment as specified in TS 38.508-1 [10]	Normal		
subclause				
	encies as specified in TS 38.508-1 [10]	Mid range		
subclause -	4.3.1			
Test Chann	nel Bandwidths as specified in TS 38.508-1	Lowest, Mid, Highest		
[10] subcla	use 4.3.1	, , ,		
Test SCS as specified in Table 5.3.5-1. Highest		Highest		
	Test	Parameters		
	Downlink Configuration	Upli	nk Configuration	
Test ID	N/A for absolute power tolerance test	Modulation	RB allocation (NOTE 1)	
1	case	DFT-s-OFDM QPSK Outer_Full		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] clause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.4.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3.4.2.4.3.

6.3.4.2.4.2 Test procedure

- 1. Configure the UE transmitted output power to test point 1 in section 6.3.4.2.4.3.
- 2. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 3. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 4. SS sends uplink scheduling information via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Measure UE EIRP of the first subframe in the Tx beam peak direction in the measurement bandwidth specified in Table 6.3.1.5-1 and Table 6.3.1.5-2 for the specific channel bandwidth under test. EIRP test procedure is defined in Annex K. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi. For TDD slots with transient periods are not under test.
- 6. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 7. Repeat test steps 1~6 for measurement of test point 2~3. The timing of the execution between the two test points shall be larger than 20ms.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.3.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with following exceptions:

Table 6.3.4.2.4.3-1: PUSCH-PowerControl (Test point 1) for power class 3

Derivation Path: TS 38.508-1 [10], Table 4.3.3-91			
Information Element	Value/remark	Comment	Condition
PUSCH-PowerControl ::= SEQUENCE {			
tpc-Accumulation	disabled		
p0-AlphaSets SEQUENCE (SIZE (1maxNrofP0- PUSCH-AlphaSets)) OF SEQUENCE {	1 entry		
p0	-116		50MHz
	-120		100MHz
	-122		200MHz
	-126		400MHz
alpha	alpha1		
}			
}			

Table 6.3.4.2.4.3-2: PUSCH-PowerControl (Test point 2) for power class 3

Derivation Path: TS 38.508-1 [10], Table 4.3.3-91			
Information Element	Value/remark	Comment	Condition
PUSCH-PowerControl ::= SEQUENCE {			
tpc-Accumulation	disabled		
p0-AlphaSets SEQUENCE (SIZE (1maxNrofP0-	1 entry		
PUSCH-AlphaSets)) OF SEQUENCE {			
p0	-112		50MHz
	-116		100MHz
	-118		200MHz
	-122		400MHz
alpha	alpha1		
}			
}			

Table 6.3.4.2.4.3-3: PUSCH-PowerControl (Test point 3) for power class 3

Derivation Path: TS 38.508-1 [10], Table 4.3.3-91			
Information Element	Value/remark	Comment	Condition
PUSCH-PowerControl ::= SEQUENCE {			
tpc-Accumulation	disabled		
p0-AlphaSets SEQUENCE (SIZE (1maxNrofP0- PUSCH-AlphaSets)) OF SEQUENCE {	1 entry		
p0	-102		50MHz
	-106		100MHz
	-118		200MHz
	-112		400MHz
alpha	alpha1		
}			
}			

Table 6.3.4.2.4.3-4: ServingCellConfigCommon

Derivation Path: 38.508-1[5], Table 4.6.3-168			
Information Element	Value/remark	Comment	Condition
ServingCellConfigCommon ::= SEQUENCE {			
ss-PBCH-BlockPower	1		SCS_60kHz
	4		SCS_120kH
			Z
}			

Condition	Explanation
SCS_60kHz	SCS=60kHz for SS/PBCH block
SCS 120kHz	SCS=120kHz for SS/PBCH block

6.3.4.2.5 Test requirement

The measured EIRP in step 5 and 7 shall not to exceed the values specified in Table 6.3.4.2.5-1 to 6.3.4.2.5-3.

Table 6.3.4.2.5-1: Absolute power tolerance: test point 1 for power class 3

	scs	Channel bandwidth / expected output power (dBm)					
		50 MHz	100 MHz	200 MHz	400 MHz		
Expected Measured	60kHz	8.1	7.1	8.1	N/A		
power	120kHz	8.1	7.1	8.1	7.1		
Power toleran	± (14+TT)dB						
Note 1. The lawer	anuar limit a	hall bat aveas	a all most avecaged the projection of the state of				

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2.1.3.

Table 6.3.4.2.5-2: Absolute power tolerance: test point 2 for power class 3

	SCS	Channel bandwidth / expected output power (dBm)			
		50 MHz	100 MHz	200 MHz	400 MHz
Expected Measured	60kHz	12.1	11.1	12.1	N/A
power 120kH		12.1	11.1	12.1	11.1
Power toleran	ice		± (12+	TT)dB	

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2.1.3.

Table 6.3.4.2.5-3: Absolute power tolerance: test point 3 for power class 3

	SCS	Channel bandwidth / expected output power (dBm)			
		50 MHz	100 MHz	200 MHz	400 MHz
Expected Measured	60kHz	22.1	[21.1]	22.1	N/A
power	120kHz	22.1	[21.1]	22.1	21.1
Power toleran	ce	± (12+TT)dB			
Note 1: The lower power limit shall not exceed the minimum output power					
requirements defined in sub-clause 6.3.2.3, and the higher power limit shall not					
exceed the	Max EIRP o	defined in sub-	clause 6.2.1.3	i	

Table 6.3.4.2.5-4: Test Tolerance (Test point 1)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	FFS	FFS

Table 6.3.4.2.5-5: Test Tolerance (Test point 2)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	FFS	FFS

6.3.4.3 Relative power tolerance

Editor's note: The following items are missing or incomplete:

- Test requirement is within square brackets (38.101-2 dependent)
- MU and TT not defined
- Starting power at ramp up/ramp down/alternating sub-test is TBD (6.3.4.3 MU dependent)
- Testability of test points needs further analysis, based on MU outcome

6.3.4.3.1 Test purpose

To verify the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is 20 ms.

6.3.4.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.4.3.3 Minimum conformance requirements

The minimum requirements specified in Table 6.3.4.3.3-1 apply when the power of the target and reference sub-frames are within the power range bounded by the minimum output power as defined in sub-clause 6.3.1 and Pint as defined in sub-clause 6.3.4.3-2. The minimum requirements specified in Table 6.3.4.3-2 apply when the power of the target and reference sub-frames are within the power range bounded by Pint as defined in sub-clause 6.3.4.2 and the measured P_{UMAX} as defined in sub-clause 6.2.4.

Table 6.3.4.3.3-1: Relative power tolerance, $P_{int} \ge P \ge P_{min}$

Power step ΔP (Up or down) (dB)	All combinations of PUSCH and PUCCH, PUSCH/PUCCH and SRS transitions between sub- frames, PRACH (dB)
∆P < 2	[±5.0]
2 ≤ ΔP < 3	[±6.0]
3 ≤ ΔP < 4	[±7.0]
4 ≤ ΔP < 10	[±8.0]
10 ≤ ΔP < 15	[±10.0]
15 ≤ ΔP	[±11.0]

Table 6.3.4.3.3-2: Relative power tolerance, P_{UMAX} ≥ P > P_{int}

Power step ΔP (Up or down) (dB)	All combinations of PUSCH and PUCCH, PUSCH/PUCCH and SRS transitions between subframes, PRACH (dB)
ΔP < 2	[±3.0]
2 ≤ ΔP < 3	[±4.0]
3 ≤ ΔP < 4	[±5.0]
4 ≤ ΔP < 10	[±6.0]
10 ≤ ΔP < 15	[±8.0]
15 ≤ ΔP	[±9.0]

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3.4.3.

6.3.4.3.4 Test description

6.3.4.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.3.4.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.3.4.1-1: Test Configuration Table

	Initial Conditions							
Test Environment as specified in TS 38.508-1 [10]			Normal					
subclause 4.	3.1							
Test Frequer	ncies as specified in TS 3	88.508-1 [10]	Low Range					
subclause 4.	3.1							
Test Channe	l Bandwidths as specifie	d in TS 38.508-1	100MHz					
[10] subclaus								
Test SCS as	specified in TS 38.508-1	[10] subclause	60kHz					
4.3.1								
		Test Pa	rameters					
Ch BW	Downlink Co	nfiguration	Uplink Configuration					
	Modulation	RB Allocation	Modulation	RB allocation (NOTE 1)				
100MHz	N/A for Relative power tolerance test case		DFT-s-OFDM pi/2	See Table 6.3.4.3.5-1				
	· ·		BPSK	See Table 6.3.4.3.5-2				
				See Table 6.3.4.3.5-3				
Note 1: The	Note 1: The starting resource block shall be RB# 1.							

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.3.4.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3.4.3.4.3

6.3.4.3.4.2 Test procedure

The procedure is separated in various subtests to verify different aspects of relative power control. The power patterns of the subtests are described in figure 6.3.4.3.4.2-1 thru figure 6.3.4.3.4.2-3.

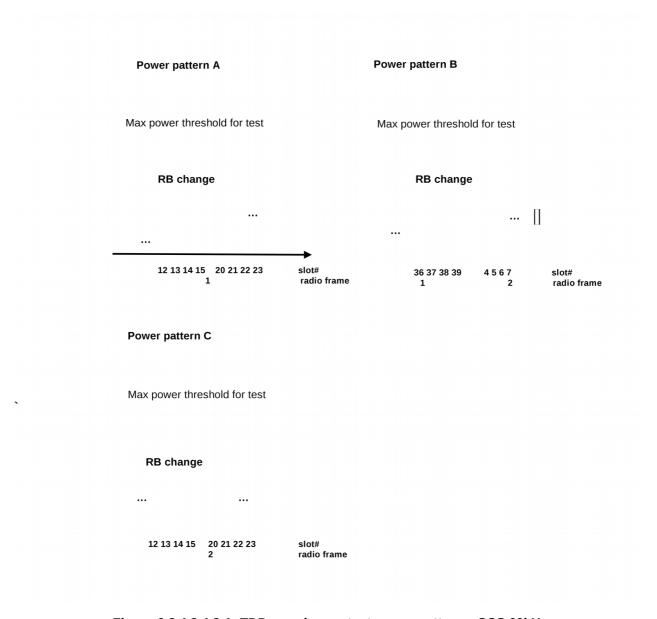


Figure 6.3.4.3.4.2-1: TDD ramping up test power patterns, SCS 60kHz

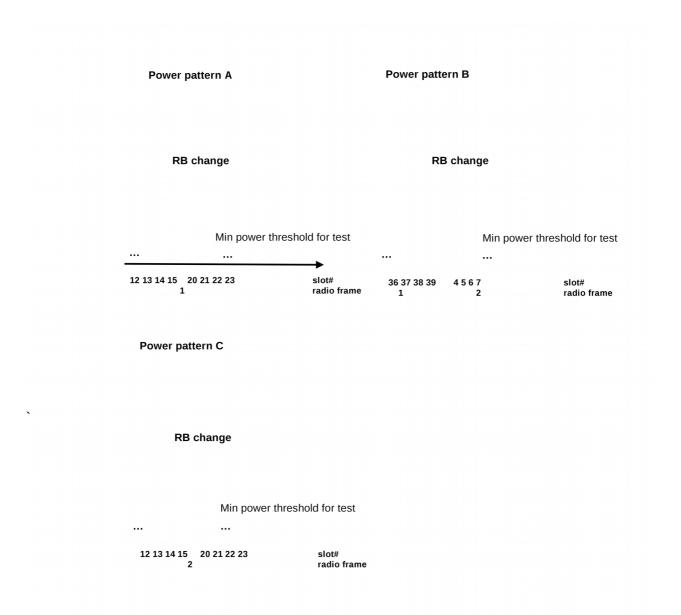


Figure 6.3.4.3.4.2-2: TDD ramping down test power patterns, SCS 60kHz

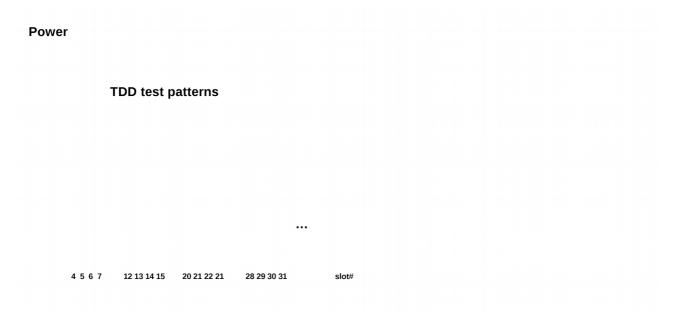


Figure 6.3.4.3.4.2-3: Alternating Test Power patterns, SCS 60kHz

1. Sub test: ramping up pattern

- 1.1 Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.
- 1.2 SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 1.3 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at TBD dBm +/- TBD dB
- 1.3 Schedule the UE's PUSCH data transmission as described in Figure 6.3.4.3.4.2-1 (TDD) pattern A: Uplink RB allocation as defined in table 6.3.4.3.5-1. On the PDCCH format 0_1 for the scheduling of the PUSCH the SS will transmit +1dB TPC commands over a sequence of 75 (note1) active uplink slots to ensure that the UE reaches maximum power threshold. Note that the measurement need not be done continuously, provided that interruptions are whole numbers of frames, and TPC commands of 0dB are sent during the interruption.
- 1.4 Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, to verify the UE relative power control meet test requirements in 6.3.4.3.5. EIRP test procedure is defined in Annex K. EIRP is calculated considering both polarizations, theta and phi. Measurement of the power is not required in slot after the mean power has exceeded the maximum power threshold. For power transients between slots, transient periods of 40us between slots are excluded. For ON/OFF or OFF/ON transients, transient periods of 20 us at the beginning of the slot are excluded.
- 1.5 Repeat the subtest different pattern B, C to move the RB allocation change at different points in the pattern as described in Table 6.3.4.3.5-1 to force different UE power steps at various points in the power range.

2. Sub test: ramping down pattern

- 2.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at TBD dBm +/- TBD dB
- 2.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.4.3.4.2-2 (TDD) pattern A: Uplink RB allocation as defined in table 6.3.4.3.5-1. On the PDCCH format 0_1 for the scheduling of the PUSCH the SS will transmit -1dB TPC commands over a sequence of 75 (note1) active uplink slots to ensure that the

UE reaches minimum power threshold. Note that the measurement need not be done continuously, provided that interruptions are whole numbers of frames, and TPC commands of 0dB are sent during the interruption.

- 2.3. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, to verify the UE relative power control meet test requirements in 6.3.4.3.5. EIRP test procedure is defined in Annex K. EIRP is calculated considering both polarizations, theta and phi. Measurement of the power is not required in slot after the mean power has exceeded the maximum power threshold. For power transients between slots, transient periods of 40us between slots are excluded. For ON/OFF or OFF/ON transients, transient periods of 20 us at the beginning of the slot are excluded.
- 2.4. Repeat the subtest different pattern B, C to move the RB allocation change at different points in the pattern as described in Table 6.3.4.3.5-2/6.3.4.3.5-4/ 6.3.4.3.5-6 to force different UE power steps at various points in the power range.

3. Sub test: alternating pattern

- 3.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at TBD dBm +/- TBD dB. The initial uplink RB allocation is defined as the smaller uplink RB allocation value specified in table 6.3.4.3.4.1-1. The power level and RB allocation are reset for each sub-test.
- 3.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.5.2.4.2-3 for 5 frames with an uplink RB allocation alternating pattern as defined in table 6.3.4.3.5-3 while transmitting 0dB TPC command for PUSCH via the PDCCH.
- 3.3. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, to verify the UE relative power control meet test requirements in 6.3.4.3.5. EIRP test procedure is defined in Annex K. EIRP is calculated considering both polarizations, theta and phi. Measurement of the power is not required in slot after the mean power has exceeded the maximum power threshold. For power transients between slots, transient periods of 40us between slots are excluded. For ON/OFF or OFF/ON transients, transient periods of 20 us at the beginning of the slot are excluded.
- 3.4 SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: These numbers of TPC commands are given as examples. The actual number of TPC commands transmitted in these steps shall be enough to ensure that the UE reaches the relevant maximum or minimum power threshold in each step, as shown in figure 6.3.4.3.4.2-1 thru 6.3.4.3.4.2-3.

6.3.4.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.3.4.3.5 Test requirement

Each UE power step measured in the test procedure 6.3.4.3.4.2 should satisfy the test requirements specified in Table 6.3.4.3.5-1 thru 6.3.4.3.5-X.

Table 6.3.4.3.5-1: Test Requirements Relative Power Tolerance for Transmission, channel BW 100MHz, SCS 60kHz, ramp up sub-test

Sub- test ID	Applicable sub- frames	Uplink RB allocation	TPC command	Expected power step size (Up) ΔP [dB]	Power step size range (Up) ΔP [dB]	PUSCH [dB]		
	Slots	105RBs	TPC=+1dB	Zi [db]	Δι [αΒ]	[db]		
	before RB change			1	ΔP≤1dB	1 +/- [1.0] + TT		
1	RB change	105RBs to 128 RBs	TPC=+1dB	1.86	ΔP < 2dB	1.86 +/- [5.0] + TT (NOTE 1) 1.86 +/- [3.0] + TT (NOTE 2)		
	Slots after RB change	Fixed = 128	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT		
	Slots before RB change	90RBs	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT		
2	RB change	90RBs to 128 RBs	TPC=+1dB	2.53	2dB ≤ ΔP < 3dB	2.53 +/- [6.0] + TT (NOTE 1) 2.53 +/- [4.0] + TT (NOTE 2)		
	Slots after RB change	Fixed = 128	TPC=+1dB	1	ΔP≤1dB	1 +/- [1.0] + TT		
	Slots before RB change	79RBs	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT		
3	RB change	79RBs to 128 RBs	TPC=+1dB	3.10	3dB ≤ ΔP < 4dB	3,10 +/- [7.0] + TT (NOTE 1) 3,10 +/- [5.0] + TT (NOTE 2)		
	Slots after RB change	Fixed = 128RBs	TPC=+1dB	1	ΔP≤1dB	1 +/- [1.0] + TT		
	Slots before RB change	32RBs	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT		
4	RB change	32RBs to 128 RBs	TPC=+1dB	7.02	4dB ≤ ΔP < 10dB	7.02 +/- [8.0] + TT (NOTE 1) 7.02 +/- [6.0] + TT (NOTE 2)		
	Slots after RB change	Fixed = 128	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT		
	Slots before RB change	7RBs	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT		
5	RB change	7RBs to 128 RBs	TPC=+1dB	13.62	10dB ≤ ΔP < 15dB	13.62 +/- [10.0] + TT (NOTE 1) 13.62 +/- [8.0] + TT (NOTE 2)		
	Slots after RB change	Fixed = 128RBs	TPC=+1dB	1	ΔP≤1dB	1 +/- [1.0] + TT		
	Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT		
6	RB change	1RB to 128 RBs	TPC=+1dB	22.07	15dB < ΔP	22.07 +/- [11.0] + TT (NOTE 1) 22.07 +/- [9.0] + TT (NOTE 2)		
	Slots after RB change	Fixed = 128	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT		
NOTE 1	NOTE 1: Applicable if Pint $\geq P \geq Pmin$.							

NOTE 1: Applicable if Pint \geq P \geq Pmin. NOTE 2: Applicable if PUMAX \geq P > Pint.

Table 6.3.4.3.5-2: Test Requirements Relative Power Tolerance for Transmission, channel BW 100MHz, SCS 60kHz, ramp down sub-test

Sub- test ID	Applicable sub- frames	Uplink RB allocation	TPC command	Expected power step size	Power step size range (Down)	PUSCH	
				(Down) ΔP [dB]	ΔP [dB]	[dB]	
	Slots before RB change	128RBs	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
1	RB change	128RBs to 105 RBs	TPC=-1dB	1.86	ΔP < 2dB	1.86 +/- [5.0] + TT (NOTE 1) 1.86 +/- [3.0] + TT (NOTE 2)	
	Slots after RB change	Fixed = 105	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
	Slots before RB change	128RBs	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
2	RB change	128RBs to 90 RBs	TPC=-1dB	2.53	2dB ≤ ΔP < 3dB	2.53 +/- [6.0] + TT (NOTE 1) 2.53 +/- [4.0] + TT (NOTE 2)	
	Slots after RB change	Fixed = 90	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
	Slots before RB change	128RBs	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
3	RB change	128RBs to 79 RBs	TPC=-1dB	3.10	3dB ≤ ΔP < 4dB	3,10 +/- [7.0] + TT (NOTE 1) 3,10 +/- [5.0] + TT (NOTE 2)	
	Slots after RB change	Fixed = 79RBs	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
	Slots before RB change	128RBs	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
4	RB change	128RBs to 32 RBs	TPC=-1dB	7.02	4dB ≤ ΔP < 10dB	7.02 +/- [8.0] + TT (NOTE 1) 7.02 +/- [6.0] + TT (NOTE 2)	
	Slots after RB change	Fixed = 32	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
	Slots before RB change	128RBs	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
5	RB change	128RBs to 7 RBs	TPC=-1dB	13.62	10dB ≤ ΔP < 15dB	13.62 +/- [10.0] + TT (NOTE 1) 13.62 +/- [8.0] + TT (NOTE 2)	
	Slots after RB change	Fixed = 7RBs	TPC=-1dB	1	ΔP≤1dB	1 +/- [1.0] + TT	
	Slots before RB change	128RB	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
6	RB change	128RB to 1 RBs	TPC=-1dB	22.07	15dB < ΔP	22.07 +/- [11.0] + TT (NOTE 1) 22.07 +/- [9.0] + TT (NOTE 2)	
	Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- [1.0] + TT	
NOTE 1	DTE 1: Applicable if Pint $\geq P \geq Pmin$.						

NOTE 1: Applicable if Pint \geq P \geq Pmin. NOTE 2: Applicable if PUMAX \geq P > Pint.

Table 6.3.4.3.5-3: Test Requirements Relative Power Tolerance for Transmission, channel BW 100MHz, SCS 60kHz, alternating sub-test

Sub- test ID	Uplink RB allocation	TPC command	Expected power step size (Up/Down)	Power step size range (Up/Down)	PUSCH
			ΔP [dB]	ΔP [dB]	[dB]
1 1	Alternating 105	TPC=0dB	0.86	ΔP < 2dB	0.86 +/- [5.0] + TT (NOTE 1)
	and 128		0.80	ΔF \ Zub	0.86 +/- [3.0] + TT (NOTE 2)
2	Alternating 79	TPC=0dB	2.10	2dB ≤ ΔP < 3dB	2.10 +/- [6.0] + TT (NOTE 1)
	and 128		2.10	20B ≤ ΔP < 30B	2.10 +/- [4.0] + TT (NOTE 2)
3	Alternating 64	TPC=0dB	2.01	240 < 40 < 440	3.01 +/- [7.0] + TT (NOTE 1)
	and 128		3.01	3dB ≤ ΔP < 4dB	3.01 +/- [5.0] + TT (NOTE 2)
4	Alternating 32	TPC=0dB	6.00	4dD < 4D < 10dD	6.02 +/- [8.0] + TT (NOTE 1)
	and 128		6.02	40B ≤ ΔP < 100B	6.02 +/- [6.0] + TT (NOTE 2)
5	Alternating 7	TPC=0dB	10.00	10dD < 4D < 1EdD	12.62 +/- [10.0] + TT (NOTE 1)
	and 128		12.62	100R ≥ ∇b < 120B	12.62 +/- [8.0] + TT (NOTE 2)
6	Alternating 1	TPC=0dB	21.07	1EdD < AD	21.07 +/- [11.0] + TT (NOTE 1)
	and 128		21.07	TOUP < VA	21.07 +/- [9.0] + TT (NOTE 2)
5	and 128 Alternating 7 and 128 Alternating 1	TPC=0dB	6.02 12.62 21.07	$4dB \le \Delta P < 10dB$ $10dB \le \Delta P < 15dB$ $15dB < \Delta P$	6.02 +/- [6.0] + TT (NOTE 12.62 +/- [10.0] + TT (NOTE 12.62 +/- [8.0] + TT (NOTE 21.07 +/- [11.0] + TT (NOTE

NOTE 1: Applicable if Pint \geq P \geq Pmin. NOTE 2: Applicable if PUMAX \geq P > Pint.

6.3.4.4 Aggregate power tolerance

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA Generic procedures with condition NR in TS 38.508-1 [10] is FFS.
- SA message contents in TS 38.508-1 [10] subclause 4.6 is FFS
- Measurement Uncertainty and Test Tolerances are FFS.
- The method of setting UE transmitted power is FFS.

6.3.4.4.1 Test purpose

To verify the ability of the UE transmitter to maintain its power during non-contiguous transmissions within 21ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant.

6.3.4.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.4.4.3 Minimum conformance requirements

The aggregate power control tolerance is the ability of the UE transmitter to maintain its power during non-contiguous transmissions within 21ms in response to 0 dB TPC commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant.

The minimum requirements specified in Table 6.3.4.4.3-1 apply when the power of the target and reference sub-frames are within the power range bounded by the minimum output power as defined in sub-clause 6.3.1 and P_{int} as defined in sub-clause 6.3.4.2. The minimum requirements specified in Table 6.3.4.3-2 apply when the power of the target and reference sub-frames are within the power range bounded by Pint as defined in sub-clause 6.3.4.2 and the maximum output power as specified in sub-clause 6.2.1.

Table 6.3.4.4.3-1: Aggregate power tolerance, $P_{int} \ge P \ge P_{min}$

TPC command	UL channel	Aggregate power tolerance within 21ms
0 dB	PUCCH	± [5.5] dB
0 dB	PUSCH	± [5.5] dB

Table 6.3.4.4.3-2: Aggregate power tolerance, $P_{max} \ge P \ge P_{int}$

TPC command	UL channel	Aggregate power tolerance within 21ms
0 dB	PUCCH	± [3.5] dB
0 dB	PUSCH	± [3.5] dB

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3.4.4

6.3.4.4.4 Test description

6.3.4.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.4.4.1-1 and table 6.3.4.4.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.4.4.1-1: Test Configuration Table: PUCCH subtest

Initial Conditions			
Test Environmer	nt as specified in TS 38.508-1 [10]	Normal	
subclause 4.1			
Test Frequencie	s as specified in TS 38.508-1 [10]	Mid range	
subclause 4.3.1			
Test Channel Ba	andwidths as specified in TS 38.508-1 [10]	Lowest, Mid and Highest	
subclause 4.3.1			
Test SCS as spe	ecified in Table 5.3.5-1	Lowest and Highest	
	Test Parameters for Channel Bandwidths		
Test ID	Downlink Configuration	Uplink Configuration	
	N/A for aggregate power tolerance	PUCCH format = Format 1	
1	1 testcase Length in OFDM symbols = 14		

Table 6.3.4.4.4.1-2: Test Configuration Table: PUSCH subtest

		Initial Conditions	
Test Environme	nt as specified in TS 38.508-1	Normal	
[10] subclause 4	4.1		
Test Frequencie	s as specified in TS 38.508-1	Mid range	
[10] subclause 4	1.3.1		
Test Channel Ba	andwidths as specified in TS	Lowest, Mid and Highest	
38.508-1 [10] st	ıbclause 4.3.1		
Test SCS as spe	ecified in Table 5.3.5-1	Lowest and Highest	
	Test Parar	neters for Channel Bandwidths	
Test ID	Test ID Downlink Configuration Uplink Configuration		ation
	N/A for aggregate power	Modulation	RB allocation (NOTE 1)
1 tolerance testcase		DFT-s-OFDM QPSK	Outer_Full
NOTE 1: The s	NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.		

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] clause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.4.4.1-1 (for PUCCH subtest) and Table 6.3.4.4.1-2 (for PUSCH subtest).
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3.4.2.4.3.

6.3.4.4.4.2 Test procedure

The procedure is separated in two subtests to verify PUCCH and PUSCH aggregate power control tolerance respectively. The uplink transmission patterns are described in figure 6.3.4.4.2-1.

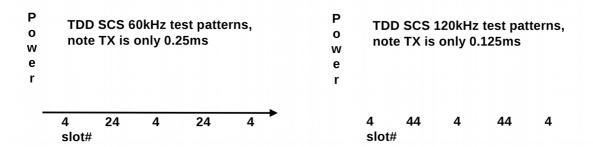


Figure 6.3.4.4.4.2-1: Test uplink transmission

1. PUCCH subtest:

- 1.1. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1.
- 1.2. The SS transmits PDSCH via PDCCH DCI format 0_1 for C_RNTI to transmit the DL RMC according to Table 6.3.4.4.4.1-1. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH. Send the appropriate TPC commands for PUCCH to the UE to ensure that the UE transmits PUCCH at [TBD]dBm +/- [5.5+TT]dB for carrier frequency $f \le 30.3$ GHz or at [TBD]dBm +/- [5.5+TT]dB for carrier frequency $f \le 30.3$ GHz or
- 1.3. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 1.4. Every [TBD] transmit to the UE downlink PDSCH MAC padding bits as well as 0 dB TPC command for PUCCH via the PDCCH to make the UE transmit ACK/NACK on the PUCCH for 1 slot. The downlink transmission is scheduled in the appropriate slots to make the UE transmit PUCCH as described in figure 6.3.4.4.2-1.
- 1.5. Measure the UE EIRP in the Tx beam peak direction of in the measurement bandwidth specified in Table 6.3.1.5-1 and Table 6.3.1.5-2 to verify the UE transmitted PUCCH power is maintained within 21ms. EIRP test procedure is defined in Annex K. The measuring duration is [TBD]. EIRP is calculated considering both polarizations, theta and phi. For TDD slots with transient periods are not under test.
- 1.6. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

- 1.7. Send the appropriate TPC commands for PUCCH to the UE to ensure that the UE transmits PUCCH at [TBD]dBm +/- [3.5+TT]dB for carrier frequency $f \le 30.3$ GHz or at [TBD]dBm +/-[3.5+TT]dB for carrier frequency 30.3GHz < f.
- 1.8. Repeat test steps 1.3 to 1.6 for measurement.
- 2. PUSCH subtest:
- 2.1. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1.
- 2.2. The SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the PUSCH. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at [TBD]dBm +/-[5.5+TT]dB for carrier frequency 10.3GHz < 10.3GHz or at 10.3GHz < 10.3GHz or at 10.3GHz < 10.3GHz or at 10.3GHz < 10.3GHz or at 10.3GHz < 10.3GHz or at 10.3GHz < 10.3GHz
- 2.3. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 2.4. Every [TBD] schedule the UE's PUSCH data transmission for 1 slot and transmit 0 dB TPC command for PUSCH via the PDCCH to make the UE transmit PUSCH. The uplink transmission patterns are described in figure 6.3.4.4.4.2-1.
- 2.5. Measure the UE EIRP in the Tx beam peak direction of in the measurement bandwidth specified in Table 6.3.1.5-1 and Table 6.3.1.5-2 to verify the UE transmitted PUSCH power is maintained within 21ms. EIRP test procedure is defined in Annex K. The measuring duration is [TBD]. EIRP is calculated considering both polarizations, theta and phi. For TDD slots with transient periods are not under test.
- 2.6. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 2.7. Send the appropriate TPC commands for PUCCH to the UE to ensure that the UE transmits PUCCH at [TBD]dBm +/-[3.5+TT]dB for carrier frequency $f \le 30.3GHz$ or at [TBD]dBm +/-[3.5+TT]dB for carrier frequency 30.3GHz < f.
- 2.8. Repeat test steps 2.3 to 2.6 for measurement.

6.3.4.4.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.3.4.4.5 Test requirement

The requirement for the power measurements made in step (1.5) and (2.5) of the test procedure shall not exceed the values specified in Table 6.3.4.4.5-1 and Table 6.3.4.4.5-2. The power measurement period shall be 1 slot.

Table 6.3.4.4.5-1: Power control tolerance ($P_{int} \ge P \ge P_{min}$)

TPC command	UL channel	Test requirement measured power	
0 dB	PUCCH	Given [TBD] power measurements in the pattern, the 2^{nd} , and later measurements shall be within \pm [5.5+TT]dB of the 1^{st} measurement.	
0 dB	PUSCH	Given [TBD] power measurements in the pattern, the 2 nd , and later measurements shall be within ± [5.5+TT]dB of the 1 st measurement.	
Note 1: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3.4.4.5-3.			

Table 6.3.4.4.5-2: Power control tolerance (P_{max}≥ P > P_{int})

TPC command	UL channel	Test requirement measured power
0 dB	PUCCH	Given [TBD] power measurements in the pattern, the 2^{nd} , and later measurements shall be within \pm [3.5+TT]dB of the 1^{st} measurement.
0 dB	PUSCH	Given [TBD] power measurements in the pattern, the 2^{nd} , and later measurements shall be within \pm [3.5+TT]dB of the 1^{st} measurement.
Note 1: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3.4.4.5-4.		

Table 6.3.4.4.5-3: Test Tolerance ($P_{int} \ge P \ge P_{min}$)

[FFS]

Table 6.3.4.4.5-4: Test Tolerance (P_{max} ≥ P > P_{int})

[FFS]

6.3A Output power dynamics for CA

6.3A.1 Minimum output power for CA

FFS

6.3A.1.0 Minimum conformance requirements

For intra-band contiguous carrier aggregation, the minimum controlled output power of the UE is defined as the transmit power of the UE per component carrier, i.e., EIRP in the channel bandwidth of each component carrier for all transmit bandwidth configurations (resource blocks), when the power on both component carriers are set to a minimum value.

The minimum output power shall not exceed the values specified in Table 6.3A.1.0-1 and 6.3.A.1.0-2 for each operating band supported. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.3A.1.0-1: Minimum output power for CA for power class 1

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	4	47.52
	100	4	95.04
	200	4	190.08
	400	4	380.16

Table 6.3A.1.0-2: Minimum output power for CA for power class 2, 3 and 4

Operating band	Channel bandwidth	Minimum output power	Measurement bandwidth
	(MHz)	(dBm)	(MHz)
n257, n258, n260, n261	50	-13	47.52
	100	-13	95.04
	200	-13	190.08
	400	-13	380.16
NOTE 1: n260 is not applied for power class 2.			

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3A.1.

6.3A.1.1 Minimum output power for CA (2UL CA)

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerances are FFS.
- Measurement period is pending RAN4.
- The testability of this test case is pending further analysis on relaxation of the requirement.
- The test configuration would be revisited when testability issue is concluded.
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS

6.3A.1.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power on each component carrier is set to a minimum value.

6.3A.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support intra-band contiguous 2UL CA.

6.3A.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.1.0.

6.3A.1.1.4 Test description

6.3A.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A.1-1. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.3A.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3A.1.1.4.1-1: Test Configuration Table

			Default (Conditions		
	Test Environment as specified in TS 38.508-1 [10] subclause 4.1		Normal			
Test Frequencies as specified in TS 38.508-1 [10] subclause [4.3.1.2.3] for different CA bandwidth classes, and PCC and SCCs are mapped onto physical frequencies according to Table 6.1-2.		Low and High ra	ange			
Test CC combination setting as specified in subclause 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2 for the CA Configuration across bandwidth combination sets supported by the UE.		00 0	Lowest aggregated BW of the CA configuration Highest aggregated BW of the CA configuration			
Test S0	CS as specifie	ed in Table 5.3.5-1.		Highest		
			Test Pa	rameters		
Test ID	СС	ChBw(MHz)	Test frequency	DL RB allocation	UL Modulation	UL RB allocation
1	PCC	Default	Default	N/A	DFT-s-OFDM QPSK	Outer_Full
SCC Delault Delault		IN/A	DFT-s-OFDM QPSK	Outer_Full		
NOTE	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] clause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3A.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3A.1.1.4.3.

6.3A.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.3.0 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1. Message contents are defined in clause 6.3A.1.1.4.3
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [TBD], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.2).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.1.1.4.1-1 on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (Note 1) for the UE Tx beam selection to complete.
- 6. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 7. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.

- 8. Measure UE EIRP of each component carrier in the Tx beam peak direction in the measurement bandwidth specified in Table 6.3A.1.1.5-1 for the specific channel bandwidth under test. EIRP test procedure is defined in Annex K. The measuring duration is [one active uplink subframe]. EIRP is calculated considering both polarizations, theta and phi. For TDD slots with transient periods are not under test.
- 9. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELEECT_WAIT_TIME default value is defined in Annex K.1.1.

6.3A.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with following exception.

Table 6.3A.1.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [10], Table 4.6.3-118 with condition TRANSFORM PRECODER ENABLED

6.3A.1.1.5 Test requirement

For each component carrier, the minimum EIRP shall not exceed the values specified in Table 6.3A.1.1.5-1 and 6.3A.1.1.5-2.

Table 6.3A.1.1.5-1: Minimum output power for 2UL CA for power class 1

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	4+TT	47.52
	100	4+TT	95.04
	200	4+TT	190.08
	400	4+TT	380.16

Table 6.3A.1.1.5-2: Minimum output power for 2UL CA for power class 2, 3 and 4

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	-13+TT	47.52
	100	-13+TT	95.04
	200	-13+TT	190.08
	400	-13+TT	380.16
NOTE 1: n260 is not applied for power class 2.			

Table 6.3A.1.1.5-3: Test Tolerance for Minimum output power for 2UL CA for Power class 1

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	FFS	FFS

Table 6.3A.1.1.5-4: Test Tolerance for Minimum output power for 2UL CA for Power class 2, 3 and 4

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	FFS	FFS

6.3A.1.2 Minimum output power for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

Measurement Uncertainty and Test Tolerances are FFS.

- Measurement period is pending RAN4.
- The testability of this test case is pending further analysis on relaxation of the requirement.
- The test configuration would be revisited when testability issue is concluded.
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS

6.3A.1.2.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power on each component carrier is set to a minimum value.

6.3A.1.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.3A.1.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.1.0.

6.3A.1.2.4 Test description

Same as in clause 6.3A.1.1.4 with following exceptions:

- Instead of Table 6.3A.1.1.4.1-1 \rightarrow use Table 6.3A.1.2.4.1-1.
- Instead of clause 6.3A.1.1.4.3 \rightarrow use clause 6.3A.1.2.4.3.
- Instead of Table 6.3A.1.1.5-1 and 6.3A.1.1.5-2 \rightarrow use Table 6.3A.1.2.5-1 and 6.3A.1.2.5-2.

Table 6.3A.1.2.4.1-1: Test Configuration Table for 3UL CA

			Default Co	onditions		
Test Er	Test Environment as specified in TS 38.508-1 [10]		Normal			
subcla	use 4.1					
Test Fr	requencies as s	pecified in TS 38.	508-1 [10]	Low and High ra	inge	
subcla	use [4.3.1.2.3] 1	for different CA ba	ındwidth classes,			
and PC	CC and SCCs a	re mapped onto p	hysical			
freque	ncies according	to Table 6.1-2.				
Test Co	C combination :	setting as specifie	d in subclause	Lowest aggrega	ted BW of the CA co	onfiguration
5.5A.1	-1, 5.5A.2-1 and	d 5.5A.2-2 for the	CA Configuration	Highest aggregated BW of the CA configuration		
across	across bandwidth combination sets supported by the UE.		ported by the UE.			
Test So	CS as specified	in Table 5.3.5-1.		Highest		
Test Par			Test Para	ameters		
Test ID	СС	ChBw(MHz)	Test frequency	DL RB allocation	UL Modulation	UL RB allocation
	PCC				DFT-s-OFDM QPSK	Outer_Full
1	1 SCC1 Default Default		Default	N/A	DFT-s-OFDM QPSK	Outer_Full
	SCC2				DFT-s-OFDM QPSK	Outer_Full
NOTE	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					

6.3A.1.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with following exception.

Table 6.3A.1.2.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [10], Table 4.6.3-118 with condition TRANSFORM_PRECODER ENABLED

6.3A.1.2.5 Test requirement

For each component carrier, the minimum EIRP shall not exceed the values specified in Table 6.3A.1.2.5-1 and 6.3A.1.2.5-2.

Table 6.3A.1.2.5-1: Minimum output power for 3UL CA for power class 1

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	4+TT	47.52
	100	4+TT	95.04
	200	4+TT	190.08
	400	4+TT	380.16

Table 6.3A.1.2.5-2: Minimum output power for 3UL CA for power class 2, 3 and 4

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)	
n257, n258, n260, n261	50	-13+TT	47.52	
	100	-13+TT	95.04	
	200	-13+TT	190.08	
	400	-13+TT	380.16	
NOTE 1: n260 is not applied for power class 2.				

Table 6.3A.1.2.5-3: Test Tolerance for Minimum output power for 3UL CA for Power class 1

Test Metric	FR2a	FR2b
Ouiet Zone size < 30 cm	FFS	FFS

Table 6.3A.1.2.5-4: Test Tolerance for Minimum output power for 3UL CA for Power class 2, 3 and 4

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	FFS	FFS

6.3A.1.3 Minimum output power for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerances are FFS.
- Measurement period is pending RAN4.
- The testability of this test case is pending further analysis on relaxation of the requirement.
- The test configuration would be revisited when testability issue is concluded.
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS

6.3A.1.3.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power on each component carrier is set to a minimum value.

6.3A.1.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.3A.1.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.1.0.

6.3A.1.3.4 Test description

Same as in clause 6.3A.1.1.4 with following exceptions:

- Instead of Table 6.3A.1.1.4.1-1 \rightarrow use Table 6.3A.1.3.4.1-1.
- Instead of clause 6.3A.1.1.4.3 \rightarrow use clause 6.3A.1.3.4.3.
- Instead of Table 6.3A.1.1.5-1 and 6.3A.1.1.5-2 \rightarrow use Table 6.3A.1.3.5-1 and 6.3A.1.3.5-2.

Table 6.3A.1.3.4.1-1: Test Configuration Table for 3UL CA

	Default Conditions					
Test Environment as specified in TS 38.508-1 [10] subclause 4.1		Normal				
		specified in TS		Low and High ra	inge	
			bandwidth classes,			
1		are mapped ont	. ,			
		ng to Table 6.1-2				
			ified in subclause		ted BW of the CA co	
5.5A.1	-1, 5.5A.2-1 a	and 5.5A.2-2 for t	he CA Configuration	Highest aggrega	ited BW of the CA c	onfiguration
across	bandwidth co	ombination sets s	supported by the UE.			
Test SCS as specified in Table 5.3.5-1.			Highest			
Test Parameters						
Test ID	СС	ChBw(MHz)	Test frequency	DL RB allocation	UL Modulation	UL RB allocation
	PCC				DFT-s-OFDM QPSK	Outer_Full
1	SCC1	Default	Default	N/A	DFT-s-OFDM QPSK	Outer_Full
1	SCC2	Delault	Deidull	IN/A	DFT-s-OFDM QPSK	Outer_Full
	SCC3				DFT-s-OFDM QPSK	Outer_Full
NOTE	1: The spec	ific configuration	of each RB allocation	is defined in Table	e 6.1-1.	

6.3A.1.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with following exception.

Table 6.3A.1.3.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [10], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.3A.1.3.5 Test requirement

For each component carrier, the minimum EIRP shall not exceed the values specified in Table 6.3A.1.3.5-1 and 6.3A.1.3.5-2.

Table 6.3A.1.3.5-1: Minimum output power for 3UL CA for power class 1

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	4+TT	47.52
	100	4+TT	95.04
	200	4+TT	190.08
	400	4+TT	380.16

Table 6.3A.1.3.5-2: Minimum output power for 3UL CA for power class 2, 3 and 4

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)		
n257, n258, n260, n261	50	-13+TT	47.52		
	100	-13+TT	95.04		
	200	-13+TT	190.08		
	400	-13+TT	380.16		
NOTE 1: n260 is not applied for power class 2.					

Table 6.3A.1.3.5-3: Test Tolerance for Minimum output power for 4UL CA for Power class 1

Test Metric	FR2a	FR2b	
Quiet Zone size ≤ 30 cm	FFS	FFS	

Table 6.3A.1.3.5-4: Test Tolerance for Minimum output power for 4UL CA for Power class 2, 3 and 4

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	FFS	FFS

6.3A.2 Transmit OFF power for CA

6.3A.2.0 Minimum conformance requirements

For intra-band contiguous carrier aggregation, the transmit OFF power is defined as the TRP in the channel bandwidth per component carrier when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the transmitter is not considered OFF.

The transmit OFF power shall not exceed the values specified in Table 6.3A.2.0-1 for each operating band supported.

Table 6.3A.2.0-1: Transmit OFF power for CA

Operating band	Channel bandwidth / Transmit OFF power (dBm) / measurement bandwidth			
	50 MHz	100 MHz	200 MHz	400 MHz
n257, n258, n260, n261	-35	-35	-35	-35
	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz

6.3A.2.1 Transmit OFF power for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Test procedure is TBD

- The testability of this test case is pending further analysis on relaxation of the requirement.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.3A.2.1.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

6.3A.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.3A.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.2.0.

6.3A.2.1.4 Test description

6.3A.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.5A. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.3A.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3A.2.1.4.1-1: Test Configuration Table [TBD]

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure [TBD] for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.3A.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3A.2.1.4.3

6.3A.2.1.4.2 Test procedure

TBD

6.3A.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.3A.2.1.5 **Test Requirements**

The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.2.5-1.

Table 6.3A.2.1.5-1: Transmit OFF power

Operating band	Channel band	width / Transmit O band	PFF power (dBm) / width	measurement	
	50 MHz 100 MHz 200 MHz 400 MHz				
n257, n258, n261	-35+[14.9]	-35+[17.9]	-35+[20.9]	-35+[23.9]	
	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz	
n260	-35+[24.1]	-35+[27.1]	-35+[30.1]	-35+[33.1]	
	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz	
NOTE 1: Core requirement cannot be tested due to testability issue and test requirement includes					

relaxation to achieve SNR = [10] dB (Minimum requirement + relaxation).

6.3A.2.2 Transmit OFF power for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Test procedure is TBD
- The testability of this test case is pending further analysis on relaxation of the requirement.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.3A.2.2.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

6.3A.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.3A.2.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.2.0.

6.3A.2.2.4 Test description

Same as in clause 6.3A.2.1.4 with following exceptions:

Instead of Table 6.3A.2.1.4.1-1 \rightarrow use Table 6.3A.2.2.4.1-1.

- Instead of clause 6.3A.2.1.4.3 → use clause 6.3A.2.2.4.3.
- Instead of Table 6.3A.2.1.5-1 \rightarrow use Table 6.3A.2.2.5-1.

Table 6.3A.2.2.4.1-1: Test Configuration Table [TBD]

6.3A.2.2.5 Test Requirements

The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.2.5-1.

Table 6.3A.2.2.5-1: Transmit OFF power

Operating band	Channel band		OFF power (dBm) <i>l</i> width	measurement	
	50 MHz 100 MHz 200 MHz 400 MH				
n257, n258, n261	-35+[14.9]	-35+[17.9]	-35+[20.9]	-35+[23.9]	
	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz	
n260	-35+[24.1]	-35+[27.1]	-35+[30.1]	-35+[33.1]	
	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz	

NOTE 1: Core requirement cannot be tested due to testability issue and test requirement includes relaxation to achieve SNR = [10] dB (Minimum requirement + relaxation).

6.3A.2.3 Transmit OFF power for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Test procedure is TBD
- The testability of this test case is pending further analysis on relaxation of the requirement.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.3A.2.3.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

6.3A.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.3A.2.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.2.0.

6.3A.2.3.4 Test description

Same as in clause 6.3A.2.1.4 with following exceptions:

- Instead of Table 6.3A.2.1.4.1-1 → use Table 6.3A.2.3.4.1-1.
- Instead of clause $6.3A.2.1.4.3 \rightarrow$ use clause 6.3A.2.3.4.3.
- Instead of Table 6.3A.2.1.5-1 → use Table 6.3A.2.3.5-1.

Table 6.3A.2.3.4.1-1: Test Configuration Table [TBD]

6.3A.2.3.5 Test Requirements

The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.2.5-1.

Table 6.3A.2.3.5-1: Transmit OFF power

Channel band	Channel bandwidth / Transmit OFF power (dBm) / measurement bandwidth			
50 MHz	100 MHz	200 MHz	400 MHz	
-35+[14.9]	-35+[17.9]	-35+[20.9]	-35+[23.9]	
47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz	
-35+[24.1]	-35+[27.1]	-35+[30.1]	-35+[33.1]	
47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz	
	50 MHz -35+[14.9] 47.52 MHz -35+[24.1]	band 50 MHz 100 MHz -35+[14.9] -35+[17.9] 47.52 MHz 95.04 MHz -35+[24.1] -35+[27.1]	bandwidth 50 MHz 100 MHz 200 MHz -35+[14.9] -35+[17.9] -35+[20.9] 47.52 MHz 95.04 MHz 190.08 MHz -35+[24.1] -35+[27.1] -35+[30.1]	

NOTE 1: Core requirement cannot be tested due to testability issue and test requirement includes relaxation to achieve SNR = [10] dB (Minimum requirement + relaxation).

6.3A.3 Transmit ON/OFF time mask for CA

6.3A.3.0 Minimum conformance requirements

For intra-band contiguous carrier aggregation, the general output power ON/OFF time mask specified in subclause 6.3.3.2 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in subclause 6.3.3.2 shall only be applicable for each component carrier when all the component carriers are OFF.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3A.1.

6.3A.3.1 Transmit ON/OFF time mask for CA (2UL CA)

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerances are FFS.
- Test requirement of ON power is FFS.
- Testability of OFF power needs further study.
- The method of setting UE transmitted power is FFS.
- TP analysis is FFS
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.3A.3.1.1 Test purpose

To verify that the general ON/OFF time mask for CA meets the requirements given in 6.3A.3.1.5. Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3A.3.1.2 Test applicability

The requirements of this test apply to all types of NR UE release 15 and forward supporting 2UL CA.

6.3A.3.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.3.0.

6.3A.3.1.4 Test description

6.3A.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and CC combinations based on NR operating bands specified in Table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each CA configuration and subcarrier spacing, are shown in table 6.2A.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3A.3.1.4.1-1: Intra-band Contiguous UL CA Test Configuration Table

	Default Conditions						
Test E	Test Environment as specified in TS 38.508-1 [10]			FFS			
subcla	ause [4.1]						
Test F	requencies	as specifie	d in TS 38.508-1 [1	10]	FFS		
subcla	ause [4.3.1.2	2.3] for diffe	rent CA bandwidth	ı classes			
			(N _{RB_agg}) as specifi		FFS		
	5.5A.1-1, 5.5A.2-1 and 5.5A.2-2 for the CA Configuration						
across	across bandwidth combination sets supported by the UE			by the UE			
Test S	CS as spec	ified in Tab	le 5.3.5-1		FFS		
				Test Par	ameters		
Test	CC	Band	ChBw(MHz)	Test	DL RB	UL Modulation	UL RB allocation
ID				frequency	allocation		
De	Default Test Settings for a CA_XG, CA_nXO Configuration (Cumulative aggregated BWchannel < 400MHz)						
1							

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.3A.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.2A.2.1.4.3.

6.3A.3.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 and Annex C.3.0 for all downlink physical channels
- 2. The SS shall configure SCC as per TS 38.508-1 [10] subclause 5.5.1 Procedure to configure SCC(s) for NR RF CA testing. Message contents are defined in subclause 6.3A.3.1.4.3.

- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321, clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.3.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 6. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 7. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction for each component carrier in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.3.2.5-1. EIRP test procedure is defined in Annex K. The period of the measurement shall be the slot prior to the PUSCH transmission, excluding a transient period of 5 μs in the end of the slot and any DL periods. EIRP is calculated considering both polarizations, theta and phi.
- 8. For UE transmission ON power, measure UE EIRP in the Tx beam peak direction for each component carrier in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.3.2.5-2. EIRP test procedure is defined in Annex K. The period of the measurement shall be one slot with PUSCH transmission. EIRP is calculated considering both polarizations, theta and phi. For TDD slots with transient periods are not under test.
- 9. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction for each component carrier in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3.3.2.5-1. EIRP test procedure is defined in Annex K. The period of the measurement shall be the slot following the PUSCH transmission, excluding a transient period of 5 μs at the beginning of the slot and any DL periods. EIRP is calculated considering both polarizations, theta and phi.
- 10. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.
- NOTE 2: When switching to DFT-s-OFDM waveform, as specified in the test configuration table Table 6.3A.3.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.3A.3.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 6.3A.3.1.4.3-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[5], Table 4.6.3-119			
Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon ::= SEQUENCE {			
p0-NominalWithGrant	-106		
}			

6.3A.3.1.5 Test requirements

The requirement for the power measured in steps (3), (4) and (5) of the test procedure shall not exceed the values specified in Table 6.3.3.4.5-1.

Table 6.3.3.2.5-1: Test requirement of OFF power of General ON/OFF time mask for 2UL CA

	Channel bandwidth / minimum output power / measurement bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
Transmit OFF	≤ -30+TT dBm				
power	2 00 11 00 11				
Transmission OFF	47 52 MUz	05 04 MHz	190.08 MHz	380.16 MHz	
Measurement bandwidth	47.52 MHz 95.04 MHz		190.00 MHZ	300.10 MHZ	

Table 6.3.3.2.5-2: Test requirement of ON power of General ON/OFF time mask for 2UL CA

	SCS	Channel band	Channel bandwidth / minimum output power / measurement bandwidth			
	[kHz]	50 MHz	100 MHz	200 MHz	400 MHz	
Expected Transmission ON	60	FFS	FFS	FFS	FFS	
Measured power for CP-OFDM	120	FFS	FFS	FFS	FFS	
Expected Transmission ON	60	FFS	FFS	FFS	FFS	
Measured power for DFT-s-OFDM	120	FFS	FFS	FFS	FFS	

Table 6.3.3.2.5-3: Test Tolerance for OFF power

FFS

Table 6.3.3.2.5-4: Test Tolerance for ON power

FFS

6.3A.4 Power control for CA

6.3A.4.1 General

The requirements in this section apply to a UE when it has at least one of UL or DL configured for CA operation. The requirements on power control accuracy in CA operation apply under normal conditions and are defined as a directional requirement. The requirements are verified in beam locked mode on beam peak direction. The requirements apply for one single PUCCH, PUSCH or SRS transmission of contiguous PRB allocation per configured UL CC with power setting in accordance with Clause 7.1 of [22]

6.3A.4.2 Absolute power tolerance for CA

Editor's note: This clause is incomplete. The following aspects are either missiong or not yet determined:

- Measurement Uncertainty and Test Tolerances are proposed and put in brackets for further investigation.
- Test point 3 need to be further investigated for per CC, i.e., possibly lower TP3 value by 3 dB.

6.3A.4.2.0 Minimum conformance requirements

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on each active component carriers larger than 20 ms. For SRS switching, the absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on component carriers (to which SRS switching occurs) larger than 20 ms. The requirement can be tested by time aligning any transmission gaps on the component carriers. For intra-band contiguous CA, the absolute power control tolerance per configured UL CC is given in Tables 6.3.4.2.3-1 and 6.3.4.2.3-2.

6.3A.4.2.1 Absolute power tolerance for CA (2UL CA)

6.3A.4.2.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3A.4.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA and 2DL CA.

6.3A.4.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.2.0.

6.3A.4.2.1.4 Test description

6.3A.4.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidth and subcarrier spacing based on NR CA configurations based on NR operating bands specified in Table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each CA combination and subcarrier spacing, are shown in Table 6.3A.4.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3A.4.2.1.4.1-1: Test Configuration Table

			Default (Conditions			
Test Er	Test Environment as specified in TS 38.508-1 [10]			Normal			
subcla	subclause 4.1						
Test Frequencies as specified in TS 38.508-1 [10] subclause [4.3.1.2.3] for different CA bandwidth classes, and PCC and SCCs are mapped onto physical			Low and High ra	ange			
	frequencies according to Table 6.1-2.			Llighoot oggrag	atad DM/ of the CA or	antiquestion	
5.5A.1- Configi	Test CC combination setting as specified in subclause 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2 for the CA Configuration across bandwidth combination sets supported by the UE.		Highest aggregated BW of the CA configuration				
Test S0	CS as specifie	ed in Table 5.3.5-1.		Highest			
			Test Pa	arameters			
Test ID	СС	ChBw(MHz)	Test frequency	DL RB allocation	UL Modulation	UL RB allocation (Note 1)	
1	PCC	Default	Default	NI/A	DFT-s-OFDM QPSK	Outer_Full	
+	SCC			DFT-s-OFDM OPSK	Outer_Full		
		NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] clause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.

- 4. The UL Reference Measurement Channel is set according to Table 6.3A.4.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3A.4.2.1.4.3.

6.3A.4.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2, and C.3 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1. Message contents are defined in clause 6.3A.4.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [28], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause9.2).
- 4. Configure the UE transmitted output power to test point 1 in section 6.3A.4.2.1.4.3.
- 5. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 6. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 7. SS sends uplink scheduling information via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.1.4.1-1 on PCC and SCC(s). Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 8. Measure UE EIRP of the first subframe of each component carrier in the Tx beam peak direction in the measurement bandwidth specified in Table 6.3A.4.2.1.5-1 through Table 6.3A.4.2.1.5-3 for the specific channel bandwidth under test. EIRP test procedure is defined in Annex K. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi. For TDD slots with transient periods are not under test.
- 9. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 10. Repeat test steps $1\sim9$ for measurement for test point $2\sim3$. The timing of the execution between each test point shall be larger than 20ms.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.3A.4.2.1.4.3 Message contents

Message contents are according to TS $38.508-1\ [10]$ subclause 4.6 with following exceptions:

Table 6.3A.4.2.1.4.3-1: PUSCH-PowerControl (Test point 1) for power class 3

Derivation Path: TS 38.508-1 [10], Table 4.3.3-91			
Information Element	Value/remark	Comment	Condition
PUSCH-PowerControl ::= SEQUENCE {			
tpc-Accumulation	disabled		
p0-AlphaSets SEQUENCE (SIZE (1maxNrofP0- PUSCH-AlphaSets)) OF SEQUENCE {	1 entry		
p0	-116		50MHz
	-120		100MHz
	-122		200MHz
	-126		400MHz
alpha	alpha1		
}			
}			

Table 6.3A.4.2.1.4.3-2: PUSCH-PowerControl (Test point 2) for power class 3

Derivation Path: TS 38.508-1 [10], Table 4.3.3-91			
Information Element	Value/remark	Comment	Condition
PUSCH-PowerControl ::= SEQUENCE {			
tpc-Accumulation	disabled		
p0-AlphaSets SEQUENCE (SIZE (1maxNrofP0-	1 entry		
PUSCH-AlphaSets)) OF SEQUENCE {			
p0	-112		50MHz
	-116		100MHz
	-118		200MHz
	-122		400MHz
alpha	alpha1		
}			
}			

Table 6.3A.4.2.1.4.3-3: PUSCH-PowerControl (Test point 3) for power class 3

Derivation Path: TS 38.508-1 [10], Table 4.3.3-91			
Information Element	Value/remark	Comment	Condition
PUSCH-PowerControl ::= SEQUENCE {			
tpc-Accumulation	disabled		
p0-AlphaSets SEQUENCE (SIZE (1maxNrofP0- PUSCH-AlphaSets)) OF SEQUENCE {	1 entry		
p0	-102		50MHz
	-106		100MHz
	-108		200MHz
	-112		400MHz
alpha	alpha1		
}			
}			

Table 6.3A.4.2.1.4.3-5: ServingCellConfigCommon

Derivation Path: 38.508-1[5], Table 4.6.3-168			
Information Element	Value/remark	Comment	Condition
ServingCellConfigCommon ::= SEQUENCE {			
ss-PBCH-BlockPower	1		SCS_60kHz
	4		SCS_120kHz
}			

Condition	Explanation
SCS_60kHz	SCS=60kHz for SS/PBCH block
SCS 120kHz	SCS=120kHz for SS/PBCH block

6.3A.4.2.1.5 Test requirement

The measured EIRP in step 7 and 9 shall not to exceed the values specified in Table 6.3A.4.2.1.5-1 through 6.3A.4.2.1.5-3.

Table 6.3A.4.2.1.5-1: Test Requirements of Absolute power tolerance (Test point 1) for power class 3

		SCS	Channel ba	Channel bandwidth / expected output power (dBm)				
			50 MHz	100 MHz	200 MHz	400 MHz		
Expected Measured		60kHz	8.1	7.1	8.1	N/A		
power		120kHz	8.1	7.1	8.1	7.1		
Power tolerance			± (14+TT) dB					
Note 1:	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.							
Note 2:	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.1.5-4.							

Table 6.3A.4.2.1.5-2: Test Requirements of Absolute power tolerance (Test point 2) for power class 3

	SCS	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured	60kHz	12.1	11.1	12.1	N/A	
power	120kHz	12.1	11.1	12.1	11.1	
Power toleran	Power tolerance ± (12+TT) dB					
Note 1: The lower power limit shall not exceed the minimum output power requirements						
dofined in a	defined in cub clause C.2A.1, and the higher negree limit shall not expend the Max					

defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.

Note 2: TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.1.5-5.

Table 6.3A.4.2.1.5-3: Test Requirements of Absolute power tolerance (Test point 3) for power class 3

	SCS	Channel ba	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz		
Expected Measured	60kHz	22.1	[22.1]	22.1	N/A		
power	120kHz	22.1	[22.1]	22.1	21.1		
Power tolera	nce	± (12+TT) dB					
Note 1: The lower	power limit s	hall not exceed	d the minimum	output power re	equirements		
defined in	sub-clause 6	.3A.1, and the	higher power li	mit shall not ex	ceed the Max		
EIRP defin	EIRP defined in sub-clause 6.2A.1.						
Note 2: TT for each	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.1.5-						
5.							

Table 6.3A.4.2.1.5-4: Test Tolerance (Test point 1) for power class 3

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

Table 6.3A.4.2.1.5-5: Test Tolerance (Test point 2 and Test point 3) for power class 3

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

6.3A.4.2.2Absolute power tolerance for CA (3UL CA)

6.3A.4.2.2.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3A.4.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA and 3DL CA.

6.3A.4.2.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.2.0.

6.3A.4.2.2.4 Test description

6.3A.4.2.2.4.1 Initial condition

Same as in clause 6.3A.4.2.1.4.1 with the following exceptions:

- Instead of Table 6.3A.4.2.1.4.1-1 → use Table 6.3A.4.2.2.4-1.
- Instead of Table 6.3A.4.2.1.5-1 through 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.2.5-1 and 6.3A.4.2.2.5-3.

Table 6.3A.4.2.2.4-1: Test Configuration Table

	Default Conditions						
		specified in TS 38.	508-1 [10]	Normal			
subclause 4.1							
1	•	pecified in TS 38.		Low and High ra	inge		
		for different CA ba					
		re mapped onto p	hysical				
		to Table 6.1-2.					
		setting as specifie		Highest aggrega	ated BW of the CA co	onfiguration	
		d 5.5A.2-2 for the					
	across bandwidth combination sets supported by the UE.						
Test So	CS as specified	in Table 5.3.5-1.		Highest			
		1	Test Para				
Test ID	СС	ChBw(MHz)	Test frequency	DL RB allocation	UL Modulation	UL RB allocation (Note 1)	
	PCC				DFT-s-OFDM QPSK	Outer_Full	
1	SCC1	Default	Default	N/A	DFT-s-OFDM QPSK	Outer_Full	
	SCC2				DFT-s-OFDM QPSK	Outer_Full	
NOTE	1: The specifi	c configuration of	each RB allocation	is defined in Table	e 6.1-1.		

6.3A.4.2.2.5 Test requirement

Same as in clause 6.3A.4.2.1.5 with the following exceptions:

- Instead of Table 6.3A.4.2.1.5-1 → use Table 6.3A.4.2.2.5-1.
- Instead of Table 6.3A.4.2.1.5-2 → use Table 6.3A.4.2.2.5-2.
- Instead of Table 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.2.5-3.
- Instead of Table 6.3A.4.2.1.5-4 → use Table 6.3A.4.2.2.5-4.
- Instead of Table 6.3A.4.2.1.5-5 → use Table 6.3A.4.2.2.5-5.

Table 6.3A.4.2.2.5-1: Test Requirements of Absolute power tolerance (Test point 1)

		SCS	Channel ba	Channel bandwidth / expected output power (dBm)				
			50 MHz	100 MHz	200 MHz	400 MHz		
Expected Measured		60kHz	8.1	7.1	8.1	N/A		
power		120kHz	8.1	7.1	8.1	7.1		
Power tolerance			± (14+TT) dB					
Note 1:	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.							
Note 2:	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.2.5-4.							

Table 6.3A.4.2.2.5-2: Test Requirements of Absolute power tolerance (Test point 2)

	SCS	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured	60kHz	12.1	11.1	12.1	N/A	
power	120kHz	12.1	11.1	12.1	11.1	
Power tolerance		± (12+TT) dB				

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.

Note 2: TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.2.5-4.

Table 6.3A.4.2.2.5-3: Test Requirements of Absolute power tolerance (Test point 3)

	SCS	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured	60kHz	22.1	[22.1]	22.1	N/A	
power	120kHz	22.1	[22.1]	22.1	21.1	
Power tolerar	± (12+TT) dB					
Note 1: The lower	power limit s	hall not exceed	d the minimum of	output power re	equirements	
defined in :	defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max					
EIRP defin	EIRP defined in sub-clause 6.2A.1.					
Note 2: TT for each	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.2.5-					

Table 6.3A.4.2.2.5-4: Test Tolerance (Test point 1)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

Table 6.3A.4.2.2.5-5: Test Tolerance (Test point 2 and Test point 3)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

6.3A.4.2.3 Absolute power tolerance for CA (4UL CA)

4.

6.3A.4.2.3.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3A.4.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA and 4DL CA.

6.3A.4.2.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.2.0.

6.3A.4.2.3.4 Test description

6.3A.4.2.3.4.1 Initial condition

Same as in clause 6.3A.4.2.1.4.1 with the following exceptions:

- Instead of Table 6.3A.4.2.1.4.1-1 → use Table 6.3A.4.2.3.4-1.
- Instead of Table 6.3A.4.2.1.5-1 through 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.3.5-1 and 6.3A.4.2.3.5-3.

Table 6.3A.4.2.3.4-1: Test Configuration Table

	Default Conditions							
Test Er	nvironment as	s specified in TS		Normal				
subcla	use 4.1							
		specified in TS		Low and High ra	nge			
			bandwidth classes,					
		are mapped ont						
		ng to Table 6.1-2		Llighoot oggrage	tad DW of the CA o	onfiguration		
			ified in subclause	Highest aggrega	ited BW of the CA co	orniguration		
5.5A.1-1, 5.5A.2-1 and 5.5A.2-2 for the CA Configuration across bandwidth combination sets supported by the UE.								
	Test SCS as specified in Table 5.3.5-1.				Highest			
Test Parameters								
Test ID	СС	ChBw(MHz)	Test frequency	DL RB allocation	UL Modulation	UL RB allocation (Note 1)		
	PCC				DFT-s-OFDM QPSK	Outer_Full		
1	SCC1	Default	D ()	N/A	DFT-s-OFDM QPSK	Outer_Full		
1	SCC2	Delault	Default	IN/A	DFT-s-OFDM QPSK	Outer_Full		
	SCC3				DFT-s-OFDM QPSK	Outer_Full		
NOTE	1: The spec	ific configuration	of each RB allocation	is defined in Table	e 6.1-1.			

6.3A.4.2.3.5 Test requirement

Same as in clause 6.3A.4.2.1.5 with the following exceptions:

- Instead of Table 6.3S.4.2.1.5-1 → use Table 6.3A.4.2.3.5-1.
- Instead of Table 6.3S.4.2.1.5-2→ use Table 6.3A.4.2.3.5-2.
- Instead of Table 6.3S.4.2.1.5-3 → use Table 6.3A.4.2.3.5-3.
- Instead of Table 6.3A.4.2.1.5-4→ use Table 6.3A.4.2.3.5-4.
- Instead of Table 6.3A.4.2.1.5-5 → use Table 6.3A.4.2.3.5-5.

Table 6.3A.4.2.3.5-1: Test Requirements of Absolute power tolerance (Test point 1)

	SCS	Channel ba	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz		
Expected Measured	60kHz	8.1	7.1	8.1	N/A		
power	120kHz	8.1	7.1	8.1	7.1		
Power tolerance ± (14+TT) dB							
Note 1: The lower	power limit s	hall not exceed	d the minimum of	output power re	equirements		
defined in	sub-clause 6	.3A.1, and the	higher power lii	mit shall not ex	ceed the Max		
EIRP defin	EIRP defined in sub-clause 6.2A.1.						
Note 2: TT for each	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.3.5-						
4.							

Table 6.3A.4.2.3.5-2: Test Requirements of Absolute power tolerance (Test point 2)

	scs	Channel ba	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz		
Expected Measured	60kHz	12.1	11.1	12.1	N/A		
power	120kHz	12.1	11.1	12.1	11.1		
Power tolerance ± (12+TT) dB							
defined in	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.						
Note 2: TT for eac	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.3.5-						

Table 6.3A.4.2.3.5-3: Test Requirements of Absolute power tolerance (Test point 3)

	SCS	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured	60kHz	22.1	[22.1]	22.1	N/A	
power	120kHz	22.1	[22.1]	22.1	21.1	
Power tolerance			± (12+	TT) dB		
defined in	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.					
Note 2: TT for eac 4.	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.3.5-					

Table 6.3A.4.2.3.5-4: Test Tolerance (Test point 1)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

Table 6.3A.4.2.3.5-5: Test Tolerance (Test point 2 and Test point 3)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

6.3A.4.2.4 Absolute power tolerance for CA (5UL CA)

6.3A.4.2.4.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3A.4.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 5UL CA and 5DL CA.

6.3A.4.2.4.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.2.0.

6.3A.4.2.4.4 Test description

6.3A.4.2.4.4.1 Initial condition

Same as in clause 6.3A.4.2.1.4.1 with the following exceptions:

- Instead of Table 6.3A.4.2.1.4.1-1 → use Table 6.3A.4.2.4.4-1.
- Instead of Table 6.3A.4.2.1.5-1 through 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.4.5-1 and 6.3A.4.2.4.5-3.

Table 6.3A.4.2.4.4-1: Test Configuration Table

•							
			Default Co	onditions			
Test Er	nvironment as	s specified in TS	38.508-1 [10]	Normal			
	use 4.1						
		s specified in TS		Low and High ra	inge		
	-	-	bandwidth classes,				
		are mapped ont					
		ng to Table 6.1-2					
			ified in subclause	Hignest aggrega	ited BW of the CA co	ontiguration	
			he CA Configuration				
across bandwidth combination sets supported by the UE. Test SCS as specified in Table 5.3.5-1.				Highest			
Test Parameters							
Test				DL RB		UL RB allocation	
ID	CC	ChBw(MHz)	Test frequency	allocation	UL Modulation	(Note 1)	
	PCC				DFT-s-OFDM		
	PCC				QPSK	Outer_Full	
	SCC1				DFT-s-OFDM	Outer Full	
	5001				QPSK	Outci_i uii	
1	SCC2	Default	Default	N/A	DFT-s-OFDM	Outer Full	
		-			QPSK		
	SCC3				DFT-s-OFDM	Outer_Full	
		-			QPSK DFT-s-OFDM	_	
	SCC4				OPSK	Outer_Full	
NOTE	1: The spec	ific configuration	of each DP allocation	is defined in Table			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.							

6.3A.4.2.4.5 Test requirement

Same as in clause 6.3A.4.2.1.5 with the following exceptions:

- Instead of Table 6.3A.4.2.1.5-1 → use Table 6.3A.4.2.4.5-1.
- Instead of Table 6.3A.4.2.1.5-2 → use Table 6.3A.4.2.4.5-2.
- Instead of Table 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.4.5-3.
- Instead of Table 6.3A.4.2.1.5-4→ use Table 6.3A.4.2.4.5-4.
- Instead of Table 6.3A.4.2.1.5-5 → use Table 6.3A.4.2.4.5-5.

Table 6.3A.4.2.4.5-1: Test Requirements of Absolute power tolerance (Test point 1)

		SCS	Channel bandwidth / expected output power (dBm)				
			50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured		60kHz	8.1	7.1	8.1	N/A	
power		120kHz	8.1	7.1	8.1	7.1	
P	Power tolerance ± (14+TT) dB						
Note 1:	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.						
Note 2:	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.4.5-4.						

Table 6.3A.4.2.4.5-2: Test Requirements of Absolute power tolerance (Test point 2)

		SCS	Channel bandwidth / expected output power (dBm)				
			50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured		60kHz	12.1	11.1	12.1	N/A	
power		120kHz	12.1	11.1	12.1	11.1	
Power tolerance ± (12+TT) dB							
Note 1:	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.						
Note 2:	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.4.5-4.						

Table 6.3A.4.2.4.5-3: Test Requirements of Absolute power tolerance (Test point 3)

	SCS	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured	60kHz	22.1	[22.1]	22.1	N/A	
power	120kHz	22.1	[22.1]	22.1	21.1	
Power tolerance			± (12+	TT) dB		
defined in	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.					
Note 2: TT for eac 4.	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.4.5-					

Table 6.3A.4.2.4.5-4: Test Tolerance (Test point 1)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

Table 6.3A.4.2.4.5-5: Test Tolerance (Test point 2 and Test point 3)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

6.3A.4.2.5 Absolute power tolerance for CA (6UL CA)

6.3A.4.2.5.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3A.4.2.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 6UL CA and 6DL CA.

6.3A.4.2.5.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.2.0.

6.3A.4.2.5.4 Test description

6.3A.4.2.5.4.1 Initial condition

Same as in clause 6.3A.4.2.1.4.1 with the following exceptions:

- Instead of Table 6.3A.4.2.1.4.1-1 → use Table 6.3A.4.2.5.4-1.
- Instead of Table 6.3A.4.2.1.5-1 through 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.5.5-1 and 6.3A.4.2.5.5-3.

Table 6.3A.4.2.5.4-1: Test Configuration Table

Default Conditions								
	Test Environment as specified in TS 38.508-1 [10] subclause 4.1				Normal			
Test Frequencies as specified in TS 38.508-1 [10] subclause [4.3.1.2.3] for different CA bandwidth classes, and PCC and SCCs are mapped onto physical frequencies according to Table 6.1-2.			Low and High range					
Test CC combination setting as specified in subclause 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2 for the CA Configuration across bandwidth combination sets supported by the UE.			Highest aggrega	ated BW of the CA co	onfiguration			
Test So	CS as specifie	ed in Table 5.3.5	·1. Test Par	Highest				
Test ID	СС	ChBw(MHz)	Test frequency	DL RB allocation	UL Modulation	UL RB allocation (Note 1)		
	PCC		Default	N/A	DFT-s-OFDM QPSK	Outer_Full		
	SCC1				DFT-s-OFDM QPSK	Outer_Full		
1	SCC2	Default			DFT-s-OFDM QPSK	Outer_Full		
_	SCC3	Belaun	Deladit	IW/A	DFT-s-OFDM QPSK	Outer_Full		
,	SCC4				DFT-s-OFDM QPSK	Outer_Full		
	SCC5				DFT-s-OFDM QPSK	Outer_Full		
NOTE	1: The spec	ific configuration	of each RB allocation	is defined in Table	e 6.1-1.			

6.3A.4.2.5.5 Test requirement

Same as in clause 6.3A.4.2.1.5 with the following exceptions:

- Instead of Table 6.3A.4.2.1.5-1 → use Table 6.3A.4.2.5.5-1.
- Instead of Table 6.3A.4.2.1.5-2→ use Table 6.3A.4.2.5.5-2.
- Instead of Table 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.5.5-3.
- Instead of Table 6.3A.4.2.1.5-4→ use Table 6.3A.4.2.5.5-4.
- Instead of Table 6.3A.4.2.1.5-5 → use Table 6.3A.4.2.5.5-5.

Table 6.3A.4.2.5.5-1: Test Requirements of Absolute power tolerance (Test point 1)

	SCS	Channel bandwidth / expected output power (dBm)			
		50 MHz	100 MHz	200 MHz	400 MHz
Expected Measured	60kHz	8.1	7.1	8.1	N/A
power	120kHz	8.1	7.1	8.1	7.1
Power toleran	Power tolerance ± (14+TT) dB				
Note 1: The lower p	ower limit s	hall not exceed	d the minimum of	output power r	equirements
defined in s	sub-clause 6	.3A.1, and the	higher power lii	mit shall not ex	ceed the Max
EIRP define	EIRP defined in sub-clause 6.2A.1.				
Note 2: TT for each	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.5.5-				
4.					

Table 6.3A.4.2.5.5-2: Test Requirements of Absolute power tolerance (Test point 2)

	SCS	Channel bandwidth / expected output power (dBm)			
		50 MHz	100 MHz	200 MHz	400 MHz
Expected Measured	60kHz	12.1	11.1	12.1	N/A
power	120kHz	12.1	11.1	12.1	11.1
Power tolerance		± (12+TT) dB			

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.

Note 2: TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.5.5-4.

Table 6.3A.4.2.5.5-3: Test Requirements of Absolute power tolerance (Test point 3)

		SCS	Channel ba	Channel bandwidth / expected output power (dBm)			
			50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured		60kHz	22.1	[22.1]	22.1	N/A	
po	power 120kH		22.1	[22.1]	22.1	21.1	
F	Power toleran	ce	± (12+TT) dB				
Note 1:	The lower p	ower limit s	hall not exceed	the minimum of	output power re	equirements	
defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max							
EIRP defined in sub-clause 6.2A.1.							
Note 2:	ote 2: TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.5.5-						

Table 6.3A.4.2.5.5-4: Test Tolerance (Test point 1 and Test point 2)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

Table 6.3A.4.2.5.5-5: Test Tolerance (Test point 2 and Test point 3)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

6.3A.4.2.6 Absolute power tolerance for CA (7UL CA)

6.3A.4.2.6.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3A.4.2.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 7UL CA and 7DL CA.

6.3A.4.2.6.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.2.0.

6.3A.4.2.6.4 Test description

6.3A.4.2.6.4.1 Initial condition

Same as in clause 6.3A.4.2.1.4.1 with the following exceptions:

- Instead of Table 6.3A.4.2.1.4.1-1 → use Table 6.3A.4.2.6.4-1.
- Instead of Table 6.3A.4.2.1.5-1 through 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.6.5-1 and 6.3A.4.2.6.5-3.

Table 6.3A.4.2.6.4-1: Test Configuration Table

			Default Co				
		s specified in TS	38.508-1 [10]	Normal			
	use 4.1						
		specified in TS		Low and High ra	inge		
			bandwidth classes,				
		are mapped on					
		ng to Table 6.1-2					
			rified in subclause	Highest aggrega	ated BW of the CA co	onfiguration	
			the CA Configuration				
			supported by the UE.	11:			
iest so	S as specific	ed in Table 5.3.5	-⊥. Test Par	Highest			
Test			iest Par	DL RB		UL RB allocation	
ID	cc	ChBw(MHz)	Test frequency	allocation	UL Modulation	(Note 1)	
	500			u	DFT-s-OFDM	,	
	PCC				QPSK	Outer_Full	
	SCC1				DFT-s-OFDM	Outor Full	
	3001				QPSK	Outer_Full	
	SCC2				DFT-s-OFDM	Outer Full	
	3002				QPSK	Outer_r un	
1	SCC3	Default	Default	N/A	DFT-s-OFDM	Outer Full	
_		Belauit	Delaali	14// (QPSK	Outer_r un	
	SCC4				DFT-s-OFDM	Outer Full	
					QPSK		
	SCC5				DFT-s-OFDM	Outer Full	
					QPSK	_	
	SCC6				DFT-s-OFDM OPSK	Outer_Full	
NOTE	 The spec 	ific configuration	of each RB allocation	is defined in Table	e 6.1-1.		

6.3A.4.2.6.5 Test requirement

Same as in clause 6.3A.4.2.1.5 with the following exceptions:

- Instead of Table 6.3A.4.2.1.5-1 → use Table 6.3A.4.2.6.5-1.
- Instead of Table 6.3A.4.2.1.5-2 → use Table 6.3A.4.2.6.5-2.
- Instead of Table 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.6.5-3.
- Instead of Table 6.3A.4.2.1.5-4→ use Table 6.3A.4.2.6.5-4.

- Instead of Table 6.3A.4.2.1.5-5 → use Table 6.3A.4.2.6.5-5.Table 6.3A.4.2.6.5-1: Test Requirements of Absolute power tolerance (Test point 1)

		SCS	Channel bandwidth / expected output power (dBm)			
			50 MHz	100 MHz	200 MHz	400 MHz
Expected Measured		60kHz	7.1	8.1	7.1	N/A
power		120kHz	7.1	8.1	7.1	8.1
P	ower tolerance ± (14+TT) dB					
Note 1:	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.					
Note 2:	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.6.5-4.					

Table 6.3A.4.2.6.5-2: Test Requirements of Absolute power tolerance (Test point 2)

		SCS	Channel ba	Channel bandwidth / expected output power (dBm)				
			50 MHz	100 MHz	200 MHz	400 MHz		
Expected Measured		60kHz	12.1	11.1	12.1	N/A		
power		120kHz	12.1	11.1	12.1	11.1		
Р	Power tolerance ± (12+TT) dB							
Note 1:	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.							
Note 2:	TT for each frequency and channel bandwidth is specified in Table 6.3A.4.2.6.5-4.							

Table 6.3A.4.2.6.5-3: Test Requirements of Absolute power tolerance (Test point 3)

	SCS	Channel bandwidth / expected output power (d			oower (dBm)
		50 MHz	100 MHz	200 MHz	400 MHz
Expected Measure	d 60kHz	22.1	[22.1]	22.1	N/A
power	120kHz	22.1	[22.1]	22.1	21.1
Power tole	tolerance ± (12+TT) dB				
defined	The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3A.1, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2A.1.				
Note 2: TT for e 4.	ach frequency a	and channel ba	andwidth is spec	cified in Table (6.3A.4.2.6.5-

Table 6.3A.4.2.6.5-4: Test Tolerance (Test point 1)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

Table 6.3A.4.2.6.5-5: Test Tolerance (Test point 2 and Test point 3)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

6.3A.4.2.7 Absolute power tolerance for CA (8UL CA)

6.3A.4.2.7.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3A.4.2.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 8UL CA.

6.3A.4.2.7.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.2.0.

6.3A.4.2.7.4 Test description

6.3A.4.2.7.4.1 Initial condition

Same as in clause 6.3A.4.2.1.4.1 with the following exceptions:

- Instead of Table 6.3A.4.2.1.4.1-1 → use Table 6.3A.4.2.7.4-1.
- Instead of Table 6.3A.4.2.1.5-1 through 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.7.5-1 and 6.3A.4.2.7.5-3.

Table 6.3A.4.2.7.4-1: Test Configuration Table

Default Conditions						
		s specified in TS	38.508-1 [10]	Normal		
	subclause 4.1 Test Frequencies as specified in TS 38.508-1 [10]					
				Low and High ra	ınge	
			bandwidth classes,			
		are mapped ont				
		ng to Table 6.1-2		Llimboot onerone	stad DW of the CA o	anfin wation
			rified in subclause	Highest aggrega	ated BW of the CA c	onliguration
			the CA Configuration			
		ed in Table 5.3.5	supported by the UE.	Highest		
1631.30	oo as specili	eu iii iabie 5.3.5	Test Par			
Test			100010	DL RB		UL RB allocation
ID	cc	ChBw(MHz)	Test frequency	allocation	UL Modulation	(Note 1)
	DOG				DFT-s-OFDM	, ,
	PCC				QPSK	Outer_Full
	SCC1				DFT-s-OFDM	Outer Full
	3001				QPSK	Outel_Full
	SCC2				DFT-s-OFDM	Outer Full
	3002]			QPSK	Outel_Full
	SCC3				DFT-s-OFDM	Outer Full
1		Default	Default	N/A	QPSK	Outer_r un
_	SCC4	Belaut	Belaalt	14// (DFT-s-OFDM	Outer Full
	0004				QPSK	Outer_r un
	SCC5				DFT-s-OFDM	Outer Full
		1			QPSK	
	SCC6				DFT-s-OFDM	Outer Full
		-			QPSK	
	SCC7				DFT-s-OFDM	Outer Full
	<u> </u>				QPSK	_
NOTE	1: The spec	ific configuration	of each RB allocation	is defined in Table	e 6.1 -1 .	

6.3A.4.2.7.5 Test requirement

Same as in clause 6.3A.4.2.1.5 with the following exceptions:

- Instead of Table 6.3A.4.2.1.5-1 → use Table 6.3A.4.2.7.5-1.
- Instead of Table 6.3A.4.2.1.5-2 → use Table 6.3A.4.2.7.5-2.

- Instead of Table 6.3A.4.2.1.5-3 → use Table 6.3A.4.2.7.5-3.
- Instead of Table 6.3A.4.2.1.5-4→ use Table 6.3A.4.2.7.5-4.
- Instead of Table 6.3A.4.2.1.5-5 → use Table 6.3A.4.2.7.5-5.

Table 6.3A.4.2.7.5-1: Test Requirements of Absolute power tolerance (Test point 1)

	SCS	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured	60kHz	8.1	7.1	8.1	N/A	
power	120kHz	8.1 7.1 8.1 7.1				
Power tolerar	Power tolerance		± (14+TT) dB			
Note 1: The lower p	ower limit s	hall not exceed	d the minimum of	output power re	equirements	
defined in s	sub-clause 6	b-clause 6.3A.1, and the higher power limit shall not exceed the Max				
EIRP define	ed in sub-cla	-clause 6.2A.1.				
Note 2: TT for each	frequency a	ency and channel bandwidth is specified in Table 6.3A.4.2.7.5-				
4.						

Table 6.3A.4.2.7.5-2: Test Requirements of Absolute power tolerance (Test point 2)

	SCS	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured	60kHz	12.1	11.1	12.1	N/A	
power	120kHz	12.1	11.1	12.1	11.1	
Power tolerar	Power tolerance		± (12+TT) dB			
defined in	sub-clause 6	t shall not exceed the minimum output power requirements e 6.3A.1, and the higher power limit shall not exceed the Max clause 6.2A.1.				
Note 2: TT for each 4.	ch frequency and channel bandwidth is specified in Table 6.3A.4.2.7.5-					

Table 6.3A.4.2.7.5-3: Test Requirements of Absolute power tolerance (Test point 3)

	SCS	Channel bandwidth / expected output power (dBm)				
		50 MHz	100 MHz	200 MHz	400 MHz	
Expected Measured	60kHz	22.1	[22.1]	22.1	N/A	
power	120kHz	22.1	[22.1]	22.1	21.1	
Power toleran	Power tolerance		± (12+TT) dB			
Note 1: The lower p	ower limit s	hall not exceed the minimum output power requirements				
defined in s	ub-clause 6	6.3A.1, and the higher power limit shall not exceed the Max				
EIRP define	ed in sub-cla	ause 6.2A.1.				
Note 2: TT for each	frequency a	and channel bandwidth is specified in Table 6.3A.4.2.7.5-				
4.						

Table 6.3A.4.2.7.5-4: Test Tolerance (Test point 1)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

Table 6.3A.4.2.7.5-5: Test Tolerance (Test point 2 and Test point 3)

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[FFS] dB	[FFS] dB
DUT ≤ 30 cm	[FFS] dB	[FFS] dB

6.3D Output power dynamics for UL MIMO

6.3D.1 Minimum output power for UL MIMO

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerances are FFS.
- Measurement period is pending RAN4.

6.3D.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3D.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward supporting UL MIMO.

6.3D.1.3 Minimum conformance requirements

6.3D.1.3.1 Minimum output power for UL MIMO for power class 1

For UE supporting UL MIMO, the minimum controlled output power is defined as the EIRP, i.e. the sum of the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the UE power is set to a minimum value. The minimum output power shall not exceed the values specified in Table 6.3.1.3.1-1. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

6.3D.1.3.2 Minimum output power for UL MIMO for power class 2, 3 and 4

For UE supporting UL MIMO, the minimum controlled output power is defined as the EIRP, i.e. the sum of the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the UE power is set to a minimum value. The minimum output power shall not exceed the values specified in Table 6.3.1.3.2-1. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3D.1.

6.3D.1.4 Test description

6.3D.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 6.3D.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.1.4.1-1: Test Configuration Table

Initial Conditions				
Test Environment as specified in TS 38.508-1 [10]	Normal			
subclause 4.1				
Test Frequencies as specified in TS 38.508-1 [10]	Low range, Mid range, High range			
subclause 4.3.1				
Test Channel Bandwidths as specified in TS 38.508-	1 Lowest, Mid, Highest			
[10] subclause 4.3.1				
Test SCS as specified in Table 5.3.5-1.	Highest			
·	est Parameters			
Downlink Configuration	Uplink Configuration			
Test ID N/A for minimum output power test case	e Modulation RB allocation (NOTE 1)			
1	CP-OFDM QPSK Outer_Full			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] clause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3D.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3D.1.4.3.

6.3D.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1.
- 4. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 5. Measure UE EIRP in the Tx beam peak direction in the measurement bandwidth specified in Table 6.3D.1.5-1 and Table 6.3D.1.5-2 for the specific channel bandwidth under test. EIRP test procedure is defined in Annex K. The measuring duration is [one active uplink subframe]. EIRP is calculated considering both polarizations, theta and phi. For TDD slots with transient periods are not under test.
- 6. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.3D.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.

6.3D.1.5 Test requirement

The minimum EIRP, derived in step 5 shall not exceed the values specified in Table 6.3D.1.5-1 and Table 6.3D.1.5-2.

Table 6.3D.1.5-1: Minimum output power for power class 1

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	4+TT	47.52
	100	4+TT	95.04
	200	4+TT	190.08
	400	4+TT	380.16

Table 6.3D.1.5-2: Minimum output power for power class 2, 3, and 4

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	-13+TT	47.52
	100	-13+TT	95.04
	200	-13+TT	190.08
	400	-13+TT	380.16

6.3D.2Transmit OFF power for UL MIMO

FFS

6.3D.3Transmit ON/OFF time mask for UL MIMO

6.3D.3.1 General ON/OFF time mask for UL MIMO

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerances are FFS.
- Test requirement of ON power is FFS.
- Testability of OFF power needs further study.
- The method of setting UE transmitted power is FFS.
- TP analysis is FFS
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.3D.3.1.1 Test purpose

To verify that the general ON/OFF time mask meets the requirements given in 6.3D.3.1.5. Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3D.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward supporting UL MIMO.

6.3D.3.1.3 Minimum conformance requirements

For UE supporting UL MIMO, the ON/OFF time mask requirements in subclause 6.3.3 apply. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3.3-3.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.3D.3.

6.3D.3.1.4 Test description

6.3D.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.3.1.4.1-1: Test Configuration Table

	Initial Conditions				
Test Environn subclause 4.1	nent as specified in TS 38.508-1 [10] L	Normal			
Test Frequence subclause 4.3	cies as specified in TS 38.508-1 [10] 3.1	Low range, Mid range, High range			
Test Channel Bandwidths as specified in TS 38.508-1 [10] subclause 4.3.1		Lowest, Mid, Highest			
Test SCS as	specified in Table 5.3.5-1.	Highest			
	Test	Parameters			
	Downlink Configuration	Uplink Configuration			
Test ID	N/A for maximum output power test case	Modulation	RB allocation (NOTE 1)		
1		CP-OFDM QPSK Outer_Full			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement Channels are set according to Table 6.3D.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3D.3.1.4.3.

6.3D.3.1.4.2 Test procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.3.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 4) for the UE Tx beam selection to complete.
- 3. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 4. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3D.3.1.5-1. EIRP test procedure is defined in Annex K. The period of the measurement shall be the slot prior to

the PUSCH transmission, excluding a transient period of 5 µs in the end of the slot and any DL periods. EIRP is calculated considering both polarizations, theta and phi.

- 5. For UE transmission ON power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3D.3.1.5-2. EIRP test procedure is defined in Annex K. The period of the measurement shall be one slot with PUSCH transmission. EIRP is calculated considering both polarizations, theta and phi. For TDD slots with transient periods are not under test.
- 6. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3D.3.1.5-1. EIRP test procedure is defined in Annex K. The period of the measurement shall be the slot following the PUSCH transmission, excluding a transient period of 5 µs at the beginning of the slot and any DL periods. EIRP is calculated considering both polarizations, theta and phi.
- 7. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

6.3D.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

Table 6.3D.3.1.4.3-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[5], Table 4.6.3-119			
Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon ::= SEQUENCE {			
p0-NominalWithGrant	-106		
}			

6.3D.3.1.5 Test requirement

Table 6.3D.3.1.5-1: Test requirement of OFF power of General ON/OFF time mask for UL MIMO

	Channel bandwidth / minimum output power / measurement bandwidth						
	50 MHz	50 MHz 100 MHz 200 MHz 400 MHz					
Transmit OFF power		≤ -30+TT dBm					
Transmission OFF Measurement bandwidth	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz			

Table 6.3D.3.1.5-2: Test requirement of ON power of General ON/OFF time mask for UL MIMO

	SCS	Channel bandwidth / minimum output power / measurement bandwidth					
	[kHz]	50 MHz	100 MHz	200 MHz	400 MHz		
Expected Transmission ON	60	FFS	FFS	FFS	FFS		
Measured power for CP-OFDM	120	FFS	FFS	FFS	FFS		

Table 6.3D.3.1.5-3: Test Tolerance for OFF power

FFS

Table 6.3D.3.1.5-4: Test Tolerance for ON power

FFS

6.3D.3.2 to 6.3D.3.3

6.3D.3.4 SRS time mask for UL MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- OTA test procedure for UL-MIMO is still under investigation
- Measurement Uncertainty and Test Tolerances are FFS.
- Testability of OFF power needs further study.

6.3D.3.4.1 Test purpose

To verify that the SRS time mask for UL MIMO meets the requirements given in 6.3D.3.4.5.

The transmit ON/OFF time mask defines the transient period(s) allowed

- between transmit OFF power and transmit ON power symbols (transmit ON/OFF)

Unless otherwise stated the minimum requirements in clause 6 apply also in transient periods.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3D.3.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.3D.3.4.3 Minimum conformance requirements

The transmit ON/OFF time mask is defined as a directional requirement. The requirement is verified in beam locked mode at beam peak direction. The maximum allowed EIRP OFF power level is -30dBm at beam peak direction. The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

In the case of a single SRS transmission, the ON power is defined as the mean power over the symbol duration excluding any transient period; Figure 6.3D.3.4.3-1.

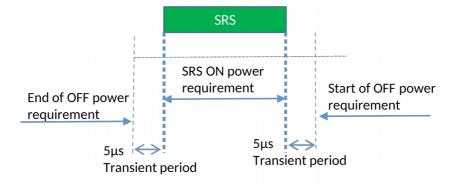


Figure 6.3D.3.4.3-1: Single SRS time mask for NR UL transmission

In the case of multiple consecutive SRS transmission, the ON power is defined as the mean power for each symbol duration excluding any transient period. See Figure 6.3D.3.4.3-2.

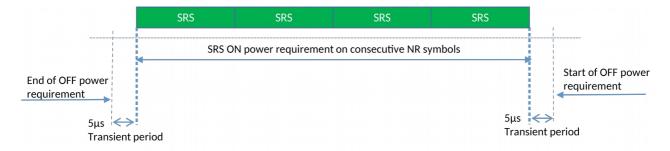


Figure 6.3D.3.4.3-2: Consecutive SRS time mask for the case when no power change is required

When power change between consecutive SRS transmissions is required, then Figure 6.3D.3.4.3-3 and 6.3D.3.4.3-4 apply.

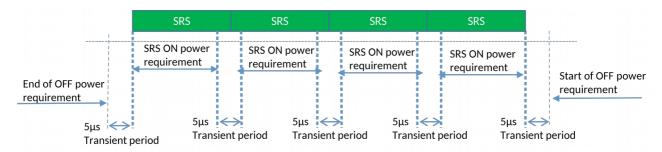


Figure 6.3D.3.4.3-3: Consecutive SRS time mask for the case when power change is required and when 60kHz SCS is used in FR2

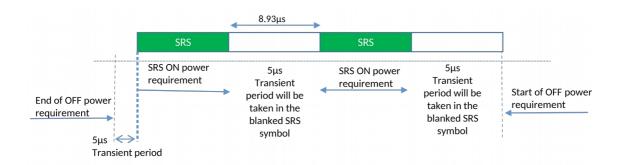


Figure 6.3D.3.4.3-4: Consecutive SRS time mask for the case when power change is required and when 120kHz SCS is used in FR2

The requirements shall be met with the UL MIMO configuration specified in Table 6.3D.3.4.3-1.

Table 6.3D.3.4.3-1: UL MIMO configuration

Transmission scheme	DCI format	Codebook Index
Codebook based uplink	DCI format 0_1	Codebook index 0

6.3D.3.4.4 Test description

6.3D.3.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.2-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 6.3D.3.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMCS) are specified in Annexes A.2 and A.3

Table 6.3D.3.4.4.1-1: Test Configuration Table

	Initial Conditions						
Test En	Test Environment as specified in TS 38.508-1 [10]				Normal,		
subclau	ıse [4.1]						
Test Fre	equencies a	as specified	d in TS 38.508-1 [10)]	Low range, Mid R	ange, High range	
subclau	ıse [4.3.1]						
Test Ch	nannel Band	dwidths as	specified in TS 38.5	508-	Lowest, Mid, High	est	
1 [10] s	ubclause [4	1.3.1]					
Test SC	CS as speci	fied in Tabl	le 5.3.5-1		Lowest, Highest		
	Test Parameters						
Test	ChBw	SCS	Downlink		Uplink Configuration		
ID			Configuration				
			NI/A for		Madulatian	RB allocation (NOTE 1)	
			N/A for		Modulation	RB allocation (NOTE 1)	
1	50	60kHz	maximum output	DF	T-s-OFDM QPSK	Outer_Full	
1	50	60kHz 120kHz		DF.			
1 2	50 100		maximum output	DF			
		120kHz	maximum output	DF			
		120kHz 60kHz	maximum output	DF			
2	100	120kHz 60kHz 120kHz	maximum output	DF			
2	100	120kHz 60kHz 120kHz 60kHz	maximum output	DF			

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure [FFS]. for TE diagram and section [FFS] for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C3.0, and uplink signals according to Annex G.0, G.1 and G3.0.
- 4. The UL Reference Measurement Channels are set according to Table 6.3D.3.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.3D.3.4.4.3.

6.3D.3.4.4.2 Test procedure

- 1. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 4) for the UE Tx beam selection to complete.
- 2. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 3. The SS measure the UE transmission OFF power during the 10 OFDM symbols for 60k SCS and 10 OFDM symbols for 120k SCS, preceding the SRS symbol excluding a transient period of $5~\mu s$.

- 4. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3D.3.4.4.1-1. EIRP test procedure is defined in Annex K.1.3. The period of the measurement shall be during the 10 OFDM symbols for 60k SCS and 10 OFDM symbols for 120k SCS, preceding the SRS symbol excluding a transient period of 5 μs. EIRP is calculated considering polarizations, theta and phi.
- 5. For UE transmission ON power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3D.3.4.4.1-1. EIRP test procedure is defined in Annex K.1.3. The period of the measurement shall be the SRS transmission during 4 OFDM symbols for 60k SCS and 4 OFDM symbols for 120k SCS. EIRP is calculated considering polarizations, theta and phi.
- 6. For UE transmission OFF power, measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.3D.3.4.4.1-1. EIRP test procedure is defined in Annex K.1.3. The period of the measurement shall be the slot following the SRS under test, excluding a transient period of 5 μs. EIRP is calculated considering polarizations, theta and phi.

6.3D.3.4.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with following exceptions.

Table 6.3D.3.4.4.3-1: BWP-UplinkDedicated

Derivation Path: TS 38.508-1 [10], Table 4.6.3-15 srs-Config with condition DCI 0 1

Table 6.3D.3.4.4.3-2: SRS-Config: SRS time mask for UL MIMO measurement

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comment	Condition
SRS-Config ::= SEQUENCE {			
srs-ResourceSetToReleaseList	Not present		
srs-ResourceSetToAddModList SEQUENCE	[1 entry]		
(SIZE(0maxNrofSRS-ResourceSets)) OF			
SEQUENCE {			
srs-ResourceSetId	0		
srs-ResourceldList SEQUENCE	1 entry		
(SIZE(1maxNrofSRS-ResourcesPerSet)) OF {			
SRS-ResourceId[1]	0		
}			
resourceType CHOICE {			
aperiodic SEQUENCE {			
aperiodicSRS-ResourceTrigger	1		
csi-RS	Not present		
slotOffset	4		FR2
1	-		111/2
1			
usage	codebook		
alpha	alpha1		
p0	-116		FR2 50MHz
μυ			FR2_50MHZ FR2_100 MHz
	-120 -122		
			FR2_200 MHz
11 5 (50 0110105 (-126		FR2_400 MHz
pathlossReferenceRS CHOICE {			
ssb-Index	SSB-Index		
}			
srs-PowerControlAdjustmentStates	Not present		
}			
srs-ResourceToReleaseList	Not present		
srs-ResourceToAddModList SEQUENCE	1 entry		
(SIZE(1maxNrofSRS-Resources)) OF SEQUENCE {			
srs-Resourceld	0		
nrofSRS-Ports	ports2		2TX_UL_MIM
			0
ptrs-PortIndex	Not present		
transmissionComb CHOICE {			
n2 SEQUENCE {			
combOffset-n2	0		
cyclicShift-n2	0		
}			
}			
resourceMapping SEQUENCE {			
startPosition	0		
nrofSymbols	n4		SCS 60 kHz
			SCS 120 kHz
repetitionFactor	n1		
}	İ		
freqDomainPosition	0		
freqDomainShift	0		
freqHopping SEQUENCE {			
c-SRS	17 (BW 50 MHz)		SCS 60 kHz
	30 (BW 100 MHz)		000001112
	59 (BW 200 MHz)		
	9 (BW 50 MHz)		SCS 120 kHz
	17 (BW 100 MHz)		300 120 KHZ
	30 (BW 200 MHz)		
	59 (BW 400 MHz)		
b-SRS	0		
b-hop	0		
}			
	1	1	1

groupOrSequenceHopping	groupHopping	
resourceType CHOICE {		
periodic SEQUENCE {		
periodicityAndOffset-p CHOICE {		
s120	16	SCS 60 kHz
s140	32	SCS 120 kHz
}		
}		
sequenceld	0	
spatialRelationInfo SEQUENCE {	SRS-SpatialRelationInfo	
servingCellId	Not present	
referenceSignal CHOICE {		
ssb-Index	SSB-Index	
}		
}		
}		
tpc-Accumulation	disabled	
}		

Table 6.3D.3.4.4.3-3: ServingCellConfigCommon

Derivation Path: 38.508-1[5], Table 4.6.3-168			
Information Element	Value/remark	Comment	Condition
ServingCellConfigCommon ::= SEQUENCE {			
ss-PBCH-BlockPower	1		SCS_60kHz
	4		SCS_120kHz
}			

Condition	Explanation
SCS_60kHz	SCS=60kHz for SS/PBCH block
SCS_120kHz	SCS=120kHz for SS/PBCH block

6.3D.3.4.5 Test requirement

The ON/OFF power of SRS time mask for UL MIMO shall not exceed the values specified in Table 6.3D.3.4.5-1 to Table 6.3D.3.4.5-4.

Table 6.3D.3.4.5-1: Test Tolerance of OFF power of SRS time mask for UL MIMO ON/OFF time mask

	Channel bandwidth/Opera Output Power [dBm] / measurement bandwidth			
	50	100	200	400
	MHz	MHz	MHz	MHz
Transmit OFF power		≤ -30+ ⁻	TT dBm	
Transmission OFF measurement bandwidth	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz

Table 6.3D.3.4.5-2: Test requirement of ON power of SRS for UL MIMO ON/OFF time mask

	SCS	Channel bandwidth / measurement bandwidth			Channel bandwidth / measurement band		
	[kHz]	50 MHz	100 MHz	200 MHz	400 MHz		
Expected Transmission ON	60	8.1 dBm	7.1 dBm	8.1 dBm	N/A		
power for DFT-s- OFDM	120	8.1 dBm	7.1 dBm	8.1 dBm	7.1 dBm		
ON		± (14+TT) dB					
Power toleran	ce						

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3, and the higher power limit shall not exceed the Max EIRP defined in sub-clause 6.2.1.3.

Note 2: TT for each frequency and channel bandwidth is specified in Table 6.3D.3.4.5-3.

Table 6.3D.3.4.5-3: Test Tolerance for SRS time mask for UL-MIMO OFF power

FFS

Table 6.3D.3.4.5-4: Test Tolerance for SRS time mask for UL-MIMO ON power

Test Metric	FR2a	FR2b
DUT ≤ 15 cm	[TBD] dB	[TBD] dB
DUT ≤ 30 cm	[TBD] dB	[TBD] dB

6.4 Transmit signal quality

6.4.1 Frequency error

Editor's note: The following aspects of the clause are for future consideration:

Testing of extreme conditions for FR2 is FFS.

6.4.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.1.3 Minimum conformance requirements

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of 1 msec compared to the carrier frequency received from the NR gNB.

The frequency error is defined as a directional requirement. The requirement is verified in beam locked mode with the test metric of Frequency (Link=TX beam peak direction, Meas=Link angle).

The normative reference for this requirement is TS 38.101-2 [3] clause 6.4.1

6.4.1.4 Test description

6.4.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.1.4.1-1: Test Configuration Table

	Initial Conditions					
Test Environment as specified in TS 38.508-1 [10] subclause 4.1		Normal, [TL/NC, TH/NC]				
Test Frequencies as specified in TS 38.508-1 [10] subclause 4.3.1		Mid range				
Test Channel Bandwidths as specified in TS 38.508-1 [10] subclause 4.3.1		Highest				
Test SCS a	as specified in Table 5	5.3.5-1.	Lowest			
Test			Parameters			
	Downlink	Configuration	Upl	ink Configuration		
Test ID	Modulation	RB allocation	Modulation	RB allocation		
1	CP-OFDM QPSK	Full RB (NOTE 1)	DFT-s-OFDM QPSK	REFSENS (NOTE 2)		
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2						
NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for each				ration and start RB location for each		
SCS, channel BW and NR band.						

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and section A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The DL and UL Reference Measurement channels are set according to Table 6.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4.1.4.3

6.4.1.4.2 Test procedure

- $1. \ \ Retrieve the LO\ position\ from\ the\ parameter\ tx Direct Current Location\ in\ Uplink Tx Direct Current\ IE.$
- 2. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL RMC according to Table 6.4.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 3. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 4. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC Command for the UE to reach P_{UMAX} level.

- 5. Set the UE in the Inband Tx beam peak direction and apply the associated polarization for the DL, both found with a 3D EIRP scan as performed in Annex K.1.1. Connect the SS (System Simulator) with the DUT through the measurement antenna with polarization reference Pol_{Link} to form the TX beam towards the TX beam peak direction and respective polarization. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 6. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 7. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization of the UL. For TDD, only slots consisting of only UL symbols are under test.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with DFT-s-OFDM condition in Table 4.6.3-118 PUSCH-Config and with the exceptions in subclause 7.3.2.4.3 and Table 7.3.2.5-3.

6.4.1.5 Test requirement

The *n* frequency error Δf results for the θ -polarization or the *n* frequency error Δf results for the ϕ -polarization must fulfil the test requirement:

 $|\Delta f| \le (0.1 \text{ PPM} + 0.005 \text{ PPM}),$

where

$$n =$$
 0, for 60 kHz SCS 0, for 120 kHz SCS.

6.4.2 Transmit modulation quality

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage
- In-band emissions for the non-allocated RB

All the parameters defined in subclause 6.4.2 are defined using the measurement methodology specified in Annex E.

All the requirements in 6.4.2 are defined as directional requirement. The requirements are verified in beam locked mode on beam peak direction, with parameter *maxRank* (as defined in TS 38.331 [19]) set to 1. The requirements are applicable to UL transmission from each configurable antenna port (as defined in TS 38.331 [19]) of UE, enabled one at a time.

6.4.2.1 Error vector magnitude

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.

6.4.2.1.1 Test Purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM, the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clauses 6.4.2.4.3 and 6.4.2.5.3. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and the duration of PUCCH/PUSCH channel, or one hop, if frequency hopping is enabled for PUCCH and PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contain an allowable power transient as defined in subclause 6.3.3.3.

6.4.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.1.3 Minimum conformance requirements

The RMS average of the basic EVM measurements for the average EVM case, and for the reference signal EVM case, for the different modulation schemes shall not exceed the values specified in Table 6.4.2.1.3-1 for the parameters defined in Table 6.4.2.1.3-2 or Table 6.4.2.1.3-3 depending on UE power class. For EVM evaluation purposes, all 13 PRACH preamble formats and all 5 PUCCH formats are considered to have the same EVM requirement as QPSK modulated.

The measurement interval for the EVM determination is 10 subframes. The requirement is verified with the test metric of EVM (Link=TX beam peak direction, Meas=Link angle).

Average EVM level Parameter Unit Reference signal EVM level Pi/2 BPSK 30.0 % 30.0 **QPSK** % 17.5 17.5 16 QAM % 12.5 12.5 64 QAM % 8.0 8.0

Table 6.4.2.1.3-1: Minimum requirements for error vector magnitude

Table 6.4.2.1.3-2: Parameters for Error Vector Magnitude for power class 1

Parameter	Unit	Level
UE EIRP	dBm	≥ 4
UE EIRP for UL 16QAM	dBm	≥ 7
UE EIRP for UL 64QAM	dBm	≥ 11
Operating conditions		Normal conditions

Table 6.4.2.1.3-3: Parameters for Error Vector Magnitude for power class 2, 3, and 4

Parameter	Unit	Level
UE EIRP	dBm	≥ -13
UE EIRP for UL 16QAM	dBm	≥ -10
UE EIRP for UL 64QAM	dBm	≥ -6
Operating conditions		Normal conditions

The normative reference for this requirement is TS 38.101-2 [3] clause 6.4.2.1.

6.4.2.1.4 Test description

6.4.2.1.4.1 **Initial conditions**

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.1.4.1-1: Test Configuration Table for PUSCH

Initial Conditions			
·		1	
Test Environment as specified in TS 38.508-1 [10] subclause 4.1		Normal	
		Low range Mid range Lligh	rongo
subclause	encies as specified in TS 38.508-1 [10]	Low range, Mid range, High	range
	nel Bandwidths as specified in TS	Lowest, Highest	
	10] subclause 4.3.1	Lowest, Highest	
	as specified in Table 5.3.5-1	Lowest, Highest	
1631 363 6		Test Parameters	
Test ID	Downlink Configuration		k Configuration
	N/A	Modulation	RB allocation (NOTE 1)
1		DFT-s-OFDM PI/2 BPSK	Inner_Full
2		DFT-s-OFDM PI/2 BPSK	Outer_Full
3		DFT-s-OFDM QPSK	Inner_Full
4		DFT-s-OFDM QPSK	Outer_Full
5		DFT-s-OFDM 16 QAM	Inner_Full
6		DFT-s-OFDM 16 QAM	Outer_Full
7		DFT-s-OFDM 64 QAM	Inner_Full
8		DFT-s-OFDM 64 QAM	Outer_Full
9		CP-OFDM QPSK	Inner_Full
10		CP-OFDM QPSK	Outer_Full
11		CP-OFDM 16 QAM	Inner_Full
12		CP-OFDM 16 QAM	Outer_Full
13		CP-OFDM 64 QAM	Inner_Full
14		CP-OFDM 64 QAM	Outer_Full
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.			

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.

NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.

Initial Conditions					
Test Environment as specified in TS 38.508-1 [10]		Normal			
subclause	• ·				
Test Freq	uencies as specified i	n TS 38.508-1 [10]	See Table 6.4.2.1.4.1-1		
subclause	e 4.3.1				
Test Chai	nnel Bandwidths as sp	pecified in TS	See Table 6.4.2.1.4.1-1		
38.508-1	[10] subclause 4.3.1				
Test SCS	as specified in Table	5.3.5-1	See Table 6.4.2.1.4.1-1		
		7	est Parameters		
ID	Downlink Configuration		Uplink Configuration		
	Modulation	RB allocation	Waveform	PUCCH format	
1	CP-OFDM QPSK	Full RB (Note 1)	CP-OFDM	PUCCH format = Format 1	
				Length in OFDM symbols = 14	
2	CP-OFDM QPSK	Full RB (Note 1)	DFT-s-OFDM	PUCCH format = Format 1	
	Length in OFDM symbols = 14				
NOTE 1:	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2.				
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths				
	are specified in Table 5.3.5-1.				

Table 6.4.2.1.4.1-3: Test Configuration for PRACH

Initial Conditions			
Test Environment as specified in TS 38.508-1 [10]	Normal		
subclause 4.1			
Test Frequencies as specified in TS 38.508-1 [10]	See Table 6.4.2.1.4.1-1		
subclause 4.3.1			
Test Channel Bandwidths as specified in TS	See Table 6.4.2.1.4.1-1		
38.508-1 [10] subclause 4.3.1			
Test SCS as specified in Table 5.3.5-1	See Table 6.4.2.1.4.1-1		
PRACH preamble format			
FDD TDD			
PRACH Configuration Index	17	52	
RS EPRE setting for test point 1 (dBm/15kHz)	-71	-65	
RS EPRE setting for test point 2 (dBm/15kHz)	-86	-80	

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, in Figure A.3.3.1.1 for TE diagram and section A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4.2.1.4.3

6.4.2.1.4.2 Test procedure

Test procedure for PUSCH:

- $1.1\,Retrieve\ the\ LO\ position\ from\ the\ parameter\ tx Direct Current Location\ in\ Uplink Tx Direct Current\ IE.$
 - 1.2 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

- 1.3 Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at $[P_{UMAX}]$ level. Allow at least 200 ms starting from the first TPC command in this step for the UE to reach $[P_{UMAX}]$ level.
- 1.4 Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 2) for the UE Tx beam selection to complete.
- 1.5 SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 1.6 Measure the EVM_{θ} , EVM_{ϕ} , $EVM_{DMRS,\theta}$ and $EVM_{DMRS,\phi}$ using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarizations, respectively. For TDD, only slots consisting of only UL symbols are under test. Calculate $\overline{EVM}_{DMRS} = min \left(\overline{EVM}_{DMRS,\theta}, \overline{EVM}_{DMRS,\phi} \right)$ and $EVM = min \left(\overline{EVM}_{\theta}, \overline{EVM}_{\phi} \right)$.
- 1.7 SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 1.8 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4.2.1.4.2-1 and 6.4.2.1.4.2-2 according to the modulation and power class. P_W is the power window according to Table 6.4.2.1.4.2-3 for the carrier frequency f and the channel bandwidth BW.
- 1.9 SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 1.10 Measure the EVM_{θ} , EVM_{ϕ} , $\overline{EVM}_{DMRS,\theta}$ and $EVM_{DMRS,\phi}$ using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarizations, respectively. For TDD, only slots consisting of only UL symbols are under test. Calculate $\overline{EVM}_{DMRS} = min \left(\overline{EVM}_{DMRS,\theta}, \overline{EVM}_{DMRS,\phi} \right)$ and $EVM = min (EVM_{\theta}, EVM_{\phi})$.
- 1.11 SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.
- NOTE 2: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

Table 6.4.2.1.4.2-1: Parameters for Error Vector Magnitude for power class 1

Parameter	Unit	Level
UE Output Power	dBm	4
UE output power for UL 16QAM	dBm	7
UE output power for UL 64QAM	dBm	11

Table 6.4.2.1.4.2-2: Parameters for Error Vector Magnitude for power class 2, 3, and 4

Parameter	Unit	Level
UE Output Power	dBm	-13
UE output power for UL 16QAM	dBm	-10
UE output power for UL 64QAM	dBm	-6

Table 6.4.2.1.4.2-3: Power Window (dB) for EVM PUSCH and PUCCH

TBD

Test procedure for PUCCH:

- 2.1 Retrieve the LO position from the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE.
- 2.2 PUCCH is set according to Table 6.4.2.1.4.1-2.
- 2.3 SS transmits PDSCH via PDCCH DCI format 0_1 for C_RNTI to transmit the DL RMC according to Table 6.4.2.1.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH. There is no PUSCH transmission.
- 2.4 SS send appropriate TPC commands for PUCCH to the UE until the UE transmit PUCCH at [P_{UMAX} level]. Allow at least 200 ms starting from the first TPC command in this step for the UE to reach [P_{UMAX} level].
- 2.5 Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM SELECT WAIT TIME (NOTE 2) for the UE Tx beam selection to complete.
- 2.6 SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 2.7 Measure PUCCH EVM $_{\theta}$ and PUCCH EVM $_{\phi}$ using Global In-Channel Tx-Test (Annex E). Calculate PUCCH EVM = min(PUCCH EVM $_{\alpha}$, PUCCH EVM $_{\alpha}$).
- 2.8 SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 2.9 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4.2.1.4.2-1 and 6.4.2.1.4.2-2 according to the modulation and power class. P_W is the power window according to Table 6.4.2.1.4.2-3 for the carrier frequency f and the channel bandwidth BW.
- 2.10 SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 2.11 Measure PUCCH EVM $_{\theta}$ and PUCCH EVM $_{\phi}$ using Global In-Channel Tx-Test (Annex E). Calculate PUCCH EVM = min(PUCCH EVM $_{\theta}$, PUCCH EVM $_{\phi}$).
- 2.12 SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE 2: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

Test procedure for PRACH:

- 3.1 Retrieve the LO position from the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE.
- 3.2 Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1.

- 3.3 The SS shall set RS EPRE according to Table 6.4.2.1.4.1-3.
- 3.4 PRACH is set according to Table 6.4.2.1.4.1-3.
- 3.5 The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure.
- 3.6 The UE shall send the signalled preamble to the SS.
- 3.7 In response to the preamble, the SS shall transmit a random access response not corresponding to the transmitted random access preamble, or send no response.
- 3.8 The UE shall consider the random access response reception not successful then re-transmit the preamble with the calculated PRACH transmission power.
- 3.9 Repeat step 5 and 6 until the SS collect enough PRACH preambles ([2] preambles for format 0 and [10] preambles for format 4). Measure the EVM_{θ} and EVM_{ϕ} in PRACH channel using Global In-Channel Tx-Test (Annex E). Calculate $EVM = min(EVM_{\theta}, EVM_{\phi})$.

6.4.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4.2.1.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4.2.1.5-1.

The PUSCH \overline{EVM}_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4.2.1.5-1 when embedded with data symbols of the respective modulation scheme.

The PUCCH EVM derived in Annex E.5.9.2 shall not exceed the values for QPSK in Table 6.4.2.1.5-1.

The PRACH EVM derived in Annex E.6.9.2 shall not exceed the values for QPSK in Table 6.4.2.1.5-1.

Unit Average EVM Level Parameter **Reference Signal EVM** Level Pi/2 BPSK % 30+TT 30+TT **QPSK** % 17.5+TT 17.5+TT % 16 QAM 12.5+TT 12.5+TT % 64 QAM 8+TT 8+TT

Table 6.4.2.1.5-1: Test requirements for Error Vector Magnitude

6.4.2.2 Carrier leakage

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.

6.4.2.2.1 Test purpose

Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal. Carrier leakage interferes with the sub carriers at its position (if allocated), especially, when their amplitude is small.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

6.4.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.2.3 Minimum conformance requirements

Carrier leakage is an additive sinusoid waveform. The carrier leakage requirement is defined for each component carrier. The measurement interval is one slot in the time domain. The relative carrier leakage power is a power ratio of the additive sinusoid waveform to the power in the modulated waveform.

The requirement is verified with the test metric of Carrier Leakage (Link=TX beam peak direction, Meas=Link angle).

When carrier leakage is contained inside the spectrum confined within the configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2.3-1 for power class 1 UEs.

Table 6.4.2.2.3-1: Minimum requirements for relative carrier leakage power for power class 1

Parameters	Relative Limit (dBc)
EIRP > 17 dBm	-25
4 dBm ≤ EIRP ≤ 17 dBm	-20

When carrier leakage is contained inside the spectrum occupied by the configured UL CCs and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2.3-2 for power class 2.

Table 6.4.2.2.3-2: Minimum requirements for relative carrier leakage power for power class 2

Parameters	Relative Limit (dBc)
EIRP > 6 dBm	-25
-13 dBm ≤ EIRP ≤ 6 dBm	-20

When carrier leakage is contained inside the spectrum occupied by the configured UL CCs and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2.3-3 for power class 3 UEs.

Table 6.4.2.2.3-3: Minimum requirements for relative carrier leakage power for power class 3

Parameters	Relative Limit (dBc)
EIRP > 0 dBm	-25
-13 dBm ≤ EIRP ≤ 0 dBm	-20

When carrier leakage is contained inside the spectrum occupied by the configured UL CCs and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2.3-4 for power class 4.

Table 6.4.2.2.3-4: Minimum requirements for relative carrier leakage power for power class 4

Parameters	Relative Limit (dBc)
EIRP > 11 dBm	-25
-13 dBm ≤ EIRP ≤11 dBm	-20

The normative reference for this requirement is TS 38.101-2[3] clause 6.4.2.2.

6.4.2.2.4 Test description

6.4.2.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.2.4.1-1: Test Configuration

Initial Conditions			
Test Environment as specified in TS 38.508-1 [10]		Normal	
subclause 4			
Test Freque	encies as specified in TS 38.508-1 [10]	Low range, Mid range, High range	
subclause 4	4.3.1		
Test Chann	nel Bandwidths as specified in TS	Mid	
38.508-1 [1	.0] subclause 4.3.1		
Test SCS as specified in Table 5.3.5-1		Lowest	
Test Parameters			
Test ID	Downlink Configuration	Uplink Configuration	
	N/A	Modulation RB allocation (NOTE 1, 3)	
1	1 DFT-s-OFDM QPSK Inner_16RB_Left		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.			
NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths			

- are specified in Table 5.3.5-1.
- When the signalled DC carrier position is at Inner 16RB Left, use Inner 16RB Right for UL RB allocation.
- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, in Figure A.3.3.1.1 for TE diagram and section A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex [TBD], and uplink signals according to Annex [TBD].
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4.2.2.4.3.

6.4.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 3. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4.2.2.4.2-1 according to the power class. P_w is the power window according to Table 6.4.2.1.4.2-3 for the carrier frequency f and the channel bandwidth BW.
- 4. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.

- 5. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization. For TDD, only slots consisting of only UL symbols are under test.
- 6. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 7. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4.2.2.4.2-1 according to the power class. P_W is the power window according to Table 6.4.2.1.4.2-3 for the carrier frequency f and the channel bandwidth BW.
- 8 SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 9. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization. For TDD, only slots consisting of only UL symbols are under test.
- 10 SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

Table 6.4.2.2.4.2-1: UE EIRP P_{req} (dBm) for carrier leakage

Power Class	P _{req} (dBm) for step 3	P _{req} (dBm) for step 7
Power Class 1	17	4
Power Class 2	6	-13
Power Class 3	0	-13
Power Class 4	11	-13

Table 6.4.2.2.4.2-2: Power Window (dB) for carrier leakage

TBD

6.4.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4.2.2.5 Test requirement

For each of the *n* carrier leakage results derived in Annex E.3.1 for θ - and ϕ -polarization the total value is calculated according to

CarrLeak_{Total} =
$$10 \log_{10} \left(10^{\text{CarrLeak}_{\theta}/10} + 10^{\text{CarrLeak}_{\phi}/10} \right)$$
, where
$$n = \begin{cases} 0, \text{ for } 60 \text{ kHz SCS} \\ 0, \text{ for } 120 \text{ kHz SCS} \end{cases}$$
.

Each of the n total carrier leakage results CarrLeak_{Total} shall not exceed the values in table 6.4.2.2.5-1 for power class 1 and table 6.4.2.2.5-3 for power class 3. Allocated RBs are not under test.

Table 6.4.2.2.5-1: Test requirements for relative carrier leakage power for power class 1

LO Leakage		Parameters UE EIRP	Relative limit (dBc)		
		$17 + P_W dBm \pm P_W dB$	-25 + TT		
		$4 + P_w dBm \pm P_w dB$	-20 + TT		
NOTE 1:	The n	neasurement bandwidth is 1 RB and	I the limit is		
	expre	ssed as a ratio of measured power i	n one non-allocated		
	RB to	the measured total power in all allo	cated RBs.		
NOTE 2:		pplicable frequencies for this limit a			
	enclos	sed in the RBs containing the DC fre	equency if N _{RB} is		
	odd, d	or in the two RBs immediately adjace	ent to the DC		
	freque	ency if N _{RB} is even, but excluding an	y allocated RB.		
NOTE 3:	N _{RB} is	the Transmission Bandwidth Config	juration (see Figure		
	5.3.3-1).				
NOTE 4:	1: All power levels are UE EIRP in beam peak direction.				
NOTE 5: Pw is the power window according to					
	the ca	arrier frequency f and the channel ba	andwidth BW.		

Table 6.4.2.2.5-2: Test requirements for relative carrier leakage power for power class 2

LO Leakage		Parameters UE EIRP	Relative limit (dBc)		
		$6 + P_w dBm \pm P_w dB$	-25 + TT		
		$-13 + P_W dBm \pm P_W dB$	-20 + TT		
NOTE 1:	The n	neasurement bandwidth is 1 RB and	the limit is		
	expre	ssed as a ratio of measured power i	n one non-allocated		
	RB to	the measured total power in all allo	cated RBs.		
NOTE 2:	The a	pplicable frequencies for this limit a	re those that are		
	enclo	sed in the RBs containing the DC fre	equency if N _{RB} is		
	odd, d	or in the two RBs immediately adjace	ent to the DC		
	freque	ency if N _{RB} is even, but excluding an	y allocated RB.		
NOTE 3:	N_{RB} is	the Transmission Bandwidth Config	juration (see Figure		
	5.3.3-1).				
NOTE 4:	1: All power levels are UE EIRP in beam peak direction.				
NOTE 5:		the power window according to Tablarrier frequency f and the channel ba			

Table 6.4.2.2.5-3: Test requirements for relative carrier leakage power for power class 3

LO Leakage		Parameters UE EIRP	Relative limit (dBc)		
		$0 + P_w dBm \pm P_w dB$	-25 + TT		
		$-13 + P_W dBm \pm P_W dB$	-20 + TT		
NOTE 1:	The n	neasurement bandwidth is 1 RB and	the limit is		
	expre	ssed as a ratio of measured power i	n one non-allocated		
	RB to	the measured total power in all allo	cated RBs.		
NOTE 2:	The a	pplicable frequencies for this limit a	e those that are		
	enclo	sed in the RBs containing the DC fre	equency if N _{RB} is		
	odd, d	or in the two RBs immediately adjace	ent to the DC		
	freque	ency if N _{RB} is even, but excluding an	y allocated RB.		
NOTE 3:	N_{RB} is	the Transmission Bandwidth Config	juration (see Figure		
	5.3.3-1).				
NOTE 4:	4: All power levels are UE EIRP in beam peak direction.				
NOTE 5:					
	the carrier frequency f and the channel bandwidth BW.				

Table 6.4.2.2.5-4: Test requirements for relative carrier Leakage Power for power class 4

LO Leakage		Parameters UE EIRP	Relative limit (dBc)		
		$11 + P_W dBm \pm P_W dB$	-25 + TT		
		$-13 + P_W dBm \pm P_W dB$	-20 + TT		
NOTE 1:	The n	neasurement bandwidth is 1 RB and	the limit is		
	expre	ssed as a ratio of measured power i	n one non-allocated		
	RB to	the measured total power in all allo	cated RBs.		
NOTE 2:	The a	pplicable frequencies for this limit a	re those that are		
	enclo	sed in the RBs containing the DC fre	equency if N _{RB} is		
	odd, d	or in the two RBs immediately adjace	ent to the DC		
	freque	ency if N _{RB} is even, but excluding an	y allocated RB.		
NOTE 3:	N _{RB} is	the Transmission Bandwidth Config	juration (see Figure		
	5.3.3-1).				
NOTE 4:	4: All power levels are UE EIRP in beam peak direction.				
NOTE 5:	Ξ 5: P_w is the power window according to Table 6.4.2.2.4.2-2 for				
	the ca	arrier frequency f and the channel ba	andwidth BW.		

6.4.2.3 In-band emissions

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.

6.4.2.3.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of in-band emissions.

6.4.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.3.3 Minimum conformance requirements

The in-band emission is defined as the average across 12 sub-carriers and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is identical to that of the EVM test.

The requirement is verified with the test metric of In-band emission (Link=TX beam peak direction, Meas=Link angle).

The relative in-band emission shall not exceed the values specified in Table 6.4.2.3.3-1 for power class 1 UEs.

The average of the in-band emission measurement over 10 sub-frames shall not exceed the values specified in Table 6.4.2.3.2-1 for power class 1, Table 6.4.2.3.3-2 for power class 2, Table 6.4.2.3.3-3 for power class 3 and Table 6.4.2.3.3-4 for power class 4 UEs.

Table 6.4.2.3.3-1: Requirements for in-band emissions for power class 1

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10.\log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10} (EVM) - 5.\frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix}$		Any non-allocated (NOTE 2)
IQ Image	dB	-25 -20		
Carrier leakage	dBc	-25 -20	Output power > 17 dBm 4 dBm ≤ Output power ≤ 17 dBm	Carrier frequency (NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter *txDirectCurrentLocation* in *UplinkTxDirectCurrent* IE, and are those that are enclosed in the RBs containing the DC frequency but excluding any allocated RB.
- NOTE 6: L_{CRB} is the Transmission Bandwidth (see Section 5.3).
- NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3).
- NOTE 8: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).
- NOTE 10: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 11: All powers are EIRP in beam peak direction.

The relative in-band emission shall not exceed the values specified in Table 6.4.2.3.3-2 for power class 2.

Table 6.4.2.3.3-2: Requirements for in-band emissions for power class 2

Parameter descriptio n	Unit	Limit (NOTE 1)	Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(EVM) - 5.\frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix}$	Any non-allocated (NOTE 2)
IQ Image	dB	-25 Output power > 16 dBm -20 Output power ≤ 16 dBm	Image frequencies (NOTES 2, 3)
Carrier leakage	dBc	-25 Output power > 6 dBm -20 -13 dBm ≤ Output power ≤ 6 dBm	Carrier frequency (NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE, and are those that are enclosed in the RBs containing the DC frequency but excluding any allocated RB.
- NOTE 6: L_{CRB} is the Transmission Bandwidth (see Section 5.3).
- NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3).
- NOTE 8: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).
- NOTE 10: P_{RB} is the transmitted power per allocated RB, measured in dBm.
- NOTE 11: All powers are EIRP in beam peak direction.

The relative in-band emission shall not exceed the values specified in Table 6.4.2.3.3-3 for power class 3 UEs.

Table 6.4.2.3.3-3: Requirements	for in-hand	Amissions	for nower class 3
Table 0.7.2.3.3-3. Neualicines	IVI III-Daliu		ioi bovici ciass s

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB		$max \begin{bmatrix} -25 & -10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(EVM) - 5.\frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix}$	Any non-allocated (NOTE 2)
IQ Image	dB	-25	Output power > 10 dBm	Image frequencies
. · · · · · · · · · · · · · · · · · · ·	<u> </u>	-20	Output power ≤ 10 dBm	(NOTES 2, 3)
Carrier	dDa	-25	Output power > 0 dBm	Carrier frequency
leakage	dBc	-20	-13 dBm ≤ Output power ≤ 0 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter *txDirectCurrentLocation* in *UplinkTxDirectCurrent* IE, and are those that are enclosed in the RBs containing the DC frequency but excluding any allocated RB.
- NOTE 6: L_{CRR} is the Transmission Bandwidth (see Section 5.3).
- NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3).
- NOTE 8: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).
- NOTE 10: $P_{\text{\tiny RB}}$ is the transmitted power per allocated RB, measured in dBm.
- NOTE 11: All powers are EIRP in beam peak direction.

The relative in-band emission shall not exceed the values specified in Table 6.4.2.3.3-4 for power class 4 UEs.

Table 6.4.2.3.3-4: Requirements	for in-hand	emissions fo	r nower class 4
14DIE 0.4.2.3.3-4. REUUITEIIIEIIIS	iui iii-baiiu	- CIIII3310113 10	I DUWEI CIASS 4

Parameter descriptio n	Unit	Limit (NOTE 1)	Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 & -10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(EVM) & -5.\frac{(\Delta_{RB} -1)}{L_{CRB}}, \\ -55.1dBm & -P_{RB} \end{bmatrix},$	Any non-allocated (NOTE 2)
IQ Image	dB	-25 Output power > 21 dBm	Image frequencies
ių iiliaye	ub	-20 Output power ≤ 21 dBm	(NOTES 2, 3)
Carrier	dDo	-25 Output power > 11 dBm	Carrier frequency
leakage	dBc	-20 -13 dBm ≤ Output power ≤11 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter *txDirectCurrentLocation* in *UplinkTxDirectCurrent* IE, and are those that are enclosed in the RBs containing the DC frequency but excluding any allocated RB.
- NOTE 6: L_{CRB} is the Transmission Bandwidth (see Section 5.3).
- NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3).
- NOTE 8: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).
- NOTE 10: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 11: All powers are EIRP in beam peak direction.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.4.2.3.

6.4.2.3.4 Test description

6.4.2.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex [TBD].

Table 6.4.2.3.4.1-1: Test Configuration Table for PUSCH

	Initial Conditions					
Test Enviro	nment as specified in TS 38.508-1 [10]	Normal				
subclause 4	4.1					
	encies as specified in TS 38.508-1 [10]	Low range, Mid range, High i	range			
subclause 4						
	el Bandwidths as specified in TS	Lowest, Mid, Highest				
38.508-1 [1	.0] subclause 4.3.1					
Test SCS a	s specified in Table 5.3.5-1	Lowest				
	Test Parameters					
Test ID	Downlink Configuration	Uplink	Configuration			
	N/A	Modulation	RB allocation (NOTE 1)			
1		DFT-s-OFDM PI/2 BPSK	Inner_16RB_Left			
2		DFT-s-OFDM PI/2 BPSK	Inner_16RB_Right			
3		CP-OFDM QPSK	Inner_16RB_Left			
4	4 CP-OFDM QPSK Inner_16RB_Right					
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.						

Table 6.4.2.3.4.1-2: Test Configuration Table for PUCCH

	Initial Conditions						
Test Envi	ronment as specified		See Table 6.4.2.3.4.1-1				
subclause	e 4.1						
Test Freq	uencies as specified i	in TS 38.508-1 [10]	See Table 6.4.2.3.4.1-1				
subclause	e 4.3.1						
Test Char	nnel Bandwidths as s	pecified in TS	See Table 6.4.2.3.4.1-1				
38.508-1	[10] subclause 4.3.1						
Test SCS	as specified in Table	5.3.5-1	See Table 6.4.2.3.4.1-1				
		1	est Parameters				
ID	Downlink Co	onfiguration	Uplink Configuration				
	Modulation	RB allocation	Waveform	PUCCH format			
1	CP-OFDM QPSK	Full RB (Note 1)	CP-OFDM	PUCCH format = Format 1			
				Length in OFDM symbols = 14			
2 CP-OFDM QPSK Full RB (Note 1)			DFT-s-OFDM	PUCCH format = Format 1			
	Length in OFDM symbols = 14						
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2.							
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths						
	are specified in Table 5.3.5-1.						

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, in Figure A.3.3.1.1 for TE diagram and section A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex [TBD], and uplink signals according to Annex [TBD].
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4.2.3.4.3

6.4.2.3.4.2 Test procedure

Test procedure for PUSCH:

1.1 Retrieve the LO position from the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE.

- 1.2 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [1_0] for C_RNTI to schedule the UL RMC according to Table 6.4.2.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 1.3 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $P_{req} + P_W \pm P_{W}$, where P_{req} is the power level specified in Tables 6.4.2.3.4.2-1 according to the power class with power ID = 1. P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 1.4 Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 2) for the UE Tx beam selection to complete.
- 1.5 SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 1.6 Measure In-band emission IE_{θ} , IE_{ϕ} using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarizations, respectively. For TDD, only slots consisting of only UL symbols are under test. Calculate $IE = IE_{\theta} + IE_{\phi}$, where the calculation is based on linear power ratios.
- 1.7 SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 1.8 Repeat steps 1.3 through 1.6 until In-band emissions have been measured for all power IDs in Table 6.4.2.1.4.2-1.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.
- NOTE 2: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

Table 6.4.2.3.4.2-1: Parameters for In-band emissions

Power ID	Unit	Level for power class 1	Level for power class 2	Level for power class 3	Level for power class 4
1	dBm	27	16	10	21
2	dBm	17	6	0	11
3	dBm	4	-13	-13	-13

Table 6.4.2.3.4.2-2: Power Window (dB) for In-band emissions PUSCH and PUCCH

TBD

Test procedure for PUCCH:

- 2.1 Retrieve the LO position from the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE.
- 2.2 PUCCH is set according to Table 6.4.2.3.4.1-2. SS transmits PDSCH via PDCCH DCI format [1A] for C_RNTI to transmit the DL RMC according to Table 6.4.2.3.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH.
- 2.3 Send the appropriate TPC commands in the uplink scheduling information for PUCCH to the UE until UE output power is $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4.2.3.4.2-1 according to the power class with power ID = 1. P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 2.4 Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 2.5 SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.

- 2.6 Measure In-band emission IE_{θ} , IE_{ϕ} using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarizations, respectively. Calculate $IE = IE_{\theta} + IE_{\phi}$, where the calculation is based on linear power ratios.
- 2.7 SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 2.8 Repeat steps 2.3 through 2.6 until In-band emissions have been measured for all power IDs in Table 6.4.2.1.4.2-

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.4.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4.2.3.5 Test requirement

The averaged in-band emissions result, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4.2.3.5-1 for power class 1 UEs.

Table 6.4.2.3.5-1: Test requirements for in-band emissions for power class 1

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(EVM) - 5.\frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix} + TT$		Any non-allocated (NOTE 2)
IQ Image	dB	-25+TT -20+TT	Output power > 27 dBm Output power ≤ 27 dBm	Image frequencies (NOTES 2, 3)
Carrier		-25+TT	Output power > 17 dBm	Carrier frequency
leakage	dBc	-20+TT	4 dBm ≤ Output power ≤ 17 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter *txDirectCurrentLocation* in *UplinkTxDirectCurrent* IE, and are those that are enclosed in the RBs containing the DC but excluding any allocated RB.
- NOTE 6: L_{CRB} is the Transmission Bandwidth (see Section 5.3).
- NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3).
- NOTE 8: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).
- NOTE 10: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 11: All powers are EIRP in beam peak direction.

The averagedin-band emissions result, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4.2.3.5-2 for power class 2 UEs.

Table 6.4.2.3.5-2: Test requirements for in-band emissions for power class 2

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(EVM) - 5.\frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix} + TT$		Any non-allocated (NOTE 2)
IQ Image	dB	-25 + TT -20 + TT	Output power > 16 dBm Output power ≤ 16 dBm	Image frequencies (NOTES 2, 3)
Carrier leakage	dBc	-25 + TT -20 + TT	Output power > 6 dBm -13 dBm ≤ Output power ≤ 6 dBm	Carrier frequency (NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE, and are those that are enclosed in the RBs containing the DC frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the DC frequency if N_{RB} is even but excluding any allocated RB.
- NOTE 6: L_{CRB} is the Transmission Bandwidth (see Section 5.3).
- NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3).
- NOTE 8: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).
- NOTE 10: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 11: All powers are EIRP in beam peak direction.

The averaged in-band emissions result, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4.2.3.5-3 for power class 3 UEs.

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	max	$\begin{bmatrix} -25 & -10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(EVM) - 5.\frac{(\Delta_{RB} -1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix}_{+ TT}$	Any non-allocated (NOTE 2)
IQ Image	dB	-25+TT	Output power > 10 dBm	Image frequencies
iQ iiilaye	uБ	-20+TT	Output power ≤ 10 dBm	(NOTES 2, 3)
Carrier	dBc	-25+TT	Output power > 0 dBm	Carrier frequency
leakage	ubc	-20+TT	-13 dBm ≤ Output power ≤ 0 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter *txDirectCurrentLocation* in *UplinkTxDirectCurrent* IE, and are those that are enclosed in the RBs containing the DC but excluding any allocated RB.
- NOTE 6: L_{CRB} is the Transmission Bandwidth (see Section 5.3).
- NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3).
- NOTE 8: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).
- NOTE 10: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 11: All powers are EIRP in beam peak direction.

The averagedin-band emissions result, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4.2.3.5-4 for power class 3 UEs.

leakage

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	max	$\begin{bmatrix} -25 & -10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(\text{EVM}) - 5.\frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix}_{+ \text{TT}}$	Any non-allocated (NOTE 2)
IO Imaga	dB	-25 + TT	Output power > 21 dBm	Image frequencies
IQ Image dB		-20 + TT	Output power ≤ 21 dBm	(NOTES 2, 3)
Carrier	dDo	-25 + TT	-25 + TT Output power > 11 dBm	
lookogo	dBc 25 TT		12 dDm < Output nouser <11 dDm	(NOTEC'4 E) 1

Table 6.4.2.3.5-4: Test requirements for in-band emissions for power class 4

NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} - 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.

-13 dBm ≤ Output power ≤11 dBm

- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter *txDirectCurrentLocation* in *UplinkTxDirectCurrent* IE, and are those that are enclosed in the RBs containing the DC frequency but excluding any allocated RB.
- NOTE 6: L_{CRB} is the Transmission Bandwidth (see Section 5.3).
- NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3).
- NOTE 8: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).
- NOTE 10: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 11: All powers are EIRP in beam peak direction.

6.4.2.4 EVM equalizer spectrum flatness

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.

6.4.2.4.1 Test purpose

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block, at which the equalizer coefficients are generated by the EVM measurement process. The basic measurement interval is the same as for EVM.

The EVM equalizer spectrum flatness requirement does not limit the correction applied to the signal in the EVM measurement process but for the EVM result to be valid, the equalizer correction that was applied must meet the EVM equalizer spectrum flatness minimum requirements.

6.4.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.4.3 Minimum conformance requirements

For pi/2 BPSK modulation, the minimum requirements are defined in Clause 6.4.2.5.3.

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4.3-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirements: the relative difference between the maximum coefficient in Range 2 (Table 6.4.2.4.3-1) must not be larger than 7 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8 dB (see Figure 6.4.2.4.3-1).

The requirement is verified with the test metric of EVM SF (Link=TX beam peak direction, Meas=Link angle).

Table 6.4.2.4.3-1: Minimum requirements for EVM equalizer spectrum flatness (normal conditions)

	Frequency range	Maximum ripple (dB)
	$ F_{UL_Meas} - F_{center} \le X MHz$	6 (p-p)
	(Range 1)	
	$ F_{UL_Meas} - F_{center} > X MHz$	9 (p-p)
	(Range 2)	
NOTE 1:	F _{UL_Meas} refers to the sub-carrier frequency for which t	the equalizer coefficient is
	evaluated	
NOTE 2:	F _{center} refers to the center frequency of the CC	
NOTE 3:	X, in MHz, is equal to 30% of the CC bandwidth	

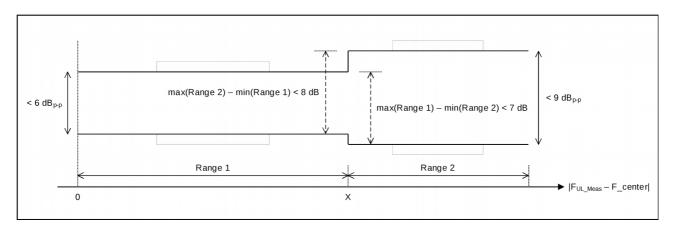


Figure 6.4.2.4.3-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated under normal conditions

The normative reference for this requirement is TS 38.101-2 [3] clause 6.4.2.4.

6.4.2.4.4 Test description

6.4.2.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex [TBD].

Table 6.4.2.4.4.1-1: Test Configuration

	Initial Conditions				
Test Environment as specified in TS 38.508-1 [10]		Normal			
subclause					
Test Frequ	encies as specified in TS 38.508-1 [10]	Low range, Mid range, High	range		
subclause	4.3.1				
Test Chanr	nel Bandwidths as specified in TS	Lowest, Mid, Highest			
	10] subclause 4.3.1				
Test SCS a	as specified in Table 5.3.5-1	Lowest			
		Test Parameters			
Test ID	Downlink Configuration	Uplin	k Configuration		
	N/A	Modulation	RB allocation (NOTE 1)		
1		DFT-s-OFDM QPSK	Outer_Full		
2 CP-OFDM QPSK Outer_Full					
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					
	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths				
	are specified in Table 5.3.5-1.				

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex [TBD], and uplink signals according to Annex [TBD].
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4.2.4.4.3

6.4.2.4.4.2 Test procedure

- 1. Retrieve the LO position from the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC
- 3. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200 ms for the UE to reach P_{UMAX} level.
- 4. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 2) for the UE Tx beam selection to complete.
- 5. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 6. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarizations, respectively. For TDD, only slots consisting of only UL symbols are under test.
- 7. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.
- NOTE 2: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.4.2.4.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4.2.4.5 Test requirement

Each of the *n* spectrum flatness functions, shall derive four ripple results in Annex E.4.4. The derived results shall not exceed the values in Figure 6.4.2.4.5-1: The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4.5-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirements: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 (Table 6.4.2.4..5-1) must not be larger than 7 dB + TT, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8 dB + TT (see Figure 6.4.2.4.5-1).

The UE passes the test when the derived results for at least one polarization fulfil the test requirements.

Table 6.4.2.4.5-1: Test requirements for EVM equalizer spectrum flatness (normal conditions)

	Frequency range	Maximum ripple (dB)
	$ F_{UL_Meas} - F_{center} \le X MHz$	6 +TT (p-p)
	(Range 1)	
	$ F_{UL_Meas} - F_{center} > X MHz$	9 + TT (p-p)
	(Range 2)	
NOTE 1:	F _{UL_Meas} refers to the sub-carrier frequency for which t	the equalizer coefficient is
	evaluated	
NOTE 2:	F _{center} refers to the center frequency of the CC	
NOTE 3:	X, in MHz, is equal to 30% of the CC bandwidth	

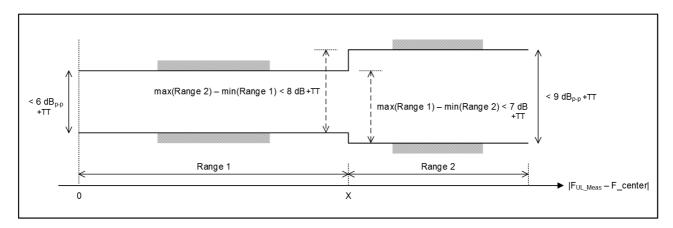


Figure 6.4.2.4.5-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated under normal conditions

6.4.2.5 EVM spectral flatness for pi/2 BPSK modulation

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets...
- Whether and, if yes, how to test the requirement on shaping filter is FFS.

6.4.2.5.1 Test purpose

Same test purpose as in clause 6.4.2.4.1.

6.4.2.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.5.3 Minimum conformance requirements

These requirements are defined for pi/2 BPSK modulation. The EVM equalizer coefficients across the allocated uplink block shall be modified to fit inside the mask specified in Table 6.4.2.5.3-1 for normal conditions, prior to the calculation of EVM. The limiting mask shall be placed to minimize the change in equalizer coefficients in a sum of squares sense.

Table 6.4.2.5.3-1: Mask for EVM equalizer coefficients for pi/2 BPSK (normal conditions)

Freq	uency range	Parameter	Maximum ripple (dB)	
F _{UL_Meas}	$-F_{center} \leq X MHz$	X1	6 (p-p)	
,	D 4)			
	Range 1)			
F _{UL_Meas} -	- F _{center} > X MHz	X2	14 (p-p)	
(Range 2)			
NOTE 1: F _{UL Meas} refers to the sub-carrier frequency for which the equalizer coefficient is evaluated.				
NOTE 2: F _{center} refers to the centre frequency of an allocated block of PRBs.				
NOTE 3: X, in MHz, is equal to 25% of the bandwidth of the PRB allocation.				
NOTE 4: See Figure 6.4.2	2.5-1 for description of X1, X2 and \times	(3.		

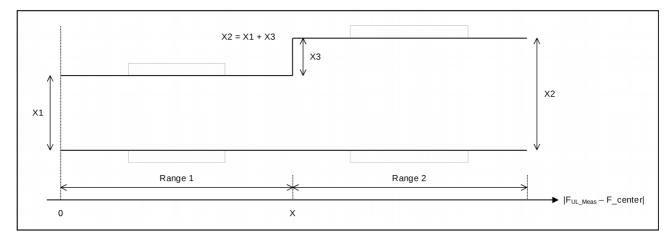


Figure 6.4.2.5.3-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation. F_{center} denotes the centre frequency of the allocated block of PRBs. F_alloc denotes the bandwidth of the PRB allocation

This requirement does not apply to other modulation types. The UE shall be allowed to employ spectral shaping for pi/2 BPSK. The shaping filter shall be restricted so that the impulse response of the transmit chain shall meet

$$\left| \tilde{a}_{t}(t,0) \right| \geq \left| \tilde{a}_{t}(t,\tau) \right| \quad \forall \tau \neq 0$$

$$20log_{10} \left| \tilde{a}_{t}(t,\tau) \right| < -15 \text{ dB} \quad 1 < \tau < M - 1,$$

Where:

$$|\tilde{a}_t(t,\tau)| = IDFT\{ |\tilde{a}_t(t,f)| e^{j\phi(t,f)} \},$$

f is the frequency of the M allocated subcarriers,

 $\tilde{a}(t,f)$ and $\phi(t,f)$ are the amplitude and phase response, respectively of the transmit chain

0dB reference is defined as $20\log_{10} |\tilde{a}_t(t,0)|$

The normative reference for this requirement is TS 38.101-2 [3] clause 6.4.2.5.

6.4.2.5.4 Test description

6.4.2.5.4.1 Initial condition

Same initial conditions as in clause 6.4.2.4.4.1 with following exceptions:

- Instead of Table 6.4.2.4.4.1-1 → use Table 6.4.2.5.4.1-1

Table 6.4.2.5.4.1-1: Test Configuration

	Initial Conditions				
Test Enviro	nment as specified in TS 38.508-1 [10]	Normal			
subclause	4.1				
	encies as specified in TS 38.508-1 [10]	Low range, Mid range, High	range		
subclause	4.3.1				
Test Chanr	nel Bandwidths as specified in TS	Lowest, Mid, Highest			
	L0] subclause 4.3.1				
	s specified in TS 38.508-1 [10]	Lowest			
subclause	[TBD]				
	7	est Parameters			
Test ID	Downlink Configuration	Uplin	Uplink Configuration		
	N/A	Modulation RB allocation (NOTE 1)			
1	1 DFT-s-OFDM pi/2-BPSK Outer_Full				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.					

6.4.2.5.4.2 Test procedure

- 1. Retrieve the LO position from the parameter txDirecCurrentLocation in UplinkTxDirectCurrent IE.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4.2.5.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC
- 3. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200 ms for the UE to reach P_{UMAX} level.
- 4. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 5. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 6. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarizations, respectively. For TDD, only slots consisting of only UL symbols are under test.
- 7. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.4.2.5.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4.2.5.5 Test requirement

Each of the *n* spectrum flatness functions, shall derive four ripple results in Annex E.4.4. The derived results shall not exceed the values in Table 6.4.2.5.5-1 and Figure 6.4.2.5.5-1:

Table 6.4.2.5.5-1: Test requirement for EVM equalizer coefficients for pi/2 BPSK (normal conditions)

	Frequency range	Parameter	Maximum ripple (dB)		
	$ F_{UL_Meas} - F_{center} \le X MHz$		6 + TT (p-p)		
	(Range 1)				
	$ F_{UL_Meas} - F_{center} > X MHz$	X2	14 + TT (p-p)		
	(Range 2)				
NOTE 1:	NOTE 1: F _{UL Meas} refers to the sub-carrier frequency for which the equalizer coefficient is evaluated.				
NOTE 2:	NOTE 2: F _{center} refers to the centre frequency of an allocated block of PRBs.				
NOTE 3: X, in MHz, is equal to 25% of the bandwidth of the PRB allocation.					
NOTE 4:	See Figure 6.4.2.5-1 for description of X1, X2 and X3	3.			

Figure 6.4.2.5.5-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation.

Fcenter denotes the centre frequency of the allocated block of PRBs

The UE passes the test when the derived results for at least one polarization fulfil the test requirements.

6.4A Transmit signal quality for CA

6.4A.1 Frequency error for CA

6.4A.1.0 Minimum conformance requirements

The requirements in this subsection apply to UEs of all power classes.

For intra-band contiguous carrier aggregation, the UE modulated carrier frequencies per band shall be accurate to within ± 0.1 PPM observed over a period of 1ms compared to the carrier frequency of primary component carrier received from the gNB.

The frequency error is defined as a directional requirement. The requirement is verified in beam locked mode on beam peak direction.

6.4A.1.1 Frequency error for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.4A.1.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4A.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.4A.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.1.0.

6.4A.1.1.4 Test description

6.4A.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.5A. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.4A.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.1.1.4.1-1: Test Configuration Table

FFS

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure [TBD] for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4A.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4A.1.1.4.3

6.4A.1.1.4.2 Test procedure

1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.

- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause [TBD]. Message contents are defined in clause 6.4A.1.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [x], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL RMC according to Table 6.4.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 6. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC Command for the UE to reach P_{UMAX} level.
- 7. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 8. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.6. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization. For TDD, only slots consisting of only UL symbols are under test.

NOTE 1: The BEAM SELECT WAIT TIME default value is defined in Annex K.1.1.

6.4A.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4A.1.1.5 Test Requirements

The *n* frequency error Δf results for the θ -polarization or the *n* frequency error Δf results for the ϕ -polarization must fulfil the test requirement:

 $|\Delta f| \le (0.1 \text{ PPM} + 0.005 \text{ PPM}), \text{ (for Aggregated BW } \le 400 \text{MHz})$

where

$$n =$$
 0, for 60 kHz SCS 0, for 120 kHz SCS .

6.4A.1.2 Frequency error for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.4A.1.2.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4A.1.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.4A.1.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.1.0.

6.4A.1.2.4 Test description

Same as in clause 6.4A.1.1.4 with following exceptions:

- Instead of Table 6.4A.1.1.4.1-1 → use Table 6.4A.1.2.4.1-1.
- Instead of clause 6.4A.1.1.4.3 → use clause 6.4A.1.2.4.3.
- Instead of Table 6.4A.1.1.5-1 → use Table 6.4A.1.2.5-1.

Table 6.4A.1.2.4.1-1: Test Configuration Table

FFS

6.4A.1.2.5 Test Requirements

The *n* frequency error Δf results for the θ -polarization or the *n* frequency error Δf results for the ϕ -polarization must fulfil the test requirement:

 $|\Delta f| \le (0.1 \text{ PPM} + 0.005 \text{ PPM}), \text{ (for Aggregated BW } \le 400 \text{MHz})$

where

$$n =$$
 0, for 60 kHz SCS 0, for 120 kHz SCS.

6.4A.1.3 Frequency error for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.

- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.4A.1.3.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4A.1.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.4A.1.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.1.0.

6.4A.1.3.4 Test description

Same as in clause 6.4A.1.1.4 with following exceptions:

- Instead of Table 6.4A.1.1.4.1-1 → use Table 6.4A.1.3.4.1-1.
- Instead of clause 6.4A.1.1.4.3 → use clause 6.4A.1.3.4.3.
- Instead of Table 6.4A.1.1.5-1 → use Table 6.4A.1.3.5-1.

Table 6.4A.1.3.4.1-1: Test Configuration Table

FFS

6.4A.1.3.5 Test Requirements

The *n* frequency error Δf results for the θ -polarization or the *n* frequency error Δf results for the ϕ -polarization must fulfil the test requirement:

 $|\Delta f| \le (0.1 \text{ PPM} + 0.005 \text{ PPM}), \text{ (for Aggregated BW } \le 400 \text{MHz})$

where

$$n =$$
0, for 60 kHz SCS
0, for 120 kHz SCS

6.4A.2 Transmit modulation quality for CA

FFS.

6.4A.2.1 Error vector magnitude for CA

FFS.

6.4A.2.1.0 Minimum conformance requirements

The requirements in this subclause apply to UEs of all power classes. For intra-band contiguous carrier aggregation, the Error Vector Magnitude requirement of section 6.4.2.1 is defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers. Similar transmitter impairment removal procedures are applied for CA waveform before EVM calculation as is specified for non-CA waveform.

6.4A.2.1.1 Error Vector magnitude for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.
- Power window for PUSCH is FFS
- Test configuration table is FFS.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.4A.2.1.1.1 Test Purpose

For 2UL carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirement applies for the allocated component carrier, when all other component carriers are activated, but not allocated.

Similar transmitter impairment removal procedures are applied for CA waveform before EVM calculation as is specified for non-CA waveform in subsection 6.4.2.1.

6.4A.2.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.4A.2.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.1.0

6.4A.2.1.1.4 Test description

6.4A.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in Table 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.4A.2.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.2.1.1.4.1-1: Test Configuration Table for 2UL CA

FFS

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, in Figure A.3.3.1.1 for TE diagram and section A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and C.3, and uplink signals according to Annex G.0, G.1 and G.3.
- 4. The UL Reference Measurement channels are set according to Table 6.4A.2.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4A.2.1.1.4.3

6.4A.2.1.1.4.2 Test procedure

- 1. Retrieve the LO position from the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE.
- 2. Configure SCC according to Annex C.0, C.1, C.3 for all downlink physical channels.
- 3. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1. Message contents are defined in clause 6.4A.2.1.1.4.3.
- 4. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [TBD], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause9.2).
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.1.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 6. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at $[P_{UMAX} level]$. Allow at least 200ms starting from the first TPC command in this step for the UE to reach $[P_{UMAX} level]$.
- 7. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 2) for the UE Tx beam selection to complete.
- 8. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 9. Measure the EVM_{θ} , EVM_{ϕ} , $\overline{EVM}_{DMRS,\theta}$ and $EVM_{DMRS,\phi}$ on PCC using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarizations, respectively. For TDD, only slots consisting of only UL symbols are under test. Calculate $\overline{EVM}_{DMRS} = min \left(\overline{EVM}_{DMRS,\theta}, \overline{EVM}_{DMRS,\phi} \right)$ and $EVM = min (EVM_{\theta}, EVM_{\phi})$.
- 10. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 11. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4A.2.1.1.4.2-1 and 6.4A.2.1.1.4.2-2 according to the modulation and power class. P_W is the power window according to Table 6.4A.2.1.4.2-3 for the carrier frequency f and the channel bandwidth BW.
- 12. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 13. Measure the EVM_{θ} , EVM_{ϕ} , $EVM_{DMRS,\theta}$ and $EVM_{DMRS,\phi}$ on PCC using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarizations, respectively. For TDD, only slots consisting of only UL symbols are under test. Calculate $\overline{EVM}_{DMRS} = min \Big(\overline{EVM}_{DMRS,\theta}, \overline{EVM}_{DMRS,\phi} \Big)$ and $EVM = min (EVM_{\theta}, EVM_{\phi})$.
- 14. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4A.2.1.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE 2: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

Table 6.4A.2.1.1.4.2-1: Parameters for Error Vector Magnitude for power class 1

Parameter	Unit	Level
UE Output Power	dBm	4
UE output power for UL 16QAM	dBm	7
UE output power for UL 64QAM	dBm	11

Table 6.4A.2.1.1.4.2-2: Parameters for Error Vector Magnitude for power class 2, 3, and 4

Parameter	Unit	Level
UE Output Power	dBm	-13
UE output power for UL 16QAM	dBm	-10
UE output power for UL 64QAM	dBm	-6

Table 6.4A.2.1.1.4.2-3: Power Window (dB) for EVM PUSCH

TBD

6.4A.2.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4A.2.1.1.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4A.2.1.1.5-1.

The PUSCH \overline{EVM}_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4A.2.1.1.5-1 when embedded with data symbols of the respective modulation scheme.

Table 6.4A.2.1.1.5-1: Test requirements for Error Vector Magnitude for CA

Parameter	Unit	Average EVM Level	Reference Signal EVM Level
Pi/2 BPSK	%	30+TT	30+TT
QPSK	%	17.5+TT	17.5+TT
16 QAM	%	12.5+TT	12.5+TT
64 QAM	%	8+TT	8+TT

Table 6.4A.2.1.1.5-2: Test Tolerance for Error Vector Magnitude for CA

Test Metric	FR2a	FR2b
Quiet Zone size ≤ 30 cm	FFS	FFS

6.4A.2.1.2 Error Vector magnitude for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.
- Power window for PUSCH is FFS.
- Test configuration table is FFS.

6.4A.2.1.2.1 Test Purpose

For 3UL carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirement applies for the allocated component carrier, when all other component carriers are activated, but not allocated.

Similar transmitter impairment removal procedures are applied for CA waveform before EVM calculation as is specified for non-CA waveform in sub-section 6.4.2.1.

6.4A.2.1.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.4A.2.1.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.1.0

6.4A.2.1.2.4 Test description

Same as in clause 6.4A.2.1.1.4 with following exceptions:

- Instead of Table 6.4A.2.1.1.4.1-1 → use Table 6.4A.2.1.2.4.1-1.
- Instead of clause 6.4A.2.1.1.4.3 \rightarrow use clause 6.4A.2.1.2.4.3.
- Instead of Table 6.4A.2.1.1.5-1 → use Table 6.4A.2.1.2.5-1.

Table 6.4A.2.1.2.4.1-1: Test Configuration Table for 3UL CA

FFS

6.4A.2.1.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4A.2.1.2.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4A.2.1.2.5-1.

The PUSCH \overline{EVM}_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4A.2.1.2.5-1 when embedded with data symbols of the respective modulation scheme.

Table 6.4A.2.1.2.5-1: Test requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level	Reference Signal EVM Level
Pi/2 BPSK	%	30+TT	30+TT
QPSK	%	17.5+TT	17.5+TT
16 QAM	%	12.5+TT	12.5+TT
64 QAM	%	8+TT	8+TT

6.4A.2.1.3 Error Vector magnitude for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.
- Power window for PUSCH is FFS.
- Test configuration table is FFS.

6.4A.2.1.3.1 Test Purpose

For 4UL carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirement applies for the allocated component carrier, when all other component carriers are activated, but not allocated.

Similar transmitter impairment removal procedures are applied for CA waveform before EVM calculation as is specified for non-CA waveform in sub-section 6.4.2.1.

6.4A.2.1.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.4A.2.1.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.1.0

6.4A.2.1.3.4 Test description

Same as in clause 6.4A.2.1.1.4 with following exceptions:

- Instead of Table 6.4A.2.1.1.4.1-1 → use Table 6.4A.2.1.3.4.1-1.
- Instead of clause 6.4A.2.1.1.4.3 \rightarrow use clause 6.4A.2.1.3.4.3.
- Instead of Table 6.4A.2.1.1.5-1 \rightarrow use Table 6.4A.2.1.3.5-1.

Table 6.4A.2.1.3.4.1-1: Test Configuration Table for 4UL CA

FFS

6.4A.2.1.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4A.2.1.3.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4A.2.1.3.5-1.

The PUSCH \overline{EVM}_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4A.2.1.3.5-1 when embedded with data symbols of the respective modulation scheme.

Table 6.4A.2.1.3.5-1: Test requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level	Reference Signal EVM Level
Pi/2 BPSK	%	30+TT	30+TT
QPSK	%	17.5+TT	17.5+TT
16 QAM	%	12.5+TT	12.5+TT
64 QAM	%	8+TT	8+TT

6.4A.2.2 Carrier leakage for CA

6.4A.2.2.0 Minimum conformance requirements

6.4A.2.2.0.1 General

Carrier leakage is an additive sinusoid waveform. The carrier leakage requirement is defined for each component carrier and is measured on the component carrier with PRBs allocated. The measurement interval is one slot in the time domain.

Note: When UE has DL configured for non-contiguous CA, carrier leakage may land outside the spectrum occupied by all configured UL and DL CC.

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The requirement is verified with the test metric of Carrier Leakage (Link=TX beam peak direction, Meas=Link angle).

6.4A.2.2.0.2 Carrier leakage for power class 1

When carrier leakage is contained inside the spectrum occupied by all configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4A.2.2.0.2-1 for power class 1 UEs.

Table 6.4A.2.2.0.2-1: Minimum requirements for relative carrier leakage for power class 1

Parameters	Relative Limit (dBc)
EIRP > 17 dBm	-25
4 dBm ≤ EIRP ≤ 17 dBm	-20

6.4A.2.2.0.3 Carrier leakage for power class 2

When carrier leakage is contained inside the spectrum occupied by all configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4A.2.2.0.3-1 for power class 2.

Table 6.4A.2.2.0.3-1: Minimum requirements for relative carrier leakage power class 2

Parameters	Relative limit (dBc)
EIRP > 6 dBm	-25
-13 dBm ≤ EIRP ≤ 6 dBm	-20

6.4A.2.2.0.4 Carrier leakage for power class 3

When carrier leakage is contained inside the spectrum occupied by all configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4A.2.2.0.4-1 for power class 3 UEs.

Table 6.4A.2.2.0.4-1: Minimum requirements for relative carrier leakage power class 3

Parameters	Relative limit (dBc)
Output power > 0 dBm	-25
-13 dBm ≤ Output power EIRP ≤ 0 dBm	-20

6.4A.2.2.0.5 Carrier leakage for power class 4

When carrier leakage is contained inside the spectrum occupied by all configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4A.2.2.0.5-1 for power class 4 UEs.

Table 6.4A.2.2.0.5-1: Minimum requirements for relative carrier leakage power class 4

Parameters	Relative limit (dBc)
Output power > 11 dBm	-25
-13 dBm ≤ Output	-20
power EIRP ≤ 11 dBm	-20

6.4A.2.2.1 Carrier leakage for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test procedure is incompleted due to power window is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.4A.2.2.1.1 Test purpose

Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal. Carrier leakage interferes with the sub carriers at its position (if allocated), especially, when their amplitude is small.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

6.4A.2.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.4A.2.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.2.0.

6.4A.2.2.1.4 Test description

6.4A.2.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and CC combinations based on NR operating bands specified in Table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each CA configuration and subcarrier spacing, are shown in table 6.4A.2.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.2.2.1.4.1-1: Intra-band Contiguous CA Test Configuration Table

Default Conditions			
Test Environment as specified in TS 38.508-1 [10] subclause	Normal		
[4.1]			
Test Frequencies as specified in TS 38.508-1 [10] subclause	Low and High range		
[4.3.1.2.3] for different CA bandwidth classes			
Test CC Combination setting (aggregated BW of the CA	Lowest aggregated BW		
configuration) as specified in Table 5.5A.1-1 for the CA			
Configuration across bandwidth combination sets supported by			
the UE			
Test SCS as specified in Table 5.3.5-1	Lowest		

lest Parameters						
CA Configuration / Aggregated BW		Downlink Configuration	Uplink Configuration			
Test ID	CC & Mapping (NOTE 5)	CBW (MHz)	RB allocation	Modulation	RB allocation (NOTE 1)	
1	PCC/CC1	50	N/A for this test	DFT-s-OFDM QPSK	Inner_16RB_Left	
1	SCC/CC2	50		DFT-s-OFDM QPSK	Inner_16RB_Left	

- NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.
- NOTE 2: CA Configuration Test cumulative aggregated BW settings are checked separately for each CA Configuration, which applicable aggregated channel bandwidths are specified in Table 5.5A.1-1.
- NOTE 3: If the UE supports multiple CC Combinations in the CA Configuration with the same cumulative aggregated BW, only the combination with the lowest PCC ChBW is tested.
- NOTE 4: When the signalled DC carrier position is at Inner 16RB Left, use Inner 16RB Right for UL RB allocation.
- NOTE 5: PCC/CCi and SCC/CCj means PCC is on component carrier CCi and SCC is on component carrier CCj, with CCi or CCj frequencies defined in TS38.508-1 [10].
 - 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
 - 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
 - 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
 - 4. The UL Reference Measurement channels are set according to Table 6.4A.2.2.1.4.1-1.
 - 5. Propagation conditions are set according to Annex B.0
 - 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4A.2.2.1.4.3

6.4A.2.2.1.4.2 Test procedure

- 1. Configure PCC and SCC according to Annex C.0, C.1, C.2 and Annex C.3.0 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1 Procedure to configure SCC(s) for NR RF CA testing. Message contents are defined in clause 6.4A.2.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321, clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4A.2.2.1.4.2-1 according to the power class. P_W is the power window according to Table [TBD] for the carrier frequency f and the channel bandwidth BW.

- 6. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 7. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 8. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization. For TDD, only slots consisting of only UL symbols are under test.
- 9. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 10. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4A.2.2.1.4.2-1 according to the power class. P_W is the power window according to Table [TBD] for the carrier frequency f and the channel bandwidth RW
- 11. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 12. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization. For TDD, only slots consisting of only UL symbols are under test.
- 13. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

Table 6.4A.2.2.1.4.2-1: UE EIRP Preq (dBm) for carrier leakage

Power Class	P _{req} (dBm) for step 5	P _{req} (dBm) for step 10	
Power Class 1	17	4	
Power Class 2	6	-13	
Power Class 3	0	-13	
Power Class 4	11	-13	

Table 6.4A.2.2.1.4.2-2: Power Window (dB) for carrier leakage

TBD

6.4A.2.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4A.2.2.1.5 Test requirement

For each of the *n* carrier leakage results derived in Annex E.3.1 for θ - and ϕ -polarization the total value is calculated according to

CarrLeak_{Total} =
$$10 \log_{10} \left(10^{\text{CarrLeak}_{\theta}/10} + 10^{\text{CarrLeak}_{\phi}/10} \right)$$
, where
$$n = 0, \text{ for } 60 \text{ kHz SCS}$$
$$n = 0, \text{ for } 120 \text{ kHz SCS}$$

Each of the n total carrier leakage results CarrLeak_{Total} shall not exceed the values in table 6.4.2.2.5-1 for power class 1 table 6.4.2.2.5-2 for power class 2, table 6.4.2.2.5-3 for power class 3 and table 6.4.2.2.5-4 for power class 4. Allocated RBs are not under test.

6.4A.2.2.2 Carrier leakage for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test procedure is incompleted due to power window is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.4A.2.2.2.1 Test purpose

Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal. Carrier leakage interferes with the sub carriers at its position (if allocated), especially, when their amplitude is small.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

6.4A.2.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.4A.2.2.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.2.0.

6.4A.2.2.2.4 Test description

6.4A.2.2.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and CC combinations based on NR operating bands specified in Table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each CA configuration and subcarrier spacing, are shown in table 6.4A.2.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.2.2.2.4.1-1: Intra-band Contiguous CA Test Configuration Table

Default Conditions				
Test Environment as specified in TS 38.508-1 [10] subclause	Normal			
[4.1]				
Test Frequencies as specified in TS 38.508-1 [10] subclause	Low and High range			
[4.3.1.2.3] for different CA bandwidth classes				
Test CC Combination setting (aggregated BW of the CA	Lowest aggregated BW			
configuration) as specified in Table 5.5A.1-1 for the CA				
Configuration across bandwidth combination sets supported by				
the UE				
Test SCS as specified in Table 5.3.5-1	Lowest			

Test Parameters					
CA Configuration / Aggregated BW		Downlink Configuration	Uplink Configuration		
Test ID	CC & Mapping (NOTE 5)	CBW (MHz)	RB allocation	Modulation	RB allocation (NOTE 1)
	PCC/CC1	50	N/A for this test	DFT-s-OFDM QPSK	Inner_16RB_Left
1	SCC/CC2	50		DFT-s-OFDM QPSK	Inner_16RB_Left
	SCC/CC3	50		DFT-s-OFDM QPSK	Inner_16RB_Left

- NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.
- NOTE 2: CA Configuration Test cumulative aggregated BW settings are checked separately for each CA Configuration, which applicable aggregated channel bandwidths are specified in Table 5.5A.1-1.
- NOTE 3: If the UE supports multiple CC Combinations in the CA Configuration with the same cumulative aggregated BW, only the combination with the lowest PCC ChBW is tested.
- NOTE 4: When the signalled DC carrier position is at Inner_16RB_Left, use Inner_16RB_Right for UL RB allocation.
- NOTE 5: PCC/CCi and SCC/CCj means PCC is on component carrier CCi and SCC is on component carrier CCj, with CCi or CCj frequencies defined in TS38.508-1 [10].
 - 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
 - 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
 - 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
 - 4. The UL Reference Measurement channels are set according to Table 6.4A.2.2.2.4.1-1.
 - 5. Propagation conditions are set according to Annex B.0
 - 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4A.2.2.2.4.3

6.4A.2.2.2.4.2 Test procedure

- 1. Configure PCC and SCCs according to Annex C.0, C.1, C.2 and Annex C.3.0 for all downlink physical channels.
- 2. The SS shall configure SCCs as per TS 38.508-1 [10] clause 5.5.1 Procedure to configure SCC(s) for NR RF CA testing. Message contents are defined in clause 6.4A.2.2.2.4.3.
- 3. SS activates SCCs by sending the activation MAC CE (Refer TS 38.321, clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4A.2.2.2.4.2-1 according to the power

class. P_W is the power window according to Table [TBD] for the carrier frequency f and the channel bandwidth BW

- 6. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 7. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 8. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization. For TDD, only slots consisting of only UL symbols are under test.
- 9. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 10. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4A.2.2.2.4.2-1 according to the power class. P_W is the power window according to Table [TBD] for the carrier frequency f and the channel bandwidth BW.
- 11. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 12. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization. For TDD, only slots consisting of only UL symbols are under test.
- 13. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

Table 6.4A.2.2.2.4.2-1: UE EIRP Preq (dBm) for carrier leakage

Power Class	P _{req} (dBm) for step 5	P _{req} (dBm) for step 10	
Power Class 1	17	4	
Power Class 2	6	-13	
Power Class 3	0	-13	
Power Class 4	11	-13	

Table 6.4A.2.2.2.4.2-2: Power Window (dB) for carrier leakage

TBD

6.4A.2.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4A.2.2.2.5 Test requirement

For each of the *n* carrier leakage results derived in Annex E.3.1 for θ - and ϕ -polarization the total value is calculated according to

$$CarrLeak_{Total}=10log_{10}\left(10^{CarrLeak_{\theta}/10}+10^{CarrLeak_{\phi}/10}\right)$$
 , where

$$n =$$
0, for 60 kHz SCS
0, for 120 kHz SCS

Each of the n total carrier leakage results CarrLeak_{Total} shall not exceed the values in table 6.4.2.2.5-1 for power class 1, table 6.4.2.2.5-2 for power class 2, table 6.4.2.2.5-3 for power class 3 and table 6.4.2.2.5-4 for power class 4. Allocated RBs are not under test.

6.4A.2.2.3 Carrier leakage for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test procedure is incompleted due to power window is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA is TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.4A.2.2.3.1 Test purpose

Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal. Carrier leakage interferes with the sub carriers at its position (if allocated), especially, when their amplitude is small.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

6.4A.2.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.4A.2.2.3.3 Minimum conformance requirements

The normative reference for this requirement is TS 38.101-2 [3] clause 6.4A.2.2.

6.4A.2.2.3.4 Test description

6.4A.2.2.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and CC combinations based on NR operating bands specified in Table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each CA configuration and subcarrier spacing, are shown in table 6.4A.2.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.2.2.3.4.1-1: Intra-band Contiguous CA Test Configuration Table

Default Conditions				
Test Environment as specified in TS 38.508-1 [10] subclause	Normal			
[4.1]				
Test Frequencies as specified in TS 38.508-1 [10] subclause	Low and High range			
[4.3.1.2.3] for different CA bandwidth classes, and PCC and				
SCC are mapped onto physical frequencies according to Table				
6.1-2				
Test CC Combination setting (aggregated BW of the CA	Lowest aggregated BW			
configuration) as specified in Table 5.5A.1-1 for the CA				
Configuration across bandwidth combination sets supported by				
the UE				
Test SCS as specified in Table 5.3.5-1	Lowest			

CA Configuration / Aggregated BW		Downlink Configuration	Uplink Configuration		
Test ID	CC & Mapping (NOTE 5)	CBW (MHz)	RB allocation	Modulation	RB allocation (NOTE 1)
	PCC/CC1	50	N/A for this test	DFT-s-OFDM QPSK	Inner_16RB_Left
1	SCC/CC2	50		DFT-s-OFDM QPSK	Inner_16RB_Left
	SCC/CC3	50		DFT-s-OFDM QPSK	Inner_16RB_Left
	SCC/CC4	50		DFT-s-OFDM QPSK	Inner_16RB_Left

- NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.
- NOTE 2: CA Configuration Test cumulative aggregated BW settings are checked separately for each CA Configuration, which applicable aggregated channel bandwidths are specified in Table 5.5A.1-1.
- NOTE 3: If the UE supports multiple CC Combinations in the CA Configuration with the same cumulative aggregated BW, only the combination with the lowest PCC ChBW is tested.
- NOTE 4: When the signalled DC carrier position is at Inner_16RB_Left, use Inner_16RB_Right for UL RB allocation.
- NOTE 5: PCC/CCi and SCC/CCj means PCC is on component carrier CCi and SCC is on component carrier CCj, with CCi or CCj frequencies defined in TS38.508-1 [10].
 - 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
 - 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
 - 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
 - 4. The UL Reference Measurement channels are set according to Table 6.4A.2.2.3.4.1-1.
 - 5. Propagation conditions are set according to Annex B.0
 - 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4A.2.2.3.4.3

6.4A.2.2.3.4.2 Test procedure

- 1. Configure PCC and SCCs according to Annex C.0, C.1, C.2 and Annex C.3.0 for all downlink physical channels.
- 2. The SS shall configure SCCs as per TS 38.508-1 [10] clause 5.5.1 Procedure to configure SCC(s) for NR RF CA testing. Message contents are defined in clause 6.4A.2.2.3.4.3.
- 3. SS activates SCCs by sending the activation MAC CE (Refer TS 38.321, clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.2.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 5. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4A.2.2.3.4.2-1 according to the power class. P_W is the power window according to Table [TBD] for the carrier frequency f and the channel bandwidth BW.
- 6. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 7. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 8. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization. For TDD, only slots consisting of only UL symbols are under test.
- 9. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 10. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE EIRP is in the range $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Tables 6.4A.2.2.3.4.2-1 according to the power class. P_W is the power window according to Table [TBD] for the carrier frequency f and the channel bandwidth BW.
- 11. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 12. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarization. For TDD, only slots consisting of only UL symbols are under test.
- 13. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

Table 6.4A.2.2.3.4.2-1: UE EIRP Preq (dBm) for carrier leakage

Power Class	P _{req} (dBm) for step 5	P _{req} (dBm) for step 10
Power Class 1	17	4
Power Class 2	6	-13
Power Class 3	0	-13
Power Class 4	11	-13

Table 6.4A.2.2.3.4.2-2: Power Window (dB) for carrier leakage

TBD

6.4A.2.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4A.2.2.3.5 Test requirement

For each of the *n* carrier leakage results derived in Annex E.3.1 for θ - and ϕ -polarization the total value is calculated according to

$$CarrLeak_{Total} = 10 log_{10} \left(10^{CarrLeak_{\theta}/10} + 10^{CarrLeak_{\phi}/10} \right) \text{, where}$$

$$n =$$
 0, for 60 kHz SCS 0 , for 120 kHz SCS.

Each of the *n* total carrier leakage results CarrLeak_{Total} shall not exceed the values in table 6.4.2.2.5-1 for power class 1, table 6.4.2.2.5-2 for power class 2, table 6.4.2.2.5-3 for power class 3 and table 6.4.2.2.5-4 for power class 4. Allocated RBs are not under test.

6.4A.2.3 In-band emissions for CA

6.4A.2.3.0 Minimum conformance requirements

6.4A.2.3.0.1 General

Inband emission requirement is defined over the spectrum occupied by all configured UL and DL CCs. The measurement interval is as defined in section 6.4.2.4. The requirement is verified with the test metric of In-band emission (Link=TX beam peak direction, Meas=Link angle).

For intra-band contiguous carrier aggregation, the requirements in this clause apply with all component carriers active and with one single contiguous PRB allocation in one of uplink component carriers. The inband emission is defined as the interference falling into the non-allocated resource blocks for all component carriers.

6.4A.2.3.0.2 In-band emissions for power class 1

The relative in-band emission shall not exceed the values specified in Table 6.4A.2.3.0.2-1 for power class 1 UEs.

Table 6.4A.2.3.0.2-1: Requirements for in-band emissions for power class 1

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB		$max \begin{bmatrix} -25 - 10 \cdot \log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10}\left(\text{EVM}\right) - 5 \cdot \frac{\left(\left \Delta_{RB}\right - 1\right)}{L_{CRB}}, \\ -55.1 dBm - P_{RB} \end{bmatrix}$	Any non-allocated RB in allocated component carrier and not allocated component carriers (NOTE 2)
IQ Image	dB	-25 -20		
Carrier leakage	dBc	-25 -20	Output power > 17 dBm 4 dBm ≤ Output power ≤ 17 dBm	Carrier frequency (NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 9.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency, or in the two RBs immediately adjacent to the DC frequency but excluding any allocated RB.
- NOTE 6: LCRB is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1).
- NOTE 7: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth), and may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.
- NOTE 9: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 10: All powers are EIRP in beam peak direction.

6.4A.2.3.0.3 In-band emissions for power class 2

The relative in-band emission shall not exceed the values specified in Table 6.4A.2.3.0.3-1 for power class 2.

Table 6.4A.2.3.0.3-1: Requirements for in-band emissions for power class 2

Parameter descriptio n	Unit	Limit (NOTE 1)	Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10} (EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix}$	Any non-allocated RB in allocated component carrier and not allocated component carriers (NOTE 2)
IQ Image	dB	-25 Output power > 16 dBm	Image frequencies
		-20 Output power ≤ 16 dBm	(NOTES 2, 3)
Carrier	dBc	-25 Output power > 6 dBm	Carrier frequency
leakage	===	-20 -13 dBm ≤ Output power ≤ 6 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 9.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency, or in the two RBs immediately adjacent to the DC frequency but excluding any allocated RB.
- NOTE 6: LCRB is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1).
- NOTE 7: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth), and may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.
- NOTE 9: P_{RB} is the transmitted power per allocated RB, measured in dBm.
- NOTE 10: All powers are EIRP in beam peak direction.

6.4A.2.3.0.4 In-band emissions for power class 3

The relative in-band emission shall not exceed the values specified in Table 6.4A.2.3.0.4-1 for power class 3 UEs.

Table 6.4A.2.3.0.4-1: Requirements for in-band emissions for power class 3

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	7	$max \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10} (EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1 dBm - P_{RB} \end{bmatrix}$	
IQ Image	dB	-25	Output power > 10 dBm	Image frequencies (NOTES 2, 3)
1491		-20	-20 Output power ≤ 10 dBm	
Carrier	dBc	-25	-25 Output power > 0 dBm	
leakage	ubc	-20	-13 dBm ≤ Output power ≤ 0 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 9.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency, or in the two RBs immediately adjacent to the DC frequency but excluding any allocated RB.
- NOTE 6: LCRB is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1).
- NOTE 7: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth), and may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.
- NOTE 9: P_{RB} is the transmitted power per allocated RB, measured in dBm.
- NOTE 10: All powers are EIRP in beam peak direction.

6.4A.2.3.0.5 In-band emissions for power class 4

The relative in-band emission shall not exceed the values specified in Table 6.4A.2.3.0.5-1 for power class 4 UEs.

Table 6.4A.2.3.0.5-1: Requirements for in-band emissions for power class 4

Parameter descriptio n	Unit	Limit (NOTE 1)	Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10} (EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1 dBm - P_{RB} \end{bmatrix}$	Any non-allocated RB in allocated component carrier and not allocated component carriers (NOTE 2)
IQ Image	dB	-25 Output power > 21 dBm -20 Output power ≤ 21 dBm	Image frequencies (NOTES 2, 3)
Carrier leakage	dBc	-25 Output power > 11 dBm -20 -13 dBm ≤ Output power ≤ 11 dBm	Carrier frequency (NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 9.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency, or in the two RBs immediately adjacent to the DC frequency but excluding any allocated RB.
- NOTE 6: LCRB is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1).
- NOTE 7: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth), and may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.
- NOTE 9: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 10: All powers are EIRP in beam peak direction.

6.4A.2.3.1 In-band emissions for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The test procedure is incomplete due to that power window for CA is TBD
- Measurement Uncertainty and Test Tolerance are FFS.
- Test configuration table is FFS.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.4A.2.3.1.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of in-band emissions.

6.4A.2.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.4A.2.3.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.3.0.

6.4A.2.3.1.4 Test description

6.4A.2.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and CC combinations based on NR operating bands specified in Table 5.5A.1-1, 5.5A.2-1 and 5.5A.2-2. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.4A.2.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.2.3.1.4.1-1: Test Configuration Table

FFS

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and C.3.0 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4A.2.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.4A.2.3.1.4.3

6.4A.2.3.1.4.2 Test procedure

- 1. Retrieve the LO position from the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE.
- 2. Configure SCC according to Annex C.0, C.1 and C.3.0 for all downlink physical channels.

- 3. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1. Procedure to configure SCC(s) for NR RF CA testing. Message contents are defined in clause 6.4A.2.3.1.4.3.
- 4. SS activates SCC by sending the activation MAC CE (Refer TS 38.321, clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.3.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 6. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $P_{req} + P_W \pm P_W$, where P_{req} is the power level specified in Table 6.4A.2.3.1.4.2-1 according to the power class with power ID = 1. P_W is the power window according to Table [TBD] for the carrier frequency f and the channel bandwidth BW.
- 7. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 2) for the UE Tx beam selection to complete.
- 8. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition TxRx.
- 9. Measure In-band emission IE_{θ} , IE_{ϕ} on PCC using Global In-Channel Tx-Test (Annex E) for the θ and ϕ -polarizations, respectively. Measure power spectral density on the SCC. For TDD, only slots consisting of only UL symbols are under test. Calculate $IE = IE_{\theta} + IE_{\phi}$, where the calculation is based on linear power ratios.
- 10. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 11. Repeat steps 6 through 10 until In-band emissions have been measured for all power IDs in Table 6. 4A.2.3.1.4.2-1.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4A.2.3.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.
- NOTE 2: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

Table 6.4A.2.3.1.4.2-1: Parameters for In-band emissions

Power ID	Unit	Level for power class 1	Level for power class 2	Level for power class 3	Level for power class 4
1	dBm	27	16	10	21
2	dBm	17	6	0	11
3	dBm	4	-13	-13	-13

Table 6.4A.2.3.1.4.2-2: Power Window (dB) for In-band emissions

TBD

6.4A.2.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.4A.2.3.1.5 Test requirement

The averaged in-band emissions result, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4A.2.3.1.5-1 for power class 1 UEs.

Table 6.4A.2.3.1.5-1: Test Requirements for in-band emissions for power class 1

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	ma	$max \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10} (EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1 dBm - P_{RB} \end{bmatrix}_{+TT}$	
IQ Image	dB	-25+TT	Output power > 27 dBm	Image frequencies
		-20+TT	Output power ≤ 27 dBm	(NOTES 2, 3)
Carrier	dBc	-25+TT	Output power > 17 dBm	Carrier frequency
leakage	ubt	-20+TT	4 dBm ≤ Output power ≤ 17 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply, P_{RB} is defined in NOTE 9.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency, or in the two RBs immediately adjacent to the DC frequency but excluding any allocated RB.
- NOTE 6: LCRB is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1).
- NOTE 7: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth), and may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.
- NOTE 9: P_{RB} is the transmitted power per allocated RB, measured in dBm.
- NOTE 10: All powers are EIRP in beam peak direction.

The averaged in-band emissions result, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4A.2.3.1.5-2 for power class 2 UEs.

Table 6.4A.2.3.1.5-2: Test Requirements for in-band emissions for power class 2

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10} (EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1 dBm - P_{RB} \end{bmatrix}, + TT$		Any non-allocated RB in allocated component carrier and not allocated component carriers (NOTE 2)
IQ Image	dB	-25+TT Output power > 16 dBm -20+TT Output power ≤ 16 dBm		Image frequencies (NOTES 2, 3)
Carrier leakage	dBc	-25+TT -20+TT	-25+TT Output power > 6 dBm	

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 9.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency, or in the two RBs immediately adjacent to the DC frequency but excluding any allocated RB.
- NOTE 6: LCRB is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1).
- NOTE 7: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth), and may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.
- NOTE 9: P_{RB} is the transmitted power per allocated RB, measured in dBm.
- NOTE 10: All powers are EIRP in beam peak direction.

The averaged in-band emissions result, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4A.2.3.1.5-3 for power class 3 UEs.

Table 6.4A.2.3.1.5-3: Test Requirements for in-band emissions for power class 3

Parameter descriptio n	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	max = -25 - 1 20 · log ₁₀ (EV -55	$max \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10} (EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1 dBm - P_{RB} \end{bmatrix}_{+TT}$	
IQ Image	dB	-25+TT Output powe -20+TT Output powe		Image frequencies (NOTES 2, 3)
Carrier	dBc	-25+TT Output powe		Carrier frequency
leakage	ubc	-20+TT -13 dBm < O	utput power < 0 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 9.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency, or in the two RBs immediately adjacent to the DC frequency but excluding any allocated RB.
- NOTE 6: LCRB is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1).
- NOTE 7: EVM s the limit for the modulation format used in the allocated RBs.
- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth), and may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.
- NOTE 9: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 10: All powers are EIRP in beam peak direction.

The averaged in-band emissions result, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4A.2.3.1.5-4 for power class 4 UEs.

component carriers

(NOTE 2)

Image frequencies

(NOTES 2, 3)

Carrier frequency

(NOTES 4, 5)

Parameter descriptio n

General

IQ Image

Carrier

leakage

dBc

Unit	Limit (NOTE 1)	Applicable Frequencies
dB	$max \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10} (EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{RB}}, \end{bmatrix}$	Any non-allocated RB in allocated component carrier and not allocated

Table 6.4A.2.3.1.5-4: Test Requirements for in-band emissions for power class 4

-13 dBm ≤ Output power ≤ 11 dBm NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (PRB - 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 9.

 $-55.1dBm - P_{RB}$

Output power > 21 dBm

Output power ≤ 21 dBm

Output power > 11 dBm

- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency.
- The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency, or in the two RBs immediately adjacent to the DC frequency but excluding any allocated RB.
- NOTE 6: LCRB is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1).
- NOTE 7: EVM s the limit for the modulation format used in the allocated RBs.

-25+TT

-20+TT

-25+TT

-20+TT

- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth), and may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.
- NOTE 9: PRB is the transmitted power per allocated RB, measured in dBm.
- NOTE 10: All powers are EIRP in beam peak direction.

6.4A.2.4 EVM equalizer spectrum flatness for CA

FFS.

EVM spectral flatness for pi/2 BPSK modulation with spectrum shaping for 6.4A.2.5

FFS.

6.4D Transmit signal quality for UL MIMO

FFS.

6.5 Output RF spectrum emissions

Unwanted emissions are divided into "Out-of-band emission" and "Spurious emissions" in 3GPP RF specifications. This notation is in line with ITU-R recommendations such as SM.329 [7] and the Radio Regulations [TBD].

ITU defines:

Out-of-band emission = Emission on a frequency or frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious emissions.

Spurious emission = Emission on a frequency, or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include

harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products but exclude outof-band emissions.

Unwanted emissions = Consist of spurious emissions and out-of-band emissions.

The UE transmitter spectrum emission consists of the three components; the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

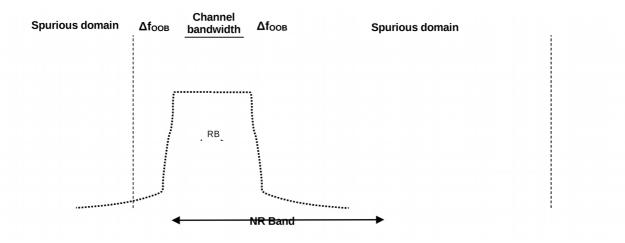


Figure 6.5-1: Transmitter RF spectrum

6.5.1 Occupied bandwidth

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty FFS.

6.5.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits

6.5.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

6.5.1.3 Minimum conformance requirements

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.5.1.2-1.

The occupied bandwidth is defined as a directional requirement. The requirement is verified in beam locked mode on beam peak direction.

Table 6.5.1.2-1: Occupied channel bandwidth

	Occupied channel bandwidth / Channel bandwidth			
	50 100 200 400		400	
	MHz	MHz	MHz	MHz
Channel bandwidth (MHz)	50	100	200	400
(IVIITZ)				

The normative reference for this requirement is TS 38.101-2 [3] clause 6.5.1.

6.5.1.4 Test description

6.5.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.5.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.1.4.1-1: Test Configuration Table

	s specified in TS 38.508-1 [10]	Normal		
subclause 4.1				
	s specified in TS 38.508-1 [10]	Low range, Mid range, High	ı range	
subclause 4.3.1				
Test Channel Band	widths as specified in TS	All		
38.508-1 [10] subcl	ause 4.3.1			
Test SCS as specif	ied in Table 5.3.5-1	Lowest		
	Т	est Parameters		
Test ID I	Downlink Configuration	Uplin	k Configuration	
N/A fo	r occupied handwidth test case	Modulation	RB allocation (NOTE 1)	
N/A for occupied bandwidth test case CP-OFDM QPSK Outer_full				

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.1.2.1 for TE diagram and section A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.1, and uplink signals according to Annex G.0, G.1 and G.3.1.
- 4. The UL Reference Measurement channels are set according to Table 6.5.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5.1.4.3

6.5.1.4.2 Test procedure

- 1. Set the UE in the Tx beam peak direction found with a TX beam peak direction search as performed in Annex K.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDSCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power.
- 4. Measure the EIRP spectrum distribution within two times or more frequency range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). The measuring duration is one active uplink subframe. EIRP is captured from both polarizations, theta and phi.

- 5. Calculate the total EIRP from both polarizations, theta and phi, within the range of all frequencies measured in step 4 and save this value as "Total EIRP". EIRP measurement procedure is defined in Annex K.
- 6. Identify the measurement window whose centre is aligned on the centre of the channel for which the sum of the power measured in theta and phi polarization is 99% of the "Total EIRP".
- 7. The "Occupied Bandwidth" is the width of the measurement window obtained in step 6.

6.5.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5.1.5 Test requirement

The measured Occupied Bandwidth shall not exceed values in Table 6.5.1.5-1.

Table 6.5.1.5-1: Occupied channel bandwidth

	Occupied channel bandwidth / Channel bandwidth						
	50 MHz						
Channel bandwidth (MHz)	50	100	200	400			

6.5.2 Out of band emission

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an Adjacent Channel Leakage power Ratio. Additional requirements to protect specific bands are also considered.

All out of band emissions for range 2 are TRP.

6.5.2.1 Spectrum Emission Mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. For frequencies greater than (Δf_{OOB}) the spurious requirements in subclause 6.5.3 are applicable.

6.5.2.1.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.5.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.1.3 Minimum conformance requirements

The power of any UE emission shall not exceed the levels specified in Table 6.5.2.1.3-1 for the specified channel bandwidth.

Table 6.5.2.1.3-1: General NR spectrum emission mask for Range 2.

Spec	Spectrum emission limit (dBm)/ Channel bandwidth							
Δf _{OOB} (MHz)	50 MHz	100 MHz	200 MHz	400 MHz	Measurement bandwidth			
± 0-5	-5	-5	-5	-5	1 MHz			
± 5-10	-13	-5	-5	-5	1 MHz			
± 10-20	-13	-13	-5	-5	1 MHz			
± 20-40	-13	-13	-13	-5	1 MHz			
± 40-100	-13	-13	-13	-13	1 MHz			
± 100-200		-13	-13	-13	1 MHz			
± 200-400			-13	-13	1 MHz			
± 400-800				-13	1 MHz			

The normative reference for this requirement is TS 38.101-2 [3] clause 6.5.2.1.

6.5.2.1.4 Test description

6.5.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.5.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.2.1.4.1-1: Test Configuration Table

		onditions			
Test Environi subclause 4.	ment as specified in TS 38.508-1 [10] 1	Normal			
Test Frequent subclause 4.	icies as specified in TS 38.508-1 [10] 3.1	Mid range			
Test Channel Bandwidths as specified in TS 38.508-1 [10] subclause 4.3.1		Lowest, Mid, Highest			
Test SCS as specified in Table 5.3.5-1		Lowest, Highest			
		rameters			
Test ID	Downlink Configuration	·	nfiguration		
	N/A for Spectrum Emission Mask test case	Modulation	RB allocation (NOTE 1)		
1		DFT-s-OFDM PI/2 BPSK	Outer_1RB_Left		
2		DFT-s-OFDM PI/2 BPSK	Outer_1RB_Right		
3		DFT-s-OFDM PI/2 BPSK	Outer_Full		
4		DFT-s-OFDM QPSK	Outer_1RB_Left		
5		DFT-s-OFDM QPSK	Outer_1RB_Right		
6		DFT-s-OFDM QPSK	Outer_Full		
7		DFT-s-OFDM 16 QAM	Outer_1RB_Left		
8		DFT-s-OFDM 16 QAM	Outer_1RB_Right		
9		DFT-s-OFDM 16 QAM	Outer_Full		
10		DFT-s-OFDM 64 QAM	Outer_1RB_Left		
11		DFT-s-OFDM 64 QAM	Outer_1RB_Right		
12		DFT-s-OFDM 64 QAM	Outer_Full		
13		CP-OFDM QPSK	Outer_1RB_Left		
14		CP-OFDM QPSK	Outer_1RB_Right		
15		CP-OFDM QPSK	Outer_Full		
NOTE 1: Th	ne specific configuration of each RF allocation is	s defined in Table 6.1-1.			

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.1.2.1 for TE diagram and section A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.1, and uplink signals according to Annex G.0, G.1 and G.3.1.
- 4. The UL Reference Measurement channels are set according to Table 6.5.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5.2.1.4.3

6.5.2.1.4.2 Test procedure

- 1. Set the UE in the Tx beam peak direction found with a TX beam peak direction search as performed in Annex K.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.2.1.4.2-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power.

4. Measure the TRP of the transmitted signal with a measurement filter of bandwidths according to table 6.5.2.1.1.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. TRP shall be recorded for each step. The measurement period shall capture the active time slots. Total radiated power is measured according to TRP measurement procedure defined in Annex K. The measurement grid used for TRP measurement defined in Annex M. TRP is calculated considering both polarizations, theta and phi.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5.2.1.5 Test requirement

The measured TRP of any UE emission derived in step 4, shall fulfil requirements in Table.6.5.2.1.5-1.

Table 6.5.2.1.5-1: General NR spectrum emission mask for Range 2

Spec	trum emi	ssion limi	t (dBm)/ C	hannel ba	ndwidth
Δf _{оов} (MHz)	50 MHz	100 MHz	200 MHz	400 MHz	Measurement bandwidth
± 0-5	-5 + TT	-5 + TT	-5 + TT	-5 + TT	1 MHz
± 5-10	-13 + TT	-5 + TT	-5 + TT	-5 + TT	1 MHz
± 10-20	-13 + TT	-13 + TT	-5 + TT	-5 + TT	1 MHz
± 20-40	-13 + TT	-13 + TT	-13 + TT	-5 + TT	1 MHz
± 40-100	-13 + TT	-13 + TT	-13 + TT	-13 + TT	1 MHz
± 100-200		-13 + TT	-13 + TT	-13 + TT	1 MHz
± 200-400			-13 + TT	-13 +TT	1 MHz
± 400-800				-13 + TT	1 MHz

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5.2.1.5-1a

NOTE 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0.5MHz and -0.5MHz, respectively.

NOTE 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel.

Table 6.5.2.1.5-1a: Test Tolerance (Spectrum emission mask)

Test Metric	23.45GHz ≤ f ≤ 32.125GHz	32.125GHz < f ≤ 40.8GHz
IFF (Quiet Zone size ≤ 30 cm)	3.21 dB	3.46 dB

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.2 Void

6.5.2.3 Adjacent channel leakage ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirement is specified for a scenario in which adjacent carrier is another NR channel.

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS.

6.5.2.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.3.3 Minimum conformance requirements

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirement is specified for a scenario in which adjacent carrier is another NR channel.

NR Adjacent Channel Leakage power Ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5.2.3.3-1.

If the measured adjacent channel power is greater than –35 dBm then the NRACLR shall be higher than the value specified in Table 6.5.2.3.3-1.

Channel bandwidth / NR_{ACLR} / Measurement bandwidth 50 100 200 400 MHz MHz MHz MHz NR_{ACLR} for band n257, 17 dB 17 dB 17 dB 17 dB n258 NR_{ACLR} for band n260 16 dB 16 dB 16 dB 16 dB NR channel 47.52 MHz 95.04 MHz 190.08 MHz 380.16 MHz Measurement bandwidth +50 +100.0 +200 +400 Adjacent channel centre frequency offset [MHz] -200 -400 -50 -100.0

Table 6.5.2.3.3-1: General requirements for NR_{ACLR}

The normative reference for this requirement is TS 38.101-2 [3] clause 6.5.2.3.1.

6.5.2.3.4 Test description

6.5.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.5.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.2.3.4.1-1: Test Configuration Table

				Default Cond	ditions	
Test E	nvironme	nt as spec	ified in TS	38.508-1 [10]	Normal	
	ause 4.1					
	Test Frequencies as specified in TS 38.508-1 [10]		Low range, High range			
0 0110 0110	ause 4.3.1					
	Channel Ba			ed in TS	Lowest, Mid, Highest	
	8-1 [10] su			_		
Test S	SCS as spe	ecified in 1	able 5.3.5		Lowest, Highest	
				Test Param		
Test	Freq	ChBw	SCS	Downlink	Uplink Config	uration
ID		5 ()	5 ();	Configuration		
		Default	Default	N/A for	Modulation	RB allocation
1	Low			Adjacent Channel	DET a OFDM DI/2 DDCK	(NOTE 1)
1	Low			Leakage Ratio	DFT-s-OFDM PI/2 BPSK	Outer_1RB_Left
3	High			test case	DFT-s-OFDM PI/2 BPSK	Outer_1RB_Right
	Default			lesi case	DFT-s-OFDM PI/2 BPSK	Outer_Full
4	Low				DFT-s-OFDM QPSK	Outer_1RB_Left
5 6	High Default				DFT-s-OFDM QPSK	Outer_1RB_Right
7					DFT-s-OFDM QPSK	Outer_Full
8	Low				DFT-s-OFDM 16 QAM	Outer_1RB_Left
9	High Default				DFT-s-OFDM 16 QAM	Outer_1RB_Right
10	Default				DFT-s-OFDM 16 QAM	Outer_Full
11					DFT-s-OFDM 64 QAM	Outer_Full Outer 1RB Left
12	Low				CP-OFDM QPSK	
13	High Default				CP-OFDM QPSK CP-OFDM QPSK	Outer_1RB_Right Outer Full
		nocific co	nfiguration	of each DE alles		
INOTE	: I. The s	specific co	riliguratior	i di each RF alloc	ation is defined in Table 6.1-	1.

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.1.2.1 for TE diagram and section A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.1, and uplink signals according to Annex G.0, G.1 and G.3.1.
- 4. The UL Reference Measurement channels are set according to Table 6.5.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5.2.3.4.3

6.5.2.3.4.2 Test procedure

- 1. Set the UE in the Tx beam peak direction found with a TX beam peak direction search as performed in Annex K.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.2.3.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power.

- 4. Measure TRP of the transmitted signal for the assigned NR channel with a rectangular measurement filter with bandwidths according to Table 6.5.2.3.5-1. Total radiated power is measured according to TRP measurement procedure defined in Annex K and measurement grid specified in Annex M. TRP is calculated considering both polarizations, theta and phi.
- 5. Measure TRP of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively using a rectangular measurement filter with bandwidths according to Table 6.5.2.3.5-1. Total radiated power is measured according to TRP measurement procedure defined in Annex K. The measurement grid used for TRP measurement defined in Annex M. TRP is calculated considering both polarizations, theta and phi.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR, respectively.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.3.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5.2.3.5 Test requirement

The measured NR ACLR, derived in step 6, shall be higher than the limits in table 6.5.2.3.5-1.

Channel bandwidth / NR_{ACLR} / Measurement bandwidth 50 100 200 400 MHz MHz MHz MHz NR_{ACLR} for band n257, 17 + TT dB 17 + TT dB 17 + TT dB 17 + TT dB n258 NR_{ACLR} for band n260 16 + TT dB 16 + TT dB 16 + TT dB 16 + TT dB NR channel 47.52 MHz 95.04 MHz 190.08 MHz 380.16 MHz Measurement bandwidth +50 +100.0 +200 +400 Adjacent channel centre 1 1 1 frequency offset [MHz] -50 -100.0 -200 -400

Table 6.5.2.3.5-1: General requirements for NR_{ACLR}

Table 6.5.2.3.5-1a: Test Tolerance (Adjacent channel leakage ratio)

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5.2.3.5-1a

Test Metric	23.45GHz ≤ f ≤ 30.3GHz	30.3GHz < f ≤ 40.8GHz
IFF (Quiet Zone size ≤ 30 cm)	[4.6] dB	[5.0] dB

6.5.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions. The spurious emission limits are specified in terms of general requirements in line with SM.329 [7] and *NR* operating band requirement to address UE co-existence. Spurious emissions are measured as TRP.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should

be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.3.1 Transmitter Spurious emissions

Editor's Note: This clause is complete. The following aspects of the clause are for future consideration:

- Testability issue for 6GHz ~ [12.75GHz] is identified. How to treat this frequency range is TBD.
- TRP Measurement uncertainty is TBD

6.5.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.1.3 Minimum conformance requirements

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3.1.3-1 starting from the edge of the assigned *NR* channel bandwidth. The spurious emission limits in Table 6.5.3.1.3-2 apply for all transmitter band configurations (NRB) and channel bandwidths. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction).

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5.3.1.3-1: Boundary between NR out of band and spurious emission domain

Channel bandwidth	50 MHz	100 MHz	200 MHz	400 MHz
ООВ	100	200	400	800
boundary F _{ooв} (MHz)				

The spurious emission limits in table 6.5.3.1.3-2 apply for all transmitter band configurations (RB) and channel bandwidths.

Table 6.5.3.1.3-2: Spurious emissions limits

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	
12.75 GHz ≤ f ≤ 2 nd harmonic of the upper frequency edge of the UL operating band in GHz	-13 dBm	1 MHz	

The normative reference for this requirement is TS 38.101-2 subclause 6.5.3.

6.5.3.1.4 Test description

6.5.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the Subscriber Station (SS) to take with the UE to reach the correct measurement state.

Table 6.5.3.1.4.1-1: Test Configuration Table

		Initial Conditions				
Test Enviro	nment as specified in TS 38.508-	Normal				
1 [10] subc	lause 4.1					
Test Freque	encies as specified in TS 38.508-	Low range, High range (NOTE 2)				
1 [10] subc	lause 4.3.1					
Test Chann	el Bandwidths as specified in TS	Highest				
38.508-1 [10] subclause 4.3.1						
Test SCS a	Test SCS as specified in Table 5.3.5-1 120kHz					
	Test Parameters					
Test ID	Downlink Configuration	Uplink Configura	ation			
		Modulation	RB allocation			
	N/A for Spurious Emissions		(NOTE 1)			
1	testing	DFT-s -OFDM QPSK	Inner_Full			
2		DFT-s -OFDM QPSK	Inner_1RB (NOTE 3)			
NOTE 1:	The specific configuration of each F	RB allocation is defined in Table 6.1-1 Comr	non UL configuration.			
	NOTE 2: When testing Low range test only in Frequency Range lower than ($F_{UL\ low} - \Delta f_{OOB}$) and when testing High					
	range test only in Frequency Range higher than $(F_{UL_high} + \Delta f_{OOB})$.					
NOTE 3: \	When testing Low range configure i	uplink RB to Inner_1RB_Left and when test	ting High range configure			
ι	uplink RB to Inner_1RB_Right.					

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5.3.1.4.3.

6.5.3.1.4.2 Test procedure

- 1. Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2. If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1. If the re-positioning concept is not applied, position the device in DUT Orientation 1.
- 3. SS sends uplink scheduling information for each UL HARQ process via PDSCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 4. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .

- 5. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 3) for the UE Tx beam selection to complete.
- 6. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 7. Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K if the re-positioning concept is applied (NOTE 4). Step (a) is optional and applicable only if SNR (test requirement level in Table 6.5.3.1.5-1 minus offset value minus noise floor of the test system) ≥ 0 dB is guaranteed.
 - (a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power level according to the procedures in Annex K, using coarse TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M. The measurement is completed in both polarizations θ and ϕ over frequency range and measurement bandwidth according to Table 6.5.3.1.3-2. Optionally, a larger and non-constant measurement bandwidth than that of Table 6.5.3.1.3-2 may be applied. The measurement period shall capture the active time slots. For each spurious emission frequency with coarse TRP identified to be less than an offset dB from the TRP limit according to Table 6.5.3.1.3-2, continue with fine TRP procedures according to step (b).

The offset value shall be the TRP measurement uncertainty at 95% confidence level including the effect of coarse grid measurement uncertainty element, excluding the influence of noise. Different coarse TRP grids and corresponding offset values may be used for different frequencies. The coarse TRP grid and offset values used shall be recorded in the test report.

Table 6.5.3.1.4.2-1: Typical offset values for coarse TRP measurement step 7(a)

Grid	Frequency Range	Offset Value		
Constant Density	6 GHz ≤ f < 12.75 GHz	TBD		
	12.75 GHz ≤ f ≤ 23.45GHz	TBD		
	23.45 GHz ≤ f ≤ 40.8GHz	TBD		
	40.8 GHz ≤ f ≤ 66GHz	TBD		
Constant-Step Size	6 GHz ≤ f < 12.75 GHz	TBD		
	12.75 GHz ≤ f ≤ 23.45GHz	TBD		
	23.45 GHz ≤ f ≤ 40.8GHz	TBD		
	40.8 GHz ≤ f ≤ 66GHz	TBD		

- NOTE 1: These offset values are the upper limit values when fine TRP measurement uncertainity of the test system is same as maximum test system uncertainity in Annex F and when using the coarse measurement grid with minimum number of points as specified in Table M.4.5-3.
- NOTE 2: It is allowed to use the offset values derived based on test system's actual measurement uncertainity budget and denser measurement grid as specified in Table M.4.5.3.
- (b) Measure fine TRP measurements according to procedures in Annex K, using fine TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M, for each of the spurious emission frequency identified in step (a). Apply a measurement bandwidth according to Table 6.5.3.1.3-2.
- 8. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: The frequency range defined in Table 6.5.3.1.3-2 may be split into ranges. For each range a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges must pass.
- NOTE 2: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.3.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE 3: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 1 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 2 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test.

6.5.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5.3.1.5 Test requirement

This clause specifies the requirements for the specified *NR* band for Transmitter Spurious emissions requirement with frequency range as indicated in Table 6.5.3.1.5-1.

The maximum EIRP or TRP power of spurious emission, measured using RMS detector, shall not exceed the described value in Table 6.5.3.1.5-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3.1.3-1 starting from the edge of the assigned *NR* channel bandwidth. The spurious emission limits in Table 6.5.3.1.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Maximum Measurement NOTE **Frequency Range** Level bandwidth 6 GHz ≤ f < 12.75 GHz -30 dBm 1 MHz $12.75 \text{ GHz} \leq f \leq 2^{nd}$ -13 dBm 1 MHz harmonic of the upper frequency edge of the UL operating band in GHz NOTE 1: Applies for Band n257, n258, n260

Table 6.5.3.1.5-1: Spurious emissions test requirements

6.5.3.2 Spurious emission band UE co-existence

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Testability issue for 6GHz ~ [12.75GHz] is identified. How to treat this frequency range is TBD.
- TRP Measurement uncertainty is TBD

6.5.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference when in co-existence with protected bands in terms of transmitter spurious emissions.

6.5.3.2.2 Test applicability

This test case applies to all types of *NR* UE release 15 and forward.

6.5.3.2.3 Minimum conformance requirements

This clause specifies the requirements for the specified NR band, for co-existence with protected bands. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction).

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

The spurious emission UE co-existence limits in Table 6.5.3.2.3-1 apply for all transmitter band configurations (RB) and channel bandwidths.

Table 6.5.3.2.3-1: Spurious emissions UE co-existence limits

		Spurious emission									
NR Band	Protected band/frequency range		Frequency range (MHz)		Maximum Level (dBm)	MBW (MHz)	NOTE				
n257	NR Band n260	F _{DL_low}	-	F _{DL_high}	-2	100					
11257	Frequency range	57000	-	66000	2	100					
n258	Frequency range	57000	-	66000	2	100					
	NR Band 257	F _{DL low}	-	F _{DL high}	-5	100					
n260	NR Band 261	F _{DL_low}	-	F _{DL_high}	-5	100					
	Frequency range	57000	-	66000	2	100					
m2C1	NR Band 260	F_{DL_low}	-	F _{DL_high}	-2	100					
n261	Frequency range	57000	-	66000	2	100					
NOTE 1:	Frequency range					100					

NOTE 1: F_{DL_low} and F_{DL_high} refer to each NR frequency band specified in Table 5.2-1. NOTE 2: Void.

The normative reference for this requirement is TS 38.101-2 subclause 6.5.3.1.

6.5.3.2.4 Test description

6.5.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the Subscriber Station (SS) to take with the UE to reach the correct measurement state.

Table 6.5.3.2.4.1-1: Test Configuration Table

Initial Conditions					
Test Environment as specified in TS 38.508-		Normal			
1 [10] subclause 4.1					
Test Frequencies as specified in TS 38.508-		Low range, High range (NOTE 2)			
1 [10] subclause 4.3.1					
	el Bandwidths as specified in TS	Highest			
38.508-1 [10] subclause 4.3.1					
Test SCS as	specified in Table 5.3.5-1	120kHz			
Test Parameters					
Test ID	Downlink Configuration	Uplink Configuration			
		Modulation	RB allocation		
	N/A for Spurious Emissions		(NOTE 1)		
1	testing	DFT-s-OFDM QPSK	Inner_Full		
2		DFT-s-OFDM QPSK	Inner_1RB (NOTE 3)		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.					
NOTE 2: When testing Low range test only in Frequency Range lower than $(F_{UL_low} - \Delta f_{OOB})$ and when testing High					
range test only in Frequency Range higher than ($F_{U_{-}high} + \Delta f_{OOB}$).					
NOTE 3: When testing Low range configure uplink RB to Inner_1RB_Left and when testing High range configure					
u	uplink RB to Inner_1RB_Right.				

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.

- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.2.4.1-1
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5.3.2.4.3.

6.5.3.2.4.2 Test procedure

- 1. Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2. If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range 0°≤θ≤90° for the alignment option selected in step 1; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range 90°<θ≤180° for DUT Orientation 1 for the alignment option selected in step 1. If the re-positioning concept is not applied, position the device in DUT Orientation 1.</p>
- 3. SS sends uplink scheduling information for each UL HARQ process via PDSCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5. 3.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 4. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .
- 5. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 3) for the UE Tx beam selection to complete.
- 6. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 7. Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K if the re-positioning concept is applied (NOTE 4):
 - (a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power level according to the procedures in Annex K, using coarse TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M. The measurement is completed in both polarizations θ and ϕ over frequency range and measurement bandwidth according to Table 6.5.3. 2.3-1. Optionally, a larger and non-constant measurement bandwidth than that of Table 6.5.3. 2.3-1 may be applied as long as the SNR (ratio of test limit to floor noise of test equipment) \geq 10dB is guaranteed. The measurement period shall capture the active time slots. For each spurious emission frequency with coarse TRP identified to be less than an offset dB (NOTE 2) from the TRP limit according to Table 6.5.3. 2.3-1, continue with fine TRP procedures according to step (b).

The offset value shall be the TRP measurement uncertainty at 95% confidence level including the effect of coarse grid measurement uncertainty element. Different coarse TRP grids and corresponding offset values may be used for different frequencies. The coarse TRP grid and offset values used shall be recorded in the test report.

- (b) Measure fine TRP measurements according to procedures in Annex K, using fine TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M, for each of the spurious emission frequency identified in step (a). Apply a measurement bandwidth according to Table 6.5.3.2.3-1.
- 8. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: The frequency range defined in Table 6.5.3. 2.3-1 may be split into ranges. For each range a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges must pass.
- NOTE 2: The coarse TRP measurement grid and corresponding offset dB value referred in step 5(a) above, for some valid grids can be found in TR 38.903 section B.18.

NOTE 3: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 1 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 2 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test.

6.5.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5.3.2.5 Test requirement

This clause specifies the requirements for the specified *NR* band for Transmitter Spurious emissions for UE coexistence requirement with frequency range as indicated in Table 6.5.3.2.5-1.

The maximum EIRP or TRP power of spurious emission for UE co-existence, measured using RMS detector, shall not exceed the described value in Table 6.5.3.2.5-1.

The spurious emission UE co-existence limits in Table 6.5.3.2.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Spurious emission NOTE NR **MBW** Protected band/frequency range Frequency range Maximum **Band** Level (MHz) (MHz) (dBm) NR Band n260 F_{DL_low} $\mathsf{F}_{\mathsf{DL_high}}$ -2 100 n257 Frequency range 57000 66000 2 100 n258 Frequency range 57000 66000 2 100 NR Band 257 F_{DL_low} $\mathsf{F}_{\mathsf{DL_high}}$ -5 100 F_{DL_high} n260 NR Band 261 F_{DL_low} -5 100

57000

 F_{DL_low}

57000

66000

 $\mathsf{F}_{\mathsf{DL}\ \mathsf{high}}$

66000

2

-2

100

100

100

Table 6.5.3.2.5-1: Spurious emissions UE co-existence test requirements

NOTE 1: F_{DL_low} and F_{DL_high} refer to each NR frequency band specified in Table 5.2-1. NOTE 2: Void.

6.5.3.3 Additional Spurious emission

Frequency range

Frequency range

NR Band 260

n261

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Testability issue for 6GHz ~ [12.75GHz] is identified. How to treat this frequency range is TBD.
- TRP Measurement uncertainty is TBD

6.5.3.3.1 Test purpose

Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5.3.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.3.3 Minimum conformance requirements

The additional spurious emission limits in Table 6.5.3.3.3-1 apply for all transmitter band configurations (RB) and channel bandwidths. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction).

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

When "NS_201" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3-1: Additional spurious emissions (NS_201) test limits

Frequency Range	Maximum Level / Channel bandwidth				Measurement	NOTE
	50 MHz	100 MHz	200 MHz	400 MHz	bandwidth	
23.6 GHz ≤ f ≤ 24 GHz	-8 dBm	-8 dBm	-8 dBm	-8 dBm	200MHz	1
NOTE 1: The protection of frequency range 23600 - 24000 MHz is meant for protection of satellite passive services.						

The normative reference for this requirement is TS 38.101-2 subclause 6.5.3.2.

6.5.3.3.4 Test description

6.5.3.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the Subscriber Station (SS) to take with the UE to reach the correct measurement state.

Table 6.5.3.3.4.1-1: Test Configuration Table

Initial Conditions						
Test Environment as specified in TS 38.508-		Normal				
1 [10] subclause 4.1						
Test Frequencies as specified in TS 38.508-		Low range				
1 [10] subclause 4.3.1						
Test Channel Bandwidths as specified in TS		Highest				
38.508-1 [10] subclause 4.3.1						
Test SCS as specified in Table 5.3.5-1		120kHz				
	Test Parameters					
Test ID	Test ID Downlink Configuration Uplink Configuration					
		Modulation	RB allocation			
	N/A for Spurious Emissions		(NOTE 1)			
1	testing	DFT-s-OFDM QPSK	Inner_Full			
2		DFT-s-OFDM QPSK Inner_1RB_Left				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.						

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.3.4.1-1
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5.3.3.4.3.

6.5.3.3.4.2 Test procedure

- 1. Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2. If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range 0°≤θ≤90° for the alignment option selected in step 1; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range 90°<θ≤180° for DUT Orientation 1 for the alignment option selected in step 1. If the re-positioning concept is not applied, position the device in DUT Orientation 1.
- 3. SS sends uplink scheduling information for each UL HARQ process via PDSCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 4. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{IIMAX}.
- 5. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 3) for the UE Tx beam selection to complete.
- 6. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 7. Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K if the re-positioning concept is applied (NOTE 4):
 - (a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power level according to the procedures in Annex K, using coarse TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M.. The measurement is completed in both polarizations θ and ϕ over frequency range and measurement bandwidth according to Table 6.5.3.1.3-2. Optionally, a larger and non-constant measurement bandwidth than that of Table 6.5.3.1.3-2 may be applied as long as the SNR (ratio of test limit to floor noise of test equipment) \geq 10dB is guaranteed. The measurement period shall capture the [active time slots]. For each spurious emission frequency with coarse TRP identified to be less than an offset dB (NOTE 2) from the TRP limit according to Table 6.5.3.1.3-2, continue with fine TRP procedures according to step (b).
 - The offset value shall be the TRP measurement uncertainty at 95% confidence level including the effect of coarse grid measurement uncertainty element. Different coarse TRP grids and corresponding offset values may be used for different frequencies. The coarse TRP grid and offset values used shall be recorded in the test report.
 - (b) Measure fine TRP measurements according to procedures in Annex K, using fine TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M, for each of the spurious emission frequency identified in step (a). Apply a measurement bandwidth according to Table 6.5.3.1.3-2.
- 8. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: The frequency range defined in Table 6.5.3.1.3-2 may be split into ranges. For each range a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges must pass.
- NOTE 2: The coarse TRP measurement grid and corresponding offset dB value referred in step 5(a) above, for some valid grids can be found in TR 38.903 section B.18.
- NOTE 3: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 1 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 2 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test

6.5.3.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5.3.3.5 Test requirement

This clause specifies the requirements for the specified *NR* band for Transmitter Spurious emissions for UE coexistence requirement with frequency range as indicated in Table 6.5.3.3.5-1.

The maximum EIRP or TRP power of spurious emission for UE co-existence, measured using RMS detector, shall not exceed the described value in Table 6.5.3.3.5-1.

The spurious emission UE co-existence limits in Table 6.5.3.3.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5.3.3.5-1: Additional spurious emissions (NS_201) test requirements

Frequency	Maximum Level / Channel bandwidth				Measurement	NOTE
Range	50	100	200	400 MHz	bandwidth	
	MHz	MHz	MHz			
23.6 GHz ≤ f	-8 dBm	-8 dBm	-8 dBm	-8 dBm	200MHz	1
≤ 24 GHz						
NOTE 1. The protection of fragress are as 00000, 04000 MHz is properties						

NOTE 1: The protection of frequency range 23600 - 24000 MHz is meant for protection of satellite passive services.

6.5A Output RF spectrum emissions for CA

6.5A.1 Occupied bandwidth for CA

6.5A.1.0 Minimum conformance requirements

For intra-band contiguous carrier aggregation, the occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmitted spectrum. The occupied bandwidth for CA shall be less than the aggregated channel bandwidth defined in subclause 5.5A.

The occupied bandwidth for CA is defined as a directional requirement. The requirement is verified in beam locked mode on beam peak direction.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.5A.1.

6.5A.1.1 Minimum output power for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The test configuration table is FFS
- SCC configuration in the procedure is FFS

- Connection Diagram is FFS
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS
- Test procedure for intra-band non-contiguous CA is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD
- How to apply Multi-band relaxation into UL CA test cases is FFS

6.5A.1.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power on each component carrier is set to a minimum value.

6.5A.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.5A.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.1.0.

6.5A.1.1.4 Test description

6.5A.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A.1-1. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.5A.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.1.1.4.1-1: Test Configuration Table

FFS

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure [TBD] for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] clause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.5A.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5A.1.1.4.3.

6.5A.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.3.0 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause [TBD]. Message contents are defined in clause 6.5A.1.1.4.3
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [TBD], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.2).
- 4. Set the UE in the Tx beam peak direction found with a TX beam peak direction search as performed in Annex K.
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.1.1.4.1-1 on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 6. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power.
- 7. Measure the EIRP spectrum distribution over all component carriers within two times or more frequency range over the requirement for Occupied Bandwidth for CA specification centring on the current carrier frequency. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). The measuring duration is one active uplink subframe. EIRP is captured from both polarizations, theta and phi.
- 8. Calculate the total EIRP from both polarizations, theta and phi, within the range of all frequencies measured in step 4 and save this value as "Total EIRP". EIRP measurement procedure is defined in Annex K.
- 9. Identify the measurement window whose centre is aligned on the centre of the channel for which the sum of the power measured in theta and phi polarization is 99% of the "Total EIRP".
- 10. The "Occupied Bandwidth" is the width of the measurement window obtained in step 9.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

6.5A.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.1.1.5 Test requirement

The measured Occupied Bandwidth shall not exceed the aggregated channel bandwidth defined in subclause 5.5A.

6.5A.1.2 Occupied bandwidth for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS
- Test procedure for intra-band non-contiguous CA is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD
- How to apply Multi-band relaxation into UL CA test cases is FFS

6.5A.1.2.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits.

6.5A.1.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.5A.1.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.1.0.

6.5A.1.2.4 Test description

6.5A.1.2.4.1 Initial condition

Same as in clause 6.5A.1.1.4 with following exceptions:

- Instead of Table 6.5A.1.1.4.1-1 → use Table 6.5A.1.2.4.1-1.
- Instead of clause 6.5A.1.1.4.3 → use clause 6.5A.1.2.4.3.

Table 6.5A.1.2.4.1-1: Test Configuration Table

FFS

6.5A.1.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.1.2.5 Test requirement

The measured Occupied Bandwidth shall not exceed the aggregated channel bandwidth defined in subclause 5.5A.

6.5A.1.3 Occupied bandwidth for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS
- Test procedure for intra-band non-contiguous CA is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD
- How to apply Multi-band relaxation into UL CA test cases is FFS

6.5A.1.3.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits.

6.5A.1.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.5A.1.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.1.0.

6.5A.1.3.4 Test description

6.5A.1.3.4.1 Initial condition

Same as in clause 6.5A.1.1.4 with following exceptions:

- Instead of Table 6.5A.1.1.4.1-1 → use Table 6.5A.1.3.4.1-1.
- Instead of clause $6.5A.1.1.4.3 \rightarrow$ use clause 6.5A.1.3.4.3.

Table 6.5A.1.3.4.1-1: Test Configuration Table

FFS

6.5A.1.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.1.3.5 Test requirement

The measured Occupied Bandwidth shall not exceed the aggregated channel bandwidth defined in subclause 5.5A.

6.5A.1.4 Occupied bandwidth for CA (5UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS
- Test procedure for intra-band non-contiguous CA is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD
- How to apply Multi-band relaxation into UL CA test cases is FFS

6.5A.1.4.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits.

6.5A.1.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 5UL CA.

6.5A.1.4.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.1.0.

6.5A.1.4.4 Test description

6.5A.1.4.4.1 Initial condition

Same as in clause 6.5A.1.1.4 with following exceptions:

- Instead of Table 6.5A.1.1.4.1-1 → use Table 6.5A.1.4.4.1-1.
- Instead of clause 6.5A.1.1.4.3 \rightarrow use clause 6.5A.1.4.4.3.

Table 6.5A.1.4.4.1-1: Test Configuration Table

FFS

6.5A.1.4.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.1.4.5 Test requirement

The measured Occupied Bandwidth shall not exceed the aggregated channel bandwidth defined in subclause 5.5A.

6.5A.1.5 Occupied bandwidth for CA (6UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS
- Test procedure for intra-band non-contiguous CA is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD
- How to apply Multi-band relaxation into UL CA test cases is FFS

6.5A.1.5.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits.

6.5A.1.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 6UL CA.

6.5A.1.5.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.1.0.

6.5A.1.5.4 Test description

6.5A.1.5.4.1 Initial condition

Same as in clause 6.5A.1.1.4 with following exceptions:

- Instead of Table 6.5A.1.1.4.1-1 → use Table 6.5A.1.5.4.1-1.
- Instead of clause $6.5A.1.1.4.3 \rightarrow$ use clause 6.5A.1.5.4.3.

Table 6.5A.1.5.4.1-1: Test Configuration Table

FFS

6.5A.1.5.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.1.5.5 Test requirement

The measured Occupied Bandwidth shall not exceed the aggregated channel bandwidth defined in subclause 5.5A.

6.5A.1.6 Occupied bandwidth for CA (7UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS
- Test procedure for intra-band non-contiguous CA is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD
- How to apply Multi-band relaxation into UL CA test cases is FFS

6.5A.1.6.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits.

6.5A.1.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 7UL CA.

6.5A.1.6.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.1.0.

6.5A.1.6.4 Test description

6.5A.1.6.4.1 Initial condition

Same as in clause 6.5A.1.1.4 with following exceptions:

- Instead of Table 6.5A.1.1.4.1-1 → use Table 6.5A.1.6.4.1-1.
- Instead of clause 6.5A.1.1.4.3 \rightarrow use clause 6.5A.1.6.4.3.

Table 6.5A.1.6.4.1-1: Test Configuration Table

FFS

6.5A.1.6.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.1.6.5 Test requirement

The measured Occupied Bandwidth shall not exceed the aggregated channel bandwidth defined in subclause 5.5A.

6.5A.1.7 Occupied bandwidth for CA (8UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS
- Applicability of Beam peak of single UL is FFS
- Test procedure for intra-band non-contiguous CA is TBD
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD
- How to apply Multi-band relaxation into UL CA test cases is FFS

6.5A.1.7.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits.

6.5A.1.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 8UL CA.

6.5A.1.7.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.1.0.

6.5A.1.7.4 Test description

6.5A.1.7.4.1 Initial condition

Same as in clause 6.5A.1.1.4 with following exceptions:

- Instead of Table 6.5A.1.1.4.1-1 → use Table 6.5A.1.7.4.1-1.
- Instead of clause 6.5A.1.1.4.3 → use clause 6.5A.1.7.4.3.

Table 6.5A.1.7.4.1-1: Test Configuration Table

FFS

6.5A.1.7.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.1.7.5 Test requirement

The measured Occupied Bandwidth shall not exceed the aggregated channel bandwidth defined in subclause 5.5A.

6.5A.2 Out of band emission for CA

6.5A.2.1 Spectrum Emission Mask for CA

6.5A.2.1.0 Minimum conformance requirements

The requirement specified in this section shall apply if the UE has at least one of UL or DL configured for CA or if the UE is configured for single CC operation with different channel bandwidths in UL and DL carriers.

For intra-band contiguous carrier aggregation, the spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the aggregated channel bandwidth (Table 5.3A.5-1). For any bandwidth class defined in Table 5.3A.5-1, the UE emission shall not exceed the levels specified in Table 6.5A.2.1.0-1. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction).

Table 6.5A.2.1.0-1: General NR spectrum emission mask for intra-band contiguous CA in frequency range 2

Δf _{OOB} (MHz)	Any carrier aggregation bandwidth class	Measurement bandwidth	
± 0-0.1*BW _{Channel_CA}	-5	1 MHz	
± 0.1*BW _{Channel_CA} -2*BW _{Channel_CA}	-13	1 MHz	

NOTE 1: If carrier leakage or I/Q image lands inside the spectrum occupied by the configured UL and DL CCs, exception to the general spectrum emission mask limit applies. For carrier leakage the requirements specified in section 6.4A.2.2.0 shall apply. For I/Q image the requirements specified in section 6.4A.2.3.0 shall apply.

6.5A.2.1.1 Spectrum Emission Mask for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.1.1.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.5A.2.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.5A.2.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.1.0.

6.5A.2.1.1.4 Test description

6.5A.2.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.5A. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.5A.2.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.2.1.1.4.1-1: Test Configuration Table [TBD]

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure [TBD] for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.2.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5A.2.1.1.4.3

6.5A.2.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause [TBD]. Message contents are defined in clause 6.5A.2.1.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [x], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. Set the UE in the Tx beam peak direction found with a TX beam peak direction search as performed in Annex K.
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.2.1.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 6. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power.

- 7. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.5A.2.1.1.5-1 for Min peak EIRP requirement. EIRP measurement procedure is defined in Annex K. The period of the measurement shall be at least 1 msec over consecutive active uplink slots. EIRP is captured from both polarizations, theta and phi.
- 8. Measure the TRP of the transmitted signal with a measurement filter of bandwidths according to table 6.5.2.1.1.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. TRP shall be recorded for each step. The measurement period shall capture the active time slots. Total radiated power is measured according to TRP measurement procedure defined in Annex K. The measurement grid used for TRP measurement defined in Annex M. TRP is calculated considering both polarizations, theta and phi.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5A.2.1.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.2.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.2.1.1.5 Test Requirements

The measured EIRP derived in step 7, shall fulfil requirements in Table 6.2A.2.1.1.5-1 for Min peak EIRP requirement as appropriate, and the power (TRP) of any UE emission shall fulfil requirements in Table.6.5A.2.1.1.5-1.

Table 6.5A.2.1.1.5-1: General NR spectrum emission mask for intra-band contiguous CA in frequency range 2

Δf _{OOB} (MHz)	Any carrier aggregation bandwidth class	Measurement bandwidth
± 0-0.1*BW _{Channel_CA}	-5 + TT	1 MHz
± 0.1*BW _{Channel CA} -2*BW _{Channel CA}	-13 + TT	1 MHz

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.1.1.5-1a
NOTE 2: If carrier leakage or I/Q image lands inside the spectrum occupied by the
configured UL and DL CCs, exception to the general spectrum emission mask limit
applies. For carrier leakage the requirements specified in section 6.4A.2.2.0 shall
apply. For I/Q image the requirements specified in section 6.4A.2.3.0 shall apply.

Table 6.5A.2.1.1.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	3.21 dB	TBD

6.5A.2.1.2 Spectrum Emission Mask for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.1.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.5A.2.1.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.5A.2.1.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.1.0.

6.5A.2.1.2.4 Test description

Same as in clause 6.5A.2.1.1.4 with following exceptions:

- Instead of Table 6.5A.2.1.1.4.1-1 → use Table 6.5A.2.1.2.4.1-1.
- Instead of clause 6.5A.2.1.1.4.3 → use clause 6.5A.2.1.2.4.3.
- Instead of Table 6.5A.2.1.1.5-1 → use Table 6.5A.2.1.2.5-1.

Table 6.5A.2.1.2.4.1-1: Test Configuration Table [TBD]

6.5A.2.1.2.5 Test Requirements

The measured EIRP derived in step 7, shall fulfil requirements in Table 6.2A.2.1.1.5-1 for Min peak EIRP requirement as appropriate, and the power (TRP) of any UE emission shall fulfil requirements in Table.6.5A.2.1.2.5-1.

Table 6.5A.2.1.2.5-1: General NR spectrum emission mask for intra-band contiguous CA in frequency range 2

Δf _{OOB} (MHz)	Any carrier aggregation bandwidth class	Measurement bandwidth
± 0-0.1*BW _{Channel_CA}	-5 + TT	1 MHz
± 0.1*BW _{Channel CA} -2*BW _{Channel CA}	-13 + TT	1 MHz

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.1.2.5-1a

NOTE 2: If carrier leakage or I/Q image lands inside the spectrum occupied by the
configured UL and DL CCs, exception to the general spectrum emission mask limit
applies. For carrier leakage the requirements specified in section 6.4A.2.2.0 shall
apply. For I/Q image the requirements specified in section 6.4A.2.3.0 shall apply.

Table 6.5A.2.1.2.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	3.21 dB	TBD

6.5A.2.1.3 Spectrum Emission Mask for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.

- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.1.3.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.5A.2.1.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.5A.2.1.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.1.0.

6.5A.2.1.3.4 Test description

Same as in clause 6.5A.2.1.1.4 with following exceptions:

- Instead of Table 6.5A.2.1.1.4.1-1 → use Table 6.5A.2.1.3.4.1-1.
- Instead of clause 6.5A.2.1.1.4.3 → use clause 6.5A.2.1.3.4.3.
- Instead of Table 6.5A.2.1.1.5-1 → use Table 6.5A.2.1.3.5-1.

Table 6.5A.2.1.3.4.1-1: Test Configuration Table

FFS

6.5A.2.1.3.5 Test Requirements

The measured EIRP derived in step 7, shall fulfil requirements in Table 6.2A.2.1.1.5-1 for Min peak EIRP requirement as appropriate, and the power (TRP) of any UE emission shall fulfil requirements in Table.6.5A.2.1.3.5-1.

Table 6.5A.2.1.3.5-1: General NR spectrum emission mask for intra-band contiguous CA in frequency range 2

Δf _{OOB} (MHz)	Any carrier aggregation bandwidth class	Measurement bandwidth
± 0-0.1*BW _{Channel_CA}	-5 + TT	1 MHz
± 0.1*BW _{Channel CA} -2*BW _{Channel CA}	-13 + TT	1 MHz

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.1.3.5-1a NOTE 2: If carrier leakage or I/Q image lands inside the spectrum occupied by the configured UL and DL CCs, exception to the general spectrum emission mask limit applies. For carrier leakage the requirements specified in section 6.4A.2.2.0 shall apply. For I/Q image the requirements specified in section 6.4A.2.3.0 shall apply.

Table 6.5A.2.1.3.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	3.21 dB	TBD

6.5A.2.1.4 Spectrum Emission Mask for CA (5UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD

- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.1.4.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.5A.2.1.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 5UL CA.

6.5A.2.1.4.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.1.0.

6.5A.2.1.4.4 Test description

Same as in clause 6.5A.2.1.1.4 with following exceptions:

- Instead of Table 6.5A.2.1.1.4.1-1 → use Table 6.5A.2.1.4.4.1-1.
- Instead of clause 6.5A.2.1.1.4.3 → use clause 6.5A.2.1.4.4.3.
- Instead of Table 6.5A.2.1.1.5-1 → use Table 6.5A.2.1.4.5-1.

Table 6.5A.2.1.4.4.1-1: Test Configuration Table

FFS

6.5A.2.1.4.5 Test Requirements

The measured EIRP derived in step 7, shall fulfil requirements in Table 6.2A.2.1.1.5-1 for Min peak EIRP requirement as appropriate, and the power (TRP) of any UE emission shall fulfil requirements in Table.6.5A.2.1.4.5-1.

Table 6.5A.2.1.4.5-1: General NR spectrum emission mask for intra-band contiguous CA in frequency range 2

Δf _{OOB} (MHz)	Any carrier aggregation bandwidth class	Measurement bandwidth
± 0-0.1*BW _{Channel_CA}	-5 + TT	1 MHz
± 0.1*BW _{Channel CA} -2*BW _{Channel CA}	-13 + TT	1 MHz

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.1.4.5-1a NOTE 2: If carrier leakage or I/Q image lands inside the spectrum occupied by the configured UL and DL CCs, exception to the general spectrum emission mask limit applies. For carrier leakage the requirements specified in section 6.4A.2.2.0 shall apply. For I/Q image the requirements specified in section 6.4A.2.3.0 shall apply.

Table 6.5A.2.1.4.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	3.21 dB	TBD

6.5A.2.1.5 Spectrum Emission Mask for CA (6UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.1.5.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.5A.2.1.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 6UL CA.

6.5A.2.1.5.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.1.0.

6.5A.2.1.5.4 Test description

Same as in clause 6.5A.2.1.1.4 with following exceptions:

- Instead of Table 6.5A.2.1.1.4.1-1 → use Table 6.5A.2.1.5.4.1-1.
- Instead of clause 6.5A.2.1.1.4.3 → use clause 6.5A.2.1.5.4.3.
- Instead of Table 6.5A.2.1.1.5-1 → use Table 6.5A.2.1.5.5-1.

Table 6.5A.2.1.5.4.1-1: Test Configuration Table

FFS

6.5A.2.1.5.5 Test Requirements

The measured EIRP derived in step 7, shall fulfil requirements in Table 6.2A.2.1.1.5-1 for Min peak EIRP requirement as appropriate, and the power (TRP) of any UE emission shall fulfil requirements in Table.6.5A.2.1.5.5-1.

Table 6.5A.2.1.5.5-1: General NR spectrum emission mask for intra-band contiguous CA in frequency range 2

Δf _{OOB} (MHz)	Any carrier aggregation bandwidth class	Measurement bandwidth
± 0-0.1*BW _{Channel_CA}	-5 + TT	1 MHz
± 0.1*BW _{Channel_CA} -2*BW _{Channel_CA}	-13 + TT	1 MHz

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.1.5.5-1a NOTE 2: If carrier leakage or I/Q image lands inside the spectrum occupied by the configured UL and DL CCs, exception to the general spectrum emission mask limit applies. For carrier leakage the requirements specified in section 6.4A.2.2.0 shall apply. For I/Q image the requirements specified in section 6.4A.2.3.0 shall apply.

Table 6.5A.2.1.5.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	3.21 dB	TBD

6.5A.2.1.6 Spectrum Emission Mask for CA (7UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.1.6.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.5A.2.1.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 7UL CA.

6.5A.2.1.6.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.1.0.

6.5A.2.1.6.4 Test description

Same as in clause 6.5A.2.1.1.4 with following exceptions:

- Instead of Table 6.5A.2.1.1.4.1-1 → use Table 6.5A.2.1.6.4.1-1.
- Instead of clause 6.5A.2.1.1.4.3 → use clause 6.5A.2.1.6.4.3.
- Instead of Table 6.5A.2.1.1.5-1 \rightarrow use Table 6.5A.2.1.6.5-1.

Table 6.5A.2.1.6.4.1-1: Test Configuration Table

FFS

6.5A.2.1.6.5 Test Requirements

The measured EIRP derived in step 7, shall fulfil requirements in Table 6.2A.2.1.1.5-1 for Min peak EIRP requirement as appropriate, and the power (TRP) of any UE emission shall fulfil requirements in Table 6.5A.2.1.6.5-1.

Table 6.5A.2.1.6.5-1: General NR spectrum emission mask for intra-band contiguous CA in frequency range 2

Δf _{00B} (MHz)	Any carrier aggregation bandwidth class	Measurement bandwidth
\pm 0-0.1*BW _{Channel_CA}	-5 + TT	1 MHz
± 0.1*BW _{Channel CA} -2*BW _{Channel CA}	-13 + TT	1 MHz

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.1.6.5-1a NOTE 2: If carrier leakage or I/Q image lands inside the spectrum occupied by the configured UL and DL CCs, exception to the general spectrum emission mask limit applies. For carrier leakage the requirements specified in section 6.4A.2.2.0 shall apply. For I/Q image the requirements specified in section 6.4A.2.3.0 shall apply.

Table 6.5A.2.1.6.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	3.21 dB	TBD

6.5A.2.1.7 Spectrum Emission Mask for CA (8UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band contiguous CA supporting aggregated BW > 400MHz is TBD.
- Measurement Uncertainties and Test Tolerances for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.1.7.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.5A.2.1.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 8UL CA.

6.5A.2.1.7.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.1.0.

6.5A.2.1.7.4 Test description

Same as in clause 6.5A.2.1.1.4 with following exceptions:

- Instead of Table 6.5A.2.1.1.4.1-1 → use Table 6.5A.2.1.7.4.1-1.
- Instead of clause 6.5A.2.1.1.4.3 → use clause 6.5A.2.1.7.4.3.
- Instead of Table 6.5A.2.1.1.5-1 → use Table 6.5A.2.1.7.5-1.

Table 6.5A.2.1.7.4.1-1: Test Configuration Table

FFS

6.5A.2.1.7.5 Test Requirements

The measured EIRP derived in step 7, shall fulfil requirements in Table 6.2A.2.1.1.5-1 for Min peak EIRP requirement as appropriate, and the power (TRP) of any UE emission shall fulfil requirements in Table.6.5A.2.1.7.5-1.

Table 6.5A.2.1.7.5-1: General NR spectrum emission mask for intra-band contiguous CA in frequency range 2

Δf _{OOB} (MHz)	Any carrier aggregation bandwidth class	Measurement bandwidth
± 0-0.1*BW _{Channel_CA}	-5 + TT	1 MHz
± 0.1*BW _{Channel CA} -2*BW _{Channel CA}	-13 + TT	1 MHz

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.1.7.5-1a

NOTE 2: If carrier leakage or I/Q image lands inside the spectrum occupied by the
configured UL and DL CCs, exception to the general spectrum emission mask limit
applies. For carrier leakage the requirements specified in section 6.4A.2.2.0 shall
apply. For I/Q image the requirements specified in section 6.4A.2.3.0 shall apply.

Table 6.5A.2.1.7.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	3.21 dB	TBD

6.5A.2.2 Adjacent channel leakage ratio for CA

6.5A.2.2.0 Minimum conformance requirements

For intra-band contiguous carrier aggregation, the carrier aggregation NR adjacent channel leakage power ratio (CA NR_{ACLR}) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent aggregated channel bandwidth at nominal channel spacing. The assigned aggregated channel bandwidth power and adjacent aggregated channel bandwidth power are measured with rectangular filters with measurement bandwidths specified in 6.5A.2.2.0-1. If the measured adjacent channel power is greater than -35 dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5A.2.2.0-1.

Table 6.5A.2.2.0-1: General requirements for CA NR_{ACLR}

	CA bandwidth class / CA NR _{ACLR} / Measurement bandwidth
	Any CA bandwidth class
CA NR _{ACLR} for band n257, n258, n261	17 dB
CA NR _{ACLR} for band n260	16 dB
NR channel measurement bandwidth ¹	$BW_{Channel_CA} - GB_{Channel(1)} - GB_{Channel(2)}$
NOTE 1: The GReening is the minimum quard hand of the component carriers at the lower edge	

NOTE 1: The GB_{Channel(I)} is the minimum guard band of the component carriers at the lower edge F_{edge, low} and the upper edge F_{edge, high} of the sub-block respectively.

6.5A.2.2.1 Adjacent channel leakage ratio for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Measurement Uncertainties and Test Tolerances are TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.2.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5A.2.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.5A.2.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.2.0.

6.5A.2.2.1.4 Test description

6.5A.2.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.5A. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.5A.2.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.2.2.1.4.1-1: Test Configuration Table

FFS

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure [TBD] for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.2.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5A.2.2.1.4.3

6.5A.2.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause [TBD]. Message contents are defined in clause 6.5A.2.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [x], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 4. Set the UE in the Tx beam peak direction found with a TX beam peak direction search as performed in Annex K.
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.2.2.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 6. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power.
- 7. Measure TRP of the transmitted signal for the assigned NR channel with a rectangular measurement filter with bandwidths according to Table 6.5A.2.2.1.5-1. Total radiated power is measured according to TRP measurement procedure defined in Annex K and measurement grid specified in Annex M. TRP is calculated considering both polarizations, theta and phi.
- 8. Measure TRP of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively using a rectangular measurement filter with bandwidths according to Table 6.5A.2.2.1.5-1. Total radiated power is measured according to TRP measurement procedure defined in Annex K. The measurement grid used for TRP measurement defined in Annex M. TRP is calculated considering both polarizations, theta and phi.
- 9. Calculate the ratios of the power between the values measured in step 7 over step 8 for lower and upper NR ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5A.2.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [10] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.2.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.2.2.1.5 Test Requirements

If the measured adjacent channel power, derived in step 8, is greater than -35 dBm then the measured NR ACLR, derived in step 9, shall be higher than the limits in table 6.5A.2.2.1.5-1.

Table 6.5A.2.2.1.5-1: General requirements for CA NR_{ACLR}

	CA bandwidth class / CA NR _{ACLR} /
	Measurement bandwidth
	Any CA bandwidth class
CA NR _{ACLR} for band n257, n258, n261	17 - TT dB
CA NR _{ACLR} for band n260	16 - TT dB
NR channel measurement bandwidth ¹	BW _{Channel CA} - GB _{Channel(1)} - GB _{Channel(2)}
NOTE 1: TT for each frequency and channel handwidth is specified in Table 6.5A.2.2.1.5.1a	

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.2.1.5-1a.

NOTE 2: The GB_{Channel()} is the minimum guard band of the component carriers at the lower edge F_{edge, low} and the upper edge F_{edge, high} of the sub-block respectively.

Table 6.5A.2.2.1.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	[4.6] dB	[5.0] dB

6.5A.2.2.2 Adjacent channel leakage ratio for CA (3UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Measurement Uncertainties and Test Tolerances are TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.2.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5A.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.5A.2.2.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.2.0.

6.5A.2.2.2.4 Test description

Same as in clause 6.5A.2.2.1.4 with following exceptions:

- Instead of Table 6.5A.2.2.1.4.1-1 → use Table 6.5A.2.2.2.4.1-1.
- Instead of clause 6.5A.2.2.1.4.3 → use clause 6.5A.2.2.2.4.3.
- Instead of Table 6.5A.2.2.1.5-1 → use Table 6.5A.2.2.2.5-1.

Table 6.5A.2.2.2.4.1-1: Test Configuration Table

FFS

6.5A.2.2.2.5 Test Requirements

If the measured adjacent channel power, derived in step 8, is greater than -35 dBm then the measured NR ACLR, derived in step 9, shall be higher than the limits in table 6.5A.2.2.2.5-1.

Table 6.5A.2.2.2.5-1: General requirements for CA NR_{ACLR}

	CA bandwidth class / CA NR _{ACLR} /
	Measurement bandwidth
	Any CA bandwidth class
CA NR _{ACLR} for band n257, n258, n261	17 - TT dB
CA NR _{ACLR} for band n260	16 - TT dB
NR channel measurement bandwidth ¹	BW _{Channel_CA} - GB _{Channel(1)} - GB _{Channel(2)}
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.2.5-1a.	

NOTE 1: The for each frequency and channel bandwidth is specified in Table 6.5A.2.2.2.5-1a.

NOTE 2: The GB_{Channel(i)} is the minimum guard band of the component carriers at the lower edge F_{edge, low} and the upper edge F_{edge, high} of the sub-block respectively.

Table 6.5A.2.2.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	[4.6] dB	[5.0] dB

6.5A.2.2.3 Adjacent channel leakage ratio for CA (4UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Measurement Uncertainties and Test Tolerances are TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.2.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5A.2.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.5A.2.2.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.2.0.

6.5A.2.2.3.4 Test description

Same as in clause 6.5A.2.2.1.4 with following exceptions:

- Instead of Table 6.5A.2.2.1.4.1-1 → use Table 6.5A.2.2.3.4.1-1.
- Instead of clause 6.5A.2.2.1.4.3 → use clause 6.5A.2.2.3.4.3.
- Instead of Table 6.5A.2.2.1.5-1 → use Table 6.5A.2.2.3.5-1.

Table 6.5A.2.2.3.4.1-1: Test Configuration Table

FFS

6.5A.2.2.3.5 Test Requirements

If the measured adjacent channel power, derived in step 8, is greater than -35 dBm then the measured NR ACLR, derived in step 9, shall be higher than the limits in table 6.5A.2.2.3.5-1.

Table 6.5A.2.2.3.5-1: General requirements for CA NR_{ACLR}

	CA bandwidth class / CA NR _{ACLR} / Measurement bandwidth
	Any CA bandwidth class
CA NR _{ACLR} for band n257, n258, n261	17 - TT dB
CA NR _{ACLR} for band n260 16 - TT dB	
NR channel measurement bandwidth ¹ BW _{Channel CA} - GB _{Channel(1)} - GB _{Channel(2)}	
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.2.3.5-1a.	

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.2.3.5-1a.

NOTE 2: The GB_{Channel(I)} is the minimum guard band of the component carriers at the lower edge F_{edge, low} and the upper edge F_{edge, low} of the sub-block respectively.

Table 6.5A.2.2.3.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	[4.6] dB	[5.0] dB

6.5A.2.2.4 Adjacent channel leakage ratio for CA (5UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Measurement Uncertainties and Test Tolerances are TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.2.4.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5A.2.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 5UL CA.

6.5A.2.2.4.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.2.0.

6.5A.2.2.4.4 Test description

Same as in clause 6.5A.2.2.1.4 with following exceptions:

- Instead of Table 6.5A.2.2.1.4.1-1 → use Table 6.5A.2.2.4.4.1-1.
- Instead of clause 6.5A.2.2.1.4.3 → use clause 6.5A.2.2.4.4.3.
- Instead of Table 6.5A.2.2.1.5-1 → use Table 6.5A.2.2.4.5-1.

Table 6.5A.2.2.4.4.1-1: Test Configuration Table

FFS

6.5A.2.2.4.5 Test Requirements

If the measured adjacent channel power, derived in step 8, is greater than -35 dBm then the measured NR ACLR, derived in step 9, shall be higher than the limits in table 6.5A.2.2.4.5-1.

Table 6.5A.2.2.4.5-1: General requirements for CA NR_{ACLR}

	CA bandwidth class / CA NR _{ACLR} / Measurement bandwidth
	Any CA bandwidth class
CA NR _{ACLR} for band n257, n258, n261	17 - TT dB
CA NR _{ACLR} for band n260	16 - TT dB
NR channel measurement bandwidth ¹	$BW_{Channel\ CA} - GB_{Channel(1)} - GB_{Channel(2)}$
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.2.4.5-1a.	

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.2.4.5-1a.

NOTE 2: The GB_{Channel(i)} is the minimum guard band of the component carriers at the lower edge F_{edge, low} and the upper edge F_{edge, ligh} of the sub-block respectively.

Table 6.5A.2.2.4.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	[4.6] dB	[5.0] dB

6.5A.2.2.5 Adjacent channel leakage ratio for CA (6UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Measurement Uncertainties and Test Tolerances are TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.2.5.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5A.2.2.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 6UL CA.

6.5A.2.2.5.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.2.0.

6.5A.2.2.5.4 Test description

Same as in clause 6.5A.2.2.1.4 with following exceptions:

- Instead of Table 6.5A.2.2.1.4.1-1 → use Table 6.5A.2.2.5.4.1-1.

- Instead of clause 6.5A.2.2.1.4.3 → use clause 6.5A.2.2.5.4.3.
- Instead of Table 6.5A.2.2.1.5-1 → use Table 6.5A.2.2.5.5-1.

Table 6.5A.2.2.5.4.1-1: Test Configuration Table

FFS

6.5A.2.2.5.5 Test Requirements

If the measured adjacent channel power, derived in step 8, is greater than -35 dBm then the measured NR ACLR, derived in step 9, shall be higher than the limits in table 6.5A.2.2.5.5-1.

Table 6.5A.2.2.5.5-1: General requirements for CA NR_{ACLR}

	CA bandwidth class / CA NR _{ACLR} / Measurement bandwidth
	Any CA bandwidth class
CA NR _{ACLR} for band n257, n258, n261	17 - TT dB
CA NR _{ACLR} for band n260	16 - TT dB
NR channel measurement bandwidth ¹ $BW_{Channel_CA} - GB_{Channel(1)} - GB_{Channel(2)}$	
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.2.5.5-1a.	
NOTE 2: The GB _{Channel(i)} is the minimum guard band of the component carriers at the lower edge	
$F_{\text{edge low}}$ and the upper edge $F_{\text{edge high}}$ of the sub-block respectively.	

Table 6.5A.2.2.5.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	[4.6] dB	[5.0] dB

6.5A.2.2.6 Adjacent channel leakage ratio for CA (7UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Measurement Uncertainties and Test Tolerances are TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.2.6.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5A.2.2.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 7UL CA.

6.5A.2.2.6.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.2.0.

6.5A.2.2.6.4 Test description

Same as in clause 6.5A.2.2.1.4 with following exceptions:

- Instead of Table 6.5A.2.2.1.4.1-1 → use Table 6.5A.2.2.6.4.1-1.
- Instead of clause 6.5A.2.2.1.4.3 → use clause 6.5A.2.2.6.4.3.
- Instead of Table 6.5A.2.2.1.5-1 → use Table 6.5A.2.2.6.5-1.

Table 6.5A.2.2.6.4.1-1: Test Configuration Table

FFS

6.5A.2.2.6.5 Test Requirements

If the measured adjacent channel power, derived in step 8, is greater than -35 dBm then the measured NR ACLR, derived in step 9, shall be higher than the limits in table 6.5A.2.2.6.5-1.

Table 6.5A.2.2.6.5-1: General requirements for CA NR_{ACLR}

	CA bandwidth class / CA NR _{ACLR} / Measurement bandwidth				
	Any CA bandwidth class				
CA NR _{ACLR} for band n257, n258, n261	17 - TT dB				
CA NR _{ACLR} for band n260	16 - TT dB				
NR channel measurement bandwidth ¹	$BW_{Channel_CA} - GB_{Channel(1)} - GB_{Channel(2)}$				
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.2.6.5-1a.					
NOTE 2: The GB _{Channel(i)} is the minimum guard band of the component carriers at the lower edge					
$F_{\text{edge, low}}$ and the upper edge $F_{\text{edge, high}}$ of t	he sub-block respectively.				

Table 6.5A.2.2.6.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	[4.6] dB	[5.0] dB

6.5A.2.2.7 Adjacent channel leakage ratio for CA (8UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table is TBD
- Connection diagram is TBD
- Measurement Uncertainties and Test Tolerances are TBD.
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.
- Test procedure for intra-band non-contiguous CA is TBD.
- How to apply Multi-band relaxation into UL CA test cases is FFS.

6.5A.2.2.7.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5A.2.2.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 8UL CA.

6.5A.2.2.7.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.2.2.0.

6.5A.2.2.7.4 Test description

Same as in clause 6.5A.2.2.1.4 with following exceptions:

- Instead of Table 6.5A.2.2.1.4.1-1 → use Table 6.5A.2.2.7.4.1-1.
- Instead of clause 6.5A.2.2.1.4.3 → use clause 6.5A.2.2.7.4.3.
- Instead of Table 6.5A.2.2.1.5-1 → use Table 6.5A.2.2.7.5-1.

Table 6.5A.2.2.7.4.1-1: Test Configuration Table

FFS

6.5A.2.2.7.5 Test Requirements

If the measured adjacent channel power, derived in step 8, is greater than -35 dBm then the measured NR ACLR, derived in step 9, shall be higher than the limits in table 6.5A.2.2.7.5-1.

Table 6.5A.2.2.7.5-1: General requirements for CA NR_{ACLR}

	CA bandwidth class / CA NR _{ACLR} /			
	Measurement bandwidth			
	Any CA bandwidth class			
CA NR _{ACLR} for band n257, n258, n261	17 - TT dB			
CA NR _{ACLR} for band n260	16 - TT dB			
NR channel measurement bandwidth ¹	BW _{Channel_CA} - GB _{Channel(1)} - GB _{Channel(2)}			
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5A.2.2.7.5-1a.				
NOTE 2: The GB _{Channel(i)} is the minimum guard by	and of the component carriers at the lower edge			

Table 6.5A.2.2.7.5-1a: Test Tolerance (Aggregated BW ≤ 400MHz)

 $F_{\text{edge, low}}$ and the upper edge $F_{\text{edge,high}}$ of the sub-block respectively.

Test Metric	FR2a	FR2b
IFF (Quiet Zone size ≤ 30 cm)	[4.6] dB	[5.0] dB

6.5A.3 Spurious emissions for CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Testability issue for $6GHz \sim [12.75GHz]$ is identified. How to treat this frequency range is TBD.
- TRP Measurement Uncertainty for CA is TBD.
- TP analysis for CA is FFS (identify lowest MPR w/form, RB allocation for multiple carrier or PCC only, 1RB location if RB allocated for multiple carrier).
- Beam peak direction for CA is TBD and cannot be assumed to be the same as single carrier.
- Update all CA test config tables to RAN 5 agreed format.

6.5A.3.1 Transmitter Spurious emissions for CA

6.5A.3.1.0 Minimum conformance requirements

This clause specifies the spurious emission requirements for carrier aggregation. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction). The TX beam peak direction used for CA testing is the [same as that found for single carrier scenario in clause 6.5.3].

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

For intra-band contiguous carrier aggregation, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) from the edge of the aggregated channel bandwidth, where F_{OOB} is defined as the twice the aggregated channel bandwidth. For frequencies Δf_{OOB} greater than F_{OOB} , the spurious emission requirements in Table 6.5.3.1.3-2 are applicable. If carrier leakage or I/Q image lands inside the spectrum occupied by the configured UL and DL CCs, exception to the spurious emissions requirement applies. For carrier leakage the requirements specified in section 6.4A.2.3.0 shall apply. For I/Q image the requirements specified in section 6.4A.2.3.0 shall apply.

6.5A.3.1.1 Transmitter Spurious emissions for CA (2UL CA)

6.5A.3.1.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5A.3.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.5A.3.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.1.0.

6.5A.3.1.1.4 Test description

6.5A.3.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.5A. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 6.5A.3.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.3.1.1.4.1-1:	Test	Configura	ation	Table
-------------------------	------	-----------	-------	--------------

	Initial Conditions					
Test Enviror	nment as specified in TS 38.508-	Normal				
1 [10] subcla	ause 4.1					
	ncies as specified in TS 38.508-	Low range, High range (NOTE 2)				
1 [10] subcla						
	el Bandwidths as specified in TS	Maximum aggregated BW (contiguous CA	4)			
	0] subclause 4.3.1					
Test SCS as	s specified in Table 5.3.5-1	120kHz				
		Test Parameters				
Test ID	Downlink Configuration	Uplink Configuration [per component carrier]				
		Modulation	RB allocation			
	N/A for Spurious Emissions		(NOTE 1)			
1	testing	FFS	FFS			
2	2 FFS FFS					
NOTE 1: T	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.					
	NOTE 2: When testing Low range test only in Frequency Range lower than (F _{UL_low} – Δf _{OOB}) and when testing High					
ra	ange test only in Frequency Range	e higher than ($F_{UL \ high} + \Delta f_{OOB}$).				

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.3.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5A.3.1.1.4.3

6.5A.3.1.1.4.2 Test procedure

- 1. Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2. If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range 0°≤θ≤90° for the alignment option selected in step 1; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range 90°<θ≤180° for DUT Orientation 1 for the alignment option selected in step 1. If the re-positioning concept is not applied, position the device in DUT Orientation 1.</p>
- 3. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 4. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1. Message contents are defined in clause 6.5A.3.1.1.4.3.
- 5. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [28], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 6. SS sends uplink scheduling information for each UL HARQ process via PDSCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5A.3.1.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 7. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .

- 8. Set the UE in the Inband Tx beam peak direction [(same as that found for single carrier in clause 6.5.3)] found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 3) for the UE Tx beam selection to complete.
- 9. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 10. Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K if the re-positioning concept is applied (NOTE 4):
 - (a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power level according to the procedures in Annex L, using coarse TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M. The measurement is completed in both polarizations θ and ϕ over frequency range and measurement bandwidth according to Table 6.5.3.1.3-2. Optionally, a larger and non-constant measurement bandwidth than that of Table 6.5.3.1.3-2 may be applied as long as the SNR (ratio of test limit to floor noise of test equipment) \geq 10dB is guaranteed. The measurement period shall capture the [active time slots]. For each spurious emission frequency with coarse TRP identified to be less than an offset dB (NOTE 2) from the TRP limit according to Table 6.5.3.1.3-2, continue with fine TRP procedures according to step (b).

The offset value shall be the TRP measurement uncertainty at 95% confidence level including the effect of coarse grid measurement uncertainty element. Different coarse TRP grids and corresponding offset values may be used for different frequencies. The coarse TRP grid and offset values used shall be recorded in the test report.

- (b) Measure fine TRP measurements according to procedures in Annex K, using fine TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M, for each of the spurious emission frequency identified in step (a). Apply a measurement bandwidth according to Table 6.5.3.1.3-2.
- 11. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: The frequency range defined in Table 6.5.3.1.3-2 may be split into ranges. For each range a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges must pass.
- NOTE 2: The coarse TRP measurement grid and corresponding offset dB value referred in step 5(a) above, for some valid grids can be found in TR 38.903 section B.18.
- NOTE 3: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.
- NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 1 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 2 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test.

6.5A.3.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

6.5A.3.1.1.5 Test Requirements

This clause specifies the requirements for the specified *NR* band for Transmitter Spurious emissions requirement with frequency range as indicated in Table 6.5A.3.1.1.5-1.

The maximum EIRP or TRP power of spurious emission, measured using RMS detector, shall not exceed the described value in Table 6.5A.3.1.1.5-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3.1.3-1 starting from the edge of the assigned *NR* channel bandwidth. The spurious emission limits in Table 6.5.A.3.1.1.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5A.3.1.1.5-1: Spurious emissions for CA test requirements

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
6 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	
12.75 GHz \leq f \leq 2 nd harmonic of the upper frequency edge of the UL operating band in GHz	-13 dBm	1 MHz	
NOTE 1: Applies for Band	d n257. n258. n260		

6.5A.3.1.2 Transmitter Spurious emissions for CA (3UL CA)

6.5A.3.1.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5A.3.1.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.5A.3.1.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.1.0.

6.5A.3.1.2.4 Test description

Same test description as in clause 6.5A.3.1.1.4.

6.5A.3.1.2.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.1.1.5.

6.5A.3.1.3 Transmitter Spurious emissions for CA (4UL CA)

6.5A.3.1.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5A.3.1.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.5A.3.1.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.1.0.

6.5A.3.1.3.4 Test description

Same test description as in clause 6.5A.3.1.1.4.

Table 6.5A.3.1.3.4.1-1: Test Configuration Table

[TBD]

6.5A.3.1.3.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.1.1.5.

6.5A.3.1.4 Transmitter spurious emissions for CA (5UL CA)

6.5A.3.1.4.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5A.3.1.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 5UL CA.

6.5A.3.1.4.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.1.0.

6.5A.3.1.4.4 Test description

Same test description as in clause 6.5A.3.1.1.4.

6.5A.3.1.4.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.1.1.5

6.5A.3.1.5 Transmitter spurious emissions for CA (6UL CA)

6.5A.3.1.5.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5A.3.1.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 6UL CA.

6.5A.3.1.5.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.1.0.

6.5A.3.1.5.4 Test description

Same test description as in clause 6.5A.3.1.1.4.

6.5A.3.1.5.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.1.1.5

6.5A.3.1.6 Transmitter spurious emissions for CA (7UL CA)

6.5A.3.1.6.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5A.3.1.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 7UL CA.

6.5A.3.1.6.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.1.0.

6.5A.3.1.6.4 Test description

Same test description as in clause 6.5A.3.1.1.4.

6.5A.3.1.6.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.1.1.5

6.5A.3.1.7 Transmitter spurious emissions for CA (8UL CA)

6.5A.3.1.7.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5A.3.1.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 8UL CA.

6.5A.3.1.7.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.1.0.

6.5A.3.1.7.4 Test description

Same test description as in clause 6.5A.3.1.1.4.

6.5A.3.1.7.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.1.1.5

6.5A.3.2 Spurious emission band UE co-existence for CA

This clause specifies the requirements for the specified carrier aggregation configurations for coexistence with protected bands. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction). The TX beam peak direction used for CA testing is the [same as that found for single carrier scenario in clause 6.5.3].

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5A.3.2.0 Minimum conformance requirements

For intra-band contiguous carrier aggregation, the requirements in Table 6.5A.3.2.0-1 apply.

Table 6.5A.3.2.0-1: Spurious emissions UE co-existence CA limits

UL CA for any	Spurious emission							
CA bandwidth class	Protected band / frequency range		Frequency range (MHz)		Maximum Level (dBm)	MBW (MHz)	NOTE	
	NR Band n260	F_{DL_low}	-	F_{DL_high}	-2	100		
CA_n257	Frequency range	23600	-	24000	TBD	200	2	
	Frequency range	57000	-	66000	2	100		
CA p250	Frequency range	23600	-	24000	TBD	200	2	
CA_n258	Frequency range	57000	-	66000	2	100		
	NR Band 257	F_{DL_low}	-	F _{DL_high}	-5	100		
CA n260	NR Band 261	F_{DL_low}	-	F_{DL_high}	-5	100		
CA_n260	Frequency range	23600	-	24000	TBD	200	2	
	Frequency range	57000	-	66000	2	100		
	NR Band 260	F _{DL_low}	-	F_{DL_high}	-2	100		
CA_n261	Frequency range	23600	-	24000	TBD	200	2	
	Frequency range	57000	-	66000	2	100		

NOTE 1: F_{DL_low} and F_{DL_high} refer to each NR frequency band specified in Table 5.2-1

NOTE 2: The protection of frequency range 23600-2400MHz is meant for protection of satellite passive services.

6.5A.3.2.1 Spurious emission band UE co-existence for CA (2UL CA)

6.5A.3.2.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference when in co-existence with protected bands in terms of transmitter spurious emissions.

6.5A.3.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.5A.3.2.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5A.3.2.0.

6.5A.3.2.1.4 Test description

6.5A.3.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the Subscriber Station (SS) to take with the UE to reach the correct measurement state.

Table 6.5A.3.2.1.4.1-1: Test Configuration Table

	Initial Conditions					
Test Enviror	nment as specified in TS 38.508-	Normal				
1 [10] subcla	ause 4.1					
Test Freque	ncies as specified in TS 38.508-	Low range, High range (NOTE 2)				
1 [10] subcla	ause 4.3.1					
	el Bandwidths as specified in TS	Maximum aggregated BW (contiguous CA	4)			
38.508-1 [10	0] subclause 4.3.1					
Test SCS as	s specified in Table 5.3.5-1	120kHz				
		Test Parameters				
Test ID	Downlink Configuration	Uplink Configuration [per component carrier]				
		Modulation	RB allocation			
	N/A for Spurious Emissions		(NOTE 1)			
1	testing	FFS	FFS			
2	2 FFS FFS					
NOTE 1: T	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.					
	NOTE 2: When testing Low range test only in Frequency Range lower than (F _{UL_low} – Δf _{OOB}) and when testing High					
ra	ange test only in Frequency Range	e higher than ($F_{UL \ high} + \Delta f_{OOB}$).				

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.3.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5A.3.2.1.4.3.

6.5A.3.2.1.4.2 Test procedure

- 1. Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2. If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range 0°≤θ≤90° for the alignment option selected in step 1; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range 90°<θ≤180° for DUT Orientation 1 for the alignment option selected in step 1. If the re-positioning concept is not applied, position the device in DUT Orientation 1.</p>
- 3. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 4. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1. Message contents are defined in clause 6.5A.3.1.1.4.3.
- 5. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [28], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 6. SS sends uplink scheduling information for each UL HARQ process via PDSCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5A.3.1.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 7. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .

- 8. Set the UE in the Inband Tx beam peak direction [(same as that found for single carrier in clause 6.5.3)] found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 3) for the UE Tx beam selection to complete.
- 9. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 10. Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K if the re-positioning concept is applied (NOTE 4):
 - (a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power level according to the procedures in Annex L, using coarse TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M. The measurement is completed in both polarizations θ and ϕ over frequency range and measurement bandwidth according to Table 6.5.3.1.3-2. Optionally, a larger and non-constant measurement bandwidth than that of Table 6.5.3.1.3-2 may be applied as long as the SNR (ratio of test limit to floor noise of test equipment) \geq 10dB is guaranteed. The measurement period shall capture the [active time slots]. For each spurious emission frequency with coarse TRP identified to be less than an offset dB (NOTE 2) from the TRP limit according to Table 6.5.3.1.3-2, continue with fine TRP procedures according to step (b).
 - The offset value shall be the TRP measurement uncertainty at 95% confidence level including the effect of coarse grid measurement uncertainty element. Different coarse TRP grids and corresponding offset values may be used for different frequencies. The coarse TRP grid and offset values used shall be recorded in the test report.
 - (b) Measure fine TRP measurements according to procedures in Annex K, using fine TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M, for each of the spurious emission frequency identified in step (a). Apply a measurement bandwidth according to Table 6.5.3.1.3-2.
- 11. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: The frequency range defined in Table 6.5.3.1.3-2 may be split into ranges. For each range a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges must pass.
- NOTE 2: The coarse TRP measurement grid and corresponding offset dB value referred in step 5(a) above, for some valid grids can be found in TR 38.903 section B.18.
- NOTE 3: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.
- NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 1 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 2 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test.

6.5A.3.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

6.5A.3.2.1.5 Test requirement

This clause specifies the requirements for the specified *NR* band for Transmitter Spurious emissions for UE co-existence requirement with frequency range as indicated in Table 6.5A.3.2.1.5-1.

The maximum EIRP or TRP power of spurious emission for UE co-existence, measured using RMS detector, shall not exceed the described value in Table 6.5A.3.2.1.5-1.

The spurious emission UE co-existence limits in Table 6.5A.3.2.1.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5A.3.2.1.5-1: Spurious emissions UE co-existence CA test requirements

UL CA for any	Spurious emission							
CA bandwidth class	Protected band / frequency range		Frequency range (MHz)		Maximum Level (dBm)	MBW (MHz)	NOTE	
	NR Band n260	F _{DL_low}	-	F_{DL_high}	-2	100		
CA_n257	Frequency range	23600	-	24000	TBD	200	2	
	Frequency range	57000	-	66000	2	100		
CA n258	Frequency range	23600	-	24000	TBD	200	2	
CA_IIZ36	Frequency range	57000	-	66000	2	100		
	NR Band 257	F_{DL_low}	-	F_{DL_high}	-5	100		
CA 2260	NR Band 261	F _{DL_low}	-	F_{DL_high}	-5	100		
CA_n260	Frequency range	23600	-	24000	TBD	200	2	
	Frequency range	57000	-	66000	2	100		
	NR Band 260	F _{DL_low}	-	F_{DL_high}	-2	100		
CA_n261	Frequency range	23600	-	24000	TBD	200	2	
	Frequency range	57000	-	66000	2	100		

NOTE 1: F_{DL low} and F_{DL high} refer to each NR frequency band specified in Table 5.2-1

NOTE 2: The protection of frequency range 23600-2400MHz is meant for protection of satellite passive services.

6.5A.3.2.2 Spurious emission band UE co-existence for CA (3UL CA)

6.5A.3.2.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference when in co-existence with protected bands in terms of transmitter spurious emissions.

6.5A.3.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.5A.3.2.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.2.0.

6.5A.3.2.2.4 Test description

Same test description as in clause 6.5A.3.2.1.4.

6.5A.3.2.2.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.2.1.5.

6.5A.3.2.3 Spurious emission band UE co-existence for CA (4UL CA)

6.5A.3.2.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference when in co-existence with protected bands in terms of transmitter spurious emissions.

6.5A.3.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.5A.3.2.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.2.0.

6.5A.3.2.3.4 Test description

Same test description as in clause 6.5A.3.2.1.4.

6.5A.3.2.3.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.2.1.5.

6.5A.3.2.4 Spurious emission band UE co-existence for CA (5UL CA)

6.5A.3.2.4.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference when in co-existence with protected bands in terms of transmitter spurious emissions.

6.5A.3.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 5UL CA.

6.5A.3.2.4.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.2.0.

6.5A.3.2.4.4 Test description

Same test description as in clause 6.5A.3.2.1.4.

6.5A.3.2.4.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.2.1.5.

6.5A.3.2.5 Spurious emission band UE co-existence for CA (6UL CA)

6.5A.3.2.5.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference when in co-existence with protected bands in terms of transmitter spurious emissions.

6.5A.3.2.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 6UL CA.

6.5A.3.2.5.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.2.0.

6.5A.3.2.5.4 Test description

Same test description as in clause 6.5A.3.2.1.4.

6.5A.3.2.5.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.2.1.5.

6.5A.3.2.6 Spurious emission band UE co-existence for CA (7UL CA)

6.5A.3.2.6.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference when in co-existence with protected bands in terms of transmitter spurious emissions.

6.5A.3.2.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 7UL CA.

6.5A.3.2.6.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.2.0.

6.5A.3.2.6.4 Test description

Same test description as in clause 6.5A.3.2.1.4.

6.5A.3.2.6.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.2.1.5.

6.5A.3.2.7 Spurious emission band UE co-existence for CA (8UL CA)

6.5A.3.2.7.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference when in co-existence with protected bands in terms of transmitter spurious emissions.

6.5A.3.2.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 8UL CA.

6.5A.3.2.7.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.5A.3.2.0.

6.5A.3.2.7.4 Test description

Same test description as in clause 6.5A.3.2.1.4.

6.5A.3.2.7.5 Test Requirements

The test requirement is the same as in clause 6.5A.3.2.1.5.

6.5A.3.3 Additional spurious emissions for CA

6.5A.3.3.0 Minimum conformance requirements

The additional spurious emission for CA limits in Table 6.5A.3.3.0-1 apply for all transmitter band configurations (RB) and channel bandwidths. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction).

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

When "NS_201" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5A.3.3.0-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3-1 from the edge of the channel bandwidth.

Table 6.5A.3.3.0-1: Additional spurious emissions for CA (NS_201) test limits

Frequency Range		Maximum Leve	Measurement	NOTE						
	50 MHz	100 MHz	200 MHz	400 MHz	bandwidth					
23.6 GHz ≤ f ≤ 24 GHz	-8 dBm	-8 dBm	-8 dBm	-8 dBm	200MHz	1				
NOTE 1: The protection	NOTE 1: The protection of frequency range 23600 - 24000 MHz is meant for protection of satellite passive services.									

The normative reference for this requirement is TS 38.101-2 subclause 6.5A.3.2.

6.5A.3.3.1 Additional spurious emission for CA (2UL CA)

6.5A.3.3.1.1 Test purpose

Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5A.3.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2UL CA.

6.5A.3.3.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5A.3.3.0.

6.5A.3.3.1.4 Test description

6.5A.3.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the Subscriber Station (SS) to take with the UE to reach the correct measurement state.

Table 6.5A.3.3.1.4.1-1: Test Configuration Table

Initial Conditions								
Test Environ	ment as specified in TS 38.508-	Normal						
1 [10] subcla	ause 4.1							
	ncies as specified in TS 38.508-	Low range, High range (NOTE 2)						
1 [10] subcla								
Test Channe	el Bandwidths as specified in TS	Highest						
38.508-1 [10)] subclause 4.3.1							
Test SCS as	s specified in Table 5.3.5-1	120kHz						
Test Parameters								
Test ID	Downlink Configuration	Uplink Configuration						
		Modulation	RB allocation					
	N/A for Spurious Emissions		(NOTE 1)					
1	testing	FFS	FFS					
2		FFS	FFS					
NOTE 1: T	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.							
NOTE 2: When testing Low range test only in Frequency Range lower than $(F_{UL low} - \Delta f_{OOB})$ and when testing High								
		e higher than $(F_{UL \text{ high}} + \Delta f_{OOB})$.						

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.3.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.5A.3.3.1.4.3.

6.5A.3.3.1.4.2 Test procedure

- 1. Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2. If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1. If the re-positioning concept is not applied, position the device in DUT Orientation 1.
- 3. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 4. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1. Message contents are defined in clause 6.5A.3.1.1.4.3.
- 5. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [28], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.3).
- 6. SS sends uplink scheduling information for each UL HARQ process via PDSCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5A.3.1.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 7. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .
- 8. Set the UE in the Inband Tx beam peak direction [(same as that found for single carrier in clause 6.5.3)] found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 3) for the UE Tx beam selection to complete.
- 9. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 10. Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K if the re-positioning concept is applied (NOTE 4):
 - (a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power levelaccording to the procedures in Annex L, using coarse TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M. The measurement is completed in both polarizations θ and φ over frequency range and measurement bandwidth according to Table 6.5.3.1.3-2. Optionally, a larger and non-constant measurement bandwidth than that of Table 6.5.3.1.3-2 may be applied as long as the SNR (ratio of test limit to floor noise of test equipment) ≥ 10dB is guaranteed. The measurement period shall capture the [active time slots]. For each spurious emission frequency with coarse TRP identified to be less than an offset dB (NOTE 2) from the TRP limit according to Table 6.5.3.1.3-2, continue with fine TRP procedures according to step (b).

The offset value shall be the TRP measurement uncertainty at 95% confidence level including the effect of coarse grid measurement uncertainty element. Different coarse TRP grids and corresponding offset values

- may be used for different frequencies. The coarse TRP grid and offset values used shall be recorded in the test report.
- (b) Measure fine TRP measurements according to procedures in Annex K, using fine TRP measurement grid selection criteria as per Table M.4.5-3 in Annex M, for each of the spurious emission frequency identified in step (a). Apply a measurement bandwidth according to Table 6.5.3.1.3-2.
- 11. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- NOTE 1: The frequency range defined in Table 6.5.3.1.3-2 may be split into ranges. For each range a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges must pass.
- NOTE 2: The coarse TRP measurement grid and corresponding offset dB value referred in step 5(a) above, for some valid grids can be found in TR 38.903 section B.18.
- NOTE 3: The BEAM SELECT WAIT TIME default value is defined in Annex K.1.1.
- NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 1 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 2 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test.

6.5A.3.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

6.5A.3.3.1.5 Test requirement

This clause specifies the requirements for the specified *NR* band for Transmitter Spurious emissions for UE coexistence requirement with frequency range as indicated in Table 6.5A.3.3.1.5-1.

The maximum EIRP or TRP power of spurious emission for UE co-existence, measured using RMS detector, shall not exceed the described value in Table 6.5A.3.3.1.5-1.

The additional spurious emission for CA limits in Table 6.5A.3.3.1.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5A.3.3.1.5-1: Additional spurious emissions for CA (NS_201) test requirements

Frequency	Maximum Level / Channel bandwidth				Measurement	NOTE
Range	50	100	200	400 MHz	bandwidth	
	MHz	MHz	MHz			
23.6 GHz ≤ f	-8 dBm	-8 dBm	-8 dBm	-8 dBm	200MHz	1
≤ 24 GHz						
		-				

NOTE 1: The protection of frequency range 23600 - 24000 MHz is meant for protection of satellite passive services.

6.5A.3.3.2 Additional spurious emission for CA (3UL CA)

6.5A.3.3.2.1 Test purpose

Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5A.3.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3UL CA.

6.5A.3.3.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5A.3.3.0.

6.5A.3.3.2.4 Test description

Same test description as in clause 6.5A.3.3.1.4.

6.5A.3.3.2.5 Test requirement

The test requirement is the same as in clause 6.5A.3.3.1.5

6.5A.3.3.3 Additional spurious emission for CA (4UL CA)

6.5A.3.3.1 Test purpose

Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5A.3.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4UL CA.

6.5A.3.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5A.3.3.0.

6.5A.3.3.4 Test description

Same test description as in clause 6.5A.3.3.1.4.

6.5A.3.3.5 Test requirement

The test requirement is the same as in clause 6.5A.3.3.1.5.

6.5A.3.3.4 Additional spurious emission for CA (5UL CA)

6.5A.3.3.4.1 Test purpose

Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5A.3.3.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 5UL CA.

6.5A.3.3.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5A.3.3.0.

6.5A.3.3.4.4 Test description

Same test description as in clause 6.5A.3.3.1.4.

6.5A.3.3.4.5 Test requirement

The test requirement is the same as in clause 6.5A.3.3.1.5.

6.5A.3.3.5 Additional spurious emission for CA (6UL CA)

6.5A.3.3.5.1 Test purpose

Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5A.3.3.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 6UL CA.

6.5A.3.3.5.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5A.3.3.0.

6.5A.3.3.5.4 Test description

Same test description as in clause 6.5A.3.3.1.4.

6.5A.3.3.5.5 Test requirement

The test requirement is the same as in clause 6.5A.3.3.1.5.

6.5A.3.3.6 Additional spurious emission for CA (7UL CA)

6.5A.3.3.6.1 Test purpose

Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5A.3.3.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 7UL CA.

6.5A.3.3.6.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5A.3.3.0.

6.5A.3.3.6.4 Test description

Same test description as in clause 6.5A.3.3.1.4.

6.5A.3.3.6.5 Test requirement

The test requirement is the same as in clause 6.5A.3.3.1.5.

6.5A.3.3.7 Additional spurious emission for CA (8UL CA)

6.5A.3.3.7.1 Test purpose

Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5A.3.3.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 8UL CA.

6.5A.3.3.7.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5A.3.3.0.

6.5A.3.3.7.4 Test description

Same test description as in clause 6.5A.3.3.1.4.

6.5A.3.3.7.5 Test requirement

The test requirement is the same as in clause 6.5A.3.3.1.5

6.5D Output RF spectrum emissions for UL MIMO

6.5D.1Occupied bandwidth for UL MIMO

FFS.

6.5D.2Out of band emission for UL MIMO

FFS.

6.5D.3 Spurious emissions for UL MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- OTA test procedure for UL MIMO is still under investigation
- TRP Measurement Uncertainty is FFS.
- 39.905 TP analysis for UL MIMO is pending
- Applicability of UBF of single UL is FFS.
- Applicability of Beam peak of single UL is FFS.

6.5D.3.1 Transmitter Spurious emissions for UL MIMO

6.5D.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.6.5D.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward supporting UL MIMO.

6.5D.3.1.3 Minimum conformance requirements

For UE configured with UL MIMO, the minimum conformance requirements are defined in clause 6.5.3.1.3. The requirements shall be met with the UL MIMO configurations specified in Table 6.5D.3.1.3-1.

Table 6.5D.3.1.3-1: UL MIMO configuration

Transmission scheme	DCI format	TPMI Index	
Codebook based uplink	DCI format 0_1	0	

The normative reference for this requirement is TS 38.101-2 [3] clause 6.5D.3.

6.5D.3.1.4 Test description

6.5D.3.1.4.1 Initial condition

Same initial condition in clause 6.5.3.1.4.1.

6.5D.3.1.4.2 Test procedure

Same test procedure as in clause 6.5.3.1.4.2 with the following added to step 3 for UL MIMO configuration:

3.1 The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [10] subclause 4.3.6.1.1.2.

6.5D.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.5D.3.1.5 Test requirements

The test requirement is the same as in clause 6.5.3.1.5.

6.5D.3.2 Spurious emission band UE co-existence for UL MIMO

6.5D.3.2.1 Test purpose

To verify that UL MIMO configured UE's transmitter does not cause unacceptable interference when in co-existence with protected bands in terms of transmitter spurious emissions.

6.5D.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward supporting UL MIMO.

6.5D.3.2.3 Minimum conformance requirements

For UE configured with UL MIMO, the minimum conformance requirements are defined in clause 6.5.3.2.3. The requirements shall be met with the UL MIMO configurations specified in Table 6.5D.3.1.3-1.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.5D.3.

6.5D.3.2.4 Test description

6.5D.3.2.4.1 Initial condition

Same initial condition in clause 6.5.3.2.4.1.

6.5D.3.2.4.2 Test procedure

Same test procedure as in clause 6.5.3.2.4.2 with the following added to step 3 for UL MIMO configuration:

3.1 The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [10] subclause 4.3.6.1.1.2.

6.5D.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.5D.3.2.5 Test requirements

The test requirement is the same as in clause 6.5.3.2.5.

6.5D.3.3 Additional Spurious emission for UL MIMO

6.5D.3.3.1 Test purpose

Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5D.3.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward supporting UL MIMO.

6.5D.3.3.3 Minimum conformance requirements

For UE configured with UL MIMO, the minimum conformance requirements are defined in clause 6.5.3.3.3. The requirements shall be met with the UL MIMO configurations specified in Table 6.5D.3.1.3-1.

The normative reference for this requirement is TS 38.101-2 [3] clause 6.5D.3.

6.5D.3.3.4 Test description

6.5D.3.3.4.1 Initial condition

Same initial condition in clause 6.5.3.3.4.1.

6.5D.3.3.4.2 Test procedure

Same test procedure as in clause 6.5.3.3.4.2 with the following added to step 3 for UL MIMO configuration:

3.1 The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [10] subclause 4.3.6.1.1.2.

6.5D.3.3.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.

6.5D.3.3.5 Test requirements

The test requirement is the same as in clause 6.5.3.3.5.

6.6 Beam correspondence

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS for power class 3.

6.6.0 General

Beam correspondence is the ability of the UE to select a suitable beam for UL transmission based on DL measurements with or without relying on UL beam sweeping. The beam correspondence requirement is satisfied assuming the presence of both SSB and CSI-RS signal and Type D QCL is maintained between SSB and CSI-RS.

6.6.1 Beam correspondence - EIRP

6.6.1.1 Test purpose

To verify the UE's ability to select a suitable beam for UL transmission based on DL measurements with or without relying on UL beam sweeping within the range prescribed by the specified nominal maximum output power and beam correspondence tolerance.

6.6.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that does not support beam correspondence without UL beam sweeping.

6.6.1.3 Minimum conformance requirements

6.6.1.3.1 (Void)

6.6.1.3.2 (Void)

6.6.1.3.3 Beam correspondence for PC3

6.6.1.3.3.1 General

The beam correspondence requirement for PC3 UEs consists of three components: UE minimum peak EIRP (as defined in clause 6.2.1.1.3.3), UE spherical coverage (as defined in clause 6.2.1.1.3.3), and beam correspondence tolerance (as defined in clause 6.6.1.3.3.2). The beam correspondence requirement is fulfilled if the UE satisfies one of the following conditions, depending on the UE's beam correspondence capability, as defined in TS 38.306 [26]:

- If [bit-1], the UE shall meet the minimum peak EIRP requirement according to Table 6.2.1.3-1 and spherical coverage requirement according to Table 6.2.1.3-3 with its autonomously chosen UL beams and without uplink beam sweeping. Such a UE is considered to have met the beam correspondence tolerance requirement.
- If [bit-0], the UE shall meet the minimum peak EIRP requirement according to Table 6.2.1.3-1 and spherical coverage requirement according to Table 6.2.1.3-3 with uplink beam sweeping. Such a UE shall meet the beam correspondence tolerance requirement defined in Clause 6.6.4.2 and shall support uplink beam management, as defined in TS 38.306 [26].

6.6.1.3.3.1.1 Side condition for SSB and CSI-RS

The beam correspondence requirements are only applied under the following conditions:

- The downlink reference signals including both SSB and CSI-RS are provided and Type D QCL shall be maintained between SSB and CSI-RS.
- The reference measurement channel for beam correspondence are fulfilled according to the CSI-RS configuration in Annex A.3.
- The beam correspondence conditions for L1-RSRP measurements are fulfilled according to Table 6.6.1.3.3.1.1-1 and Table 6.6.1.3.3.1.1-2.

Table 6.6.1.3.3.1.1-1: Conditions for SSB based L1-RSRP measurements for beam correspondence

	Minimum SSB_RP Note 2		SSB Ês/lot
Angle of	NR operating	dBm / SCS _{SSB}	
arrival	bands	SCS _{SSB} = 120 kHz	dB
All angles	n257	-96.4	≥6
Note 1	n258	-96.4	
	n260	-92.1	

	n261	-96.4	
Note 1:	For UEs that support mult	tiple FR2 bands, Rx Beam Peak values are increased by	Σ MB _P and
	Spherical coverage value	s are increased by ΣMB_s , the UE multi-band relaxation fa	ctor in dB
	specified in TS 38.101-2 [3] clause 6.2.1.	
Note 2:	Values specified at the Re	eference point to give minimum SSB Ês/lot, with no applie	ed noise.

Table 6.6.1.3.3.1.1-2: Conditions for CSI-RS based L1-RSRP measurements for beam correspondence

	Minimum CSI-RS_RP Note 2	CSI-RS Ês/lot
ND	dBm / SCS _{CSI-RS}	
NK operating bands	SCS _{CSI-RS} = 120 kHz	dB
n257	-96.4	
n258	-96.4]
n260	-92.1	_ ≥6
n261	-96.4	
	n258 n260	NR operating bands SCS _{CSI-RS}

Note 1: For UEs that support multiple FR2 bands, Rx Beam Peak values are increased by ΣMB_P and Spherical coverage values are increased by ΣMB_S , the UE multi-band relaxation factor in dB specified in TS 38.101-2 [3] clause 6.2.1.

Note 2: Values specified at the Reference point to give minimum SSB Ês/lot, with no applied noise.

6.6.1.3.3.2 Beam correspondence tolerance for PC3

The beam correspondence tolerance requirement $\Delta EIRP_{BC}$ for power class 3 UEs is defined based on a percentile of the distribution of $\Delta EIRP_{BC}$, defined as $\Delta EIRP_{BC}$ = $EIRP_2$ - $EIRP_1$ over the link angles spanning a subset of the spherical coverage grid points, such that

- EIRP₁ is the total EIRP in dBm calculated based on the beam the UE chooses autonomously (corresponding beam) to transmit in the direction of the incoming DL signal, which is based on beam correspondence without relying on UL beam sweeping.
- EIRP₂ is the best total EIRP (beam yielding highest EIRP in a given direction) in dBm which is based on beam correspondence with relying on UL beam sweeping.
- The link angles are the ones corresponding to the top N^{th} percentile of the EIRP₂ measurement over the whole sphere, where the value of N is according to the test point of EIRP spherical coverage requirement for power class 3, i.e. N = 50.

For power class 3 UEs, the requirement is fulfilled if the UE's corresponding UL beams satisfy the maximum limit in Table 6.6.1.3.3.2-1.

Table 6.6.1.3.3.2-1: UE beam correspondence tolerance for power class 3

Operating band	Max ΔEIRP _{BC} at 85 %-tile ΔEIRP _{BC} CDF (dB)
n257	3.0
n258	3.0
n260	3.2
n261	3.0
only ur	quirements in this table are verified nder normal temperature conditions ned in Annex E.2.1

6.6.1.3.4 Normative reference

The normative reference for this requirement is TS 38.101-2 [3] clause 6.6.

6.6.1.4 Test description

6.6.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 6.6.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. The downlink reference measurement channels (RMCs) are specified in Annex A.3.1. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.6.1.4.1-1: Test Configuration Table

	Default Conditions					
Test Environment as specified in TS 38.508-1 [10] subclause [4.1]				0]	Normal	
l .	Test Frequencies as specified in TS 38.508-1 [10] subclause [4.3.1]				Low range, High r	ange
Test Channel Bandwidths as specified in TS 38.508- 1 [10] subclause [4.3.1]				Lowest, Highest		
Test SC	S as specif	fied in Tabl	e 5.3.5-1		120 kHz	
			Test P	aram	eters	
Test	ChBw	SCS	Downlink		Uplink C	onfiguration
ID			Configuration			
		Default	N/A		Modulation	RB allocation (NOTE 1)
1	50			DF	T-s-OFDM QPSK	Inner_Full
2	100					
3	200					
4	400					
NOTE:	1: The spe	cific config	juration of each RF	alloca	ation is defined in Ta	able 6.1-1.

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.2 and TS 38.508-1 [10] subclause 5.2.1.1.1, and uplink signals according to Annex G.0, G.1 and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.6.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 6.6.1.4.3.

6.6.1.4.2 Test procedure

Test procedure without beam sweeping:

- 1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.6.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in section 6.6.1.4.3.
- 1.2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec to ensure that the UE transmits at its maximum output power.

- 1.3. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1 without uplink beam sweeping. Allow at least BEAM_SELECT_WAIT_TIME (Note 1) for the UE Tx beam selection to complete.
- 1.4. Measure UE EIRP₁ in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration. Repeat EIRP₁ measurement for all directions in the sphere according to EIRP measurement procedure defined in Annex K.1.9 without beam sweeping for all the points in the grid. After a rotation, allow at least BEAM_SELECT_WAIT_TIME (Note 1) for UE to find the best beam to use. The measuring duration is one active uplink subframe. EIRP₁ is calculated considering both polarizations, theta and phi.
- 1.5 Record all the measured EIRP₁values.

NOTE 1: The BEAM SELECT WAIT TIME default value is defined in Annex K.1.1.

Test procedure with beam sweeping:

- 2.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.6.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in section 6.6.1.4.3.
- 2.2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 msec to ensure that the UE transmits at its maximum output power.
- 2.3. Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in Annex K.1.1. Allow at least BEAM_SELECT_WAIT_TIME (Note 1) for the UE Tx beam selection to complete.
- 2.4. Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration. Repeat EIRP measurements for all directions in the sphere according to EIRP measurement procedure defined in Annex K.1.9 with beam sweeping. After a rotation, allow at least BEAM_SELECT_WAIT_TIME (Note 1) for UE to find the best beam to use. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 2.5. Record all the measured EIRP₂ values.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

- 2.6. Calculate the $\Delta EIRP_{BC} = EIRP_2 EIRP_1$.
- 2.7. Calculate a cumulative distribution function for the $\Delta EIRP_{BC}$ values.
- NOTE 1: The $\Delta EIRP_{target-CDF}$ is then obtained from the Cumulative Distribution Function (CDF) computed using $\Delta EIRP_{BC}$ for each of all top Nth percentile of the $EIRP_2$ measurement points in the grid. When using constant step size measurement grids, a theta-dependent correction shall be applied, i.e., the PDF probability contribution for each measurement point is scaled by $sin(\theta)$.

6.6.1.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with following exceptions:

Table 6.6.1.4.3-1: SRS-Config: SpatialRelationInfo test requirement for with beam sweeping

Derivation Path: TS 38.508-1 [10], clause 4.6.3, Table 4.6.3-182						
Information Element Value/remark Comment Condition						
spatialRelationInfo	Not present	The UE can				
		consider the UL				
		beam sweeping.				

Table 6.6.1.4.3-2: SRS-Config: SpatialRelationInfo test requirement for without beam sweeping

Derivation Path: TS 38.508-1 [10], clause 4.6.3, Table 4.6.3-182						
Information Element Value/remark Comment Condition						
spatialRelationInfo	SRS-SpatialRelationInfo	The UE consider				
		autonomous				
		beam selection				

Table 6.6.1.4.3-3: SRS-Config: ssb-Index test requirement for without beam sweeping

Derivation Path: TS 38.508-1 [10], clause 4.6.3, Table 4.6.3-182						
Information Element Value/remark Comment Condition						
ssb-Index	SSB-Index					

Table 6.6.1.4.3-4: SRS-Config: SRS resources test requirement

Derivation Path: TS 38.508-1 [10], clause 4.6.3, Table 4.6.3-182					
Information Element	Value/remark	Comment	Condition		
srs-ResourceSetToReleaseList	Not present				
srs-ResourceSetToAddModList	1				
srs-ResourceToReleaseList	Not present				
srs_ResourceToAddModList	8	The default beam correspondence SRS resource upper limit (M) = 8 in Rel-15.			

6.6.1.5 Test requirements

The defined %-tile EIRP in measurement distribution derived in step 2.6 shall exceed the values specified in Table 6.2.1.2.5-3 in clause 6.2.1.2.5. The defined %-tile Δ EIRP_{BC} in measurement distribution derived in step 2.7 shall not exceed the values specified in Table 6.6.1.5-1.

Table 6.6.1.5-1: UE beam correspondence tolerance for power class 3

Operating band	Max ΔEIRP _{BC} at 85 th %-tile ΔEIRP _{BC} CDF (dB)		
n257	3.0 +TT		
n258	3.0 +TT		
n260	3.2 +TT		
n261	[3.0] +TT		
	ments in this table are verified		
only under normal temperature conditions			
defined in TS 38.101-2 [3] Annex E.2.1			

6.6A Beam correspondence for CA

For intra-band CA in FR2, the same beam correspondence relationship for beam management is supported across CCs in Rel-15 and no requirement is specified. Beam correspondence performance for intra-band CA is fulfilled if the beam correspondence requirements defined in section 6.6 is met for non-CA case.6

7 Receiver characteristics

TBD

7.1 General

Editor's Note: Test configurations/environments that require new spherical scan shall be included in test procedure section and identifying such scenarios is currently FFS and owned by RAN5.

Unless otherwise stated, the receiver characteristics are specified over the air (OTA). The reference receive sensitivity (REFSENS) is defined assuming a 0 dBi reference antenna located at the centre of the quiet zone.

For Rx test cases the identified beam peak direction can be stored and reused for a device under test in various configurations/environments for the full duration of device testing as long as beam peak direction is the same.

Unless otherwise stated, Channel Bandwidth shall be prioritized in the selecting of test points. Subcarrier spacing shall be selected after Test Channel Bandwidth is selected.

For conformance testing of all test cases in this specification, the UE under test shall disable UL Tx diversity schemes.

7.2 Diversity characteristics

FFS

7.3 Reference sensitivity

7.3.1 General

The reference sensitivity power level REFSENS is the EIS level (total component) at the centre of the quiet zone in the RX beam peak direction, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3.2 Reference sensitivity power level

Editor's note: The following aspects of the clause are for future consideration:

- Measurement Uncertainties and Test Tolerances are FFS for power class 1,2 and 4.

The following aspects of the clause are for future consideration:

- The 3D EIS scan test time optimization in RAN 4/ RAN 5 is FFS (existing EIS based test time needs to be re-evaluated for 200/266 grid points).
- Test Procedures for EIS beam peak Extreme Conditions are FFS
- Statistical model in Annex H.2 (currently based on LTE model) needs to be validated to confirm that it is also applicable for FR2

7.3.2.1 Test purpose

To verify the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area of an g-NodeB.

7.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

7.3.2.3 Minimum conformance requirements

The reference sensitivity power level REFSENS is defined as the EIS level at the centre of the quiet zone in the RX beam peak direction, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3.2.3.1 Reference sensitivity power level for power class 1

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annex A3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal) with peak reference sensitivity specified in Table 7.3.2.1-1. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link Angle).

Table 7.3.2.3.1-1: Reference sensitivity for power class 1

Operating REFSENS (dBm) / Channel bandwidth						
band	50 MHz	100 MHz	200 MHz	400 MHz		
n257	-97.5	-94.5	-91.5	-88.5		
n258	-97.5	-94.5	-91.5	-88.5		
n260	-94.5	-91.5	-88.5	-85.5		
n261	-97.5	-94.5	-91.5	-88.5		
NOTE 1: The	NOTE 1: The transmitter shall be set to P _{UMAX} as defined in subclause 6.2.4					

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3.1-2.

Table 7.3.2.3.1-2: Uplink configuration for reference sensitivity

Operating	NR Band / Channel bandwidth / NRB / SCS / Duplex mode					
Operating band	50 MHz	100 MHz	200 MHz	400 MHz	scs	Duplex Mode
n257	32	64	128	256	120 kHz	TDD
n258	32	64	128	256	120 kHz	TDD
n260	32	64	128	256	120 kHz	TDD
n261	32	64	128	256	120 kHz	TDD

Unless given by Table 7.3.2.3.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

Table 7.3.2.3.1-3: Network signalling value for reference sensitivity

Operating band	Network Signalling value
n258	NS 201

7.3.2.3.2 Reference sensitivity power level for power class 2

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal) with peak reference sensitivity specified in Table 7.3.2.3.2-1. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link Angle).

Table 7.3.2.3.2-1: Reference sensitivity for power class 2

Operating band	REFSENS (dBm) / Channel bandwidth						
	50 MHz	50 MHz 100 MHz 200 MHz 400 MHz					
n257	-94.5	-91.5	-88.5	-85.5			
n258	-94.5	-91.5	-88.5	-85.5			
n261	-94.5	-91.5	-88.5	-85.5			
NOTE 1: The transmitter shall be set to P _{UMAX} as defined in subclause 6.2.4							

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3.1-2.

Unless given by Table 7.3.2.3.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

7.3.2.3.3 Reference sensitivity power level for power class 3

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal) with peak reference sensitivity specified in Table 7.3.2.3-1. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link Angle).

For the UEs that support multiple FR2 bands, the minimum requirement for Reference sensitivity in Table 7.3.2.3.3-1 shall be increased per band, respectively, by the reference sensitivity relaxation parameter $\Delta MB_{P,n}$ as specified in section 6.2.1.3. The requirement for the UE which supports a single FR2 band is specified in Table 7.3.2.3.3-1. The requirement for the UE which supports multiple FR2 bands is specified in both Table 7.3.2.3.3-1 and Table 6.2.1.3-4.

Table 7.3.2.3.3-1: Reference sensitivity

Operating band	REFSENS (dBm) / Channel bandwidth				
	50 MHz	400 MHz			
n257	-88.3	-85.3	-82.3	-79.3	
n258	-88.3	-85.3	-82.3	-79.3	
n260	-85.7	-82.7	-79.7	-76.7	
n261	-88.3	-85.3	-82.3	-79.3	
NOTE 1: The trans	NOTE 1: The transmitter shall be set to P _{UMAX} as defined in subclause 6.2.4				

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3.1-2.

Unless given by Table 7.3.2.3.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

7.3.2.3.4 Reference sensitivity power level for power class 4

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal) with peak reference sensitivity specified in Table 7.3.2.3.4-1. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link Angle).

Table 7.3.2.3.4-1: Reference sensitivity for power class 4

Operating band	REFSENS (dBm) / Channel bandwidth				
	50 MHz	400 MHz			
n257	-97.0	-94.0	-91.0	-88.0	
n258	-97.0	-94.0	-91.0	-88.0	
n260	-95.0	-92.0	-89.0	-86.0	
n261	-97.0	-94.0	-91.0	-88.0	
NOTE 1: The trans	NOTE 1: The transmitter shall be set to P _{UMAX} as defined in subclause 6.2.4				

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3.1-2.

Unless given by Table 7.3.2.3.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

The normative reference for this requirement is TS 38.101-2 [3] clause 7.3.2.

7.3.2.4 Test description

7.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3 The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.3.2.4.1-1: Test Configuration Table

	Initial Conditions					
Test Environment as specified in TS 38.508-1 [10]			Normal, TL/VL, TL/VH, TH/\	/L, TH/VH		
subclause	4.1					
Test Frequ	encies as specified in 7	ΓS 38.508-1 [10]	Low range, Mid range, High	range		
subclause	4.3.1					
Test Chan	nel Bandwidths as spec	cified in TS 38.508-1	Highest supported BW, in a	ddition to 100MHz and		
[10] subclause 4.3.1			200MHz			
Test SCS as specified in Table 5.3.5-1			120kHz			
	Test Parameters					
Test ID	Downlink Co	onfiguration	Uplink Confi	guration		
	Modulation	RB allocation	Modulation	RB allocation		
1	CP-OFDM QPSK	Full RB	DFT-s-OFDM QPSK	REFSENS (NOTE 2)		
		(NOTE 1)				

NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2. NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for each SCS, channel BW and NR band.

Table 7.3.2.4.1-2: Downlink Configuration of each RB allocation

Channel Bandwidth	SCS kHz	LCRBmax	RB allocation (LCRB@RBstart)
50MHz	120	32	32@0
100MHz	120	64	64@0
200MHz	120	128	128@0
400MHz	120	256	256@0

NOTE 1: Test Channel Bandwidths are checked separately for each NR band, the applicable channel bandwidths are specified in Table 5.3.5-1.

Table 7.3.2.4.1-3: Uplink configuration for reference sensitivity, LCRB@RBstart format

Operating Band	SCS kHz	50 MHz	100 MHz	200 MHz	400 MHz	Duplex Mode
n257	120	32@0	64@0	128@0	256@0	TDD
n258	120	32@0	64@0	128@0	256@0	TDD
n260	120	32@0	64@0	128@0	256@0	TDD
n261	120	32@0	64@0	128@0	256@0	TDD

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.1, and uplink signals according to Annex G.0, G.1 and G.3.1.
- 4. The UL Reference Measurement channels are set according to Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 7.3.2.4.3.

7.3.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.3.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Tables 7.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .
- 4. Set the UE in the Rx beam peak direction found with a 3D EIS scan as performed in Annex K.1.2. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Rx beam selection to complete.
- 5. Perform EIS procedure as stated in Annex K.1.4 to calculate "averaged EIS" .. At each power level, measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2. The downlink power step size shall be no more than 0.2 dB when the RF power level is near the sensitivity level.
- 6. Compare the dB value of the "averaged EIS" value corresponding to the Rx beam peak direction identified in step 5 to the test requirement in table 7.3.2.5-1. If the EIS value is lower or equal to the value in table 7.3.2.5-1, pass the UE. Otherwise fail the UE.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

7.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

7.3.2.5 Test requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.2 and A.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5) with peak reference sensitivity specified in Tables 7.3.2.5-1 to 7.3.2.5-4. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link Angle).

Table 7.3.2.5-1: Reference sensitivity for power class 1

Operating	REFSENS (dBm) / Channel bandwidth					
band	50 MHz 100 MHz 200 MHz 400 MH:					
n257	-97.5+TT	-94.5+TT	-91.5+TT	-88.5+TT		
n258	-97.5+TT	-94.5+TT	-91.5+TT	-88.5+TT		
n260	-94.5+TT	-91.5+TT	-88.5+TT	-85.5+TT		
n261	-97.5+TT	-94.5+TT	-91.5+TT	-88.5+TT		

Table 7.3.2.5-2: Reference sensitivity for power class 2

Operating band	REFSENS (dBm) / Channel bandwidth					
	50 MHz 100 MHz 200 MHz 400 MH					
n257	-94.5+TT	-91.5+TT	-88.5+TT	-85.5+TT		
n258	-94.5+TT	-91.5+TT	-88.5+TT	-85.5+TT		
n260						
n261	-94.5+TT	-91.5+TT	-88.5+TT	-85.5+TT		

Table 7.3.2.5-3: Reference sensitivity for power class 3

Operating band	REFSENS (dBm) / Channel bandwidth						
	50 MHz	50 MHz 100 MHz 200 MHz 400 MHz					
n257	-88.3+TT	-85.3+TT	-82.3+TT	-79.3+TT			
n258	-88.3+TT	-85.3+TT	-82.3+TT	-79.3+TT			
n260	-85.7+TT	-82.7+TT	-79.7+TT	-76.7+TT			
n261	-88.3+TT	-85.3+TT	-82.3+TT	-79.3+TT			

Table 7.3.2.5-3a: Test Tolerance (Reference sensitivity for power class 3)

Test Metric	f ≤ 40.8 GHz
IFF (Quiet Zone size ≤ 30 cm)	2.34 dB

Table 7.3.2.5-4: Reference sensitivity for power class 4

Operating band	REFSENS (dBm) / Channel bandwidth						
	50 MHz	50 MHz 100 MHz 200 MHz 400					
n257	-97+TT	-94+TT	-91+TT	-88+TT			
n258	-97+TT	-94+TT	-91+TT	-88+TT			
n260	-95+TT	-92+TT	-89+TT	-86+TT			
n261	-97+TT	-94+TT	-91+TT	-88+TT			

7.3.4 EIS spherical coverage

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainties and Test Tolerances are FFS for power class 1, 2 and 4.
- Incorporating multi band relaxation testing in this clause is not complete.

The following aspects of the clause are for future consideration:

- Testing extreme conditions is FFS.

7.3.4.1 Test purpose

To verify that the EIS spherical coverage of the UE receiver is acceptable under conditions of low signal level, ideal propagation and no added noise.

7.3.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

7.3.4.3 Minimum conformance requirements

The reference sensitivity power level REFSENS at a single grid point of the spherical grid is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

The reference measurement channels and throughput criterion shall be as specified in section 7.3.2.3.

For power class 1, the maximum EIS at the 85th percentile of the CCDF of EIS measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 7.3.4.3-1 below. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link angle).

Table 7.3.4.3-1: EIS spherical coverage for power class 1

Operating	EIS	at 85 th %ile CCDF (dE	Bm) / Channel bandw	vidth
band	50 MHz	100 MHz	200 MHz	400 MHz
n257	-89.5	-86.5	-83.5	-80.5
n258	-89.5	-86.5	-83.5	-80.5
n260	-86.5	-83.5	-80.5	-77.5
n261	-89.5	-86.5	-83.5	-80.5

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.4.

NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal conditions as defined in Annex E.2.1.

For power class 2, the maximum EIS at the 60th percentile of the CCDF of EIS measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 7.3.4.3-2 below. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link angle).

Table 7.3.4.3-2: EIS spherical coverage for power class 2

Operating band	EIS at 60 th %ile CCDF (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-83.5	-80.5	-77.5	-74.5	
n258	-83.5	-80.5	-77.5	-74.5	
n261	-83.5	-80.5	-77.5	-74.5	

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.4.

NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal conditions as defined in Annex E.2.1.

For power class 3, the maximum EIS at the 50th percentile of the CCDF of EIS measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 7.3.4.3-3 below. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link angle).

For power class 3, the UEs that support operation in multiple FR2 bands, the minimum requirement for EIS spherical coverage in Table 7.3.4.3-3 shall be increased per band, respectively, by the reference sensitivity relaxation parameter $\Delta MB_{s,n}$ as specified in Table 7.3.4.3-4 below.

Table 7.3.4.3-3: EIS spherical coverage for power class 3

Operating band	EIS at 50th%ile CCDF (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-77.4	-74.4	-71.4	-68.4	
n258	-77.4	-74.4	-71.4	-68.4	
n260	-73.1	-70.1	-67.1	-64.1	
n261	-77.4	-74.4	-71.4	-68.4	

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.4

NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal conditions as defined in Annex E.2.1.

Table 7.3.4.3-3a: UE multi-band relaxation factors for power class 3

Supported bands	∑MB _s (dB)		
n257, n258	≤ 1.25		
n258, n260	≤ 0.75 ³		
n258, n261	≤ 1.25		
n260, n261	≤ 0.75 ²		
n257, n258, n261	≤ 1.75		
n257, n260, n261	≤ 1.25 ³		
n258, n260, n261	≤ 1.25³		
n257, n258, n260, n261	≤ 1.75³		
NOTE 1: The requirements in this table are applicable to			

NOTE 1: The requirements in this table are applicable to UEs which support only the indicated bands.

NOTE 2: For supported bands n260 + n261, $\Delta MB_{s,n}$ is not applied for band n260.

NOTE 3: For n260, maximum applicable $\Delta MB_{s,n}$ is 0.4

IB

For power class 4, the maximum EIS at the 20th percentile of the CCDF of EIS measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 7.3.4.3-4 below. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link angle).

Table 7.3.4.3-4: EIS spherical coverage for power class 4

Operating band	EIS at 20th%ile CCDF (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-88.0	-85.0	-82.0	-79.0	
n258	-88.0	-85.0	-82.0	-79.0	
n260	-83.0	-80.0	-77.0	-74.0	
n261	-88.0	-85.0	-82.0	-79.0	

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.4

NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal conditions as defined in Annex E.2.1.

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.4.3-5.

Table 7.3.4.3-5: Uplink configuration for reference sensitivity

	NR Band / Channel bandwidth / N _{RB} / SCS / Duplex mode					
NR Band	50 MHz	100 MHz	200 MHz	400 MHz	scs	Duplex Mode
n257	32	64	128	256	120 kHz	TDD
n258	32	64	128	256	120 kHz	TDD
n260	32	64	128	256	120 kHz	TDD
n261	32	64	128	256	120 kHz	TDD

Unless given by Table 7.3.4.3-6, the minimum requirements specified in Table 7.3.4.3-1, Table 7.3.4.3-2, Table 7.3.4.3-3 and Tables 7.3.4.3-4 shall be verified with the network signalling value NS_200 configured.

Table 7.3.4.3-6: Network Signalling value for reference sensitivity

NR Band	Network Signalling value
n258	NS 201

For the UE which supports inter-band carrier aggregation, the minimum requirement for reference sensitivity in Table 7.3.4.3-1, Table 7.3.4.3-2, Table 7.3.4.3-3 and Table 7.3.4.3-4 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause [TBD] for the applicable operating bands.

The normative reference for this requirement is TS 38.101-2 [3] clause 7.3.4.

7.3.4.4 Test description

7.3.4.4.1 Initial conditions

Same initial conditions as in clause 7.3.2.4.1.

7.3.4.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.3.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Tables 7.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .
- 4. Set the UE in the Rx beam peak direction found with a 3D EIS scan as performed in Annex K.1.2. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Rx beam selection to complete.
- 5. Measure UE EIS value for each grid point according to EIS spherical coverage procedure defined in Annex K.1.6, and obtain a Complimentary Cumulative Distribution Function (CCDF) of all EIS dBm values.
- 6. Identify the EIS dBm value corresponding to %-tile (UE power class dependent) value in the applicable test requirement table in section 7.3.4.5.
- 7. Compare the EIS dBm value identified in step 6, to the limit value in the applicable test requirement table in section 7.3.4.5. If the EIS dBm value is lower or equal to the limit value, pass the UE. Otherwise fail the UE.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

7.3.4.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

7.3.4.5 Test requirement

The reference measurement channels and throughput criterion shall be as specified in section 7.3.2.5.

Table 7.3.4.5-1: EIS spherical coverage for power class 1

Operating	EIS at 85 th %ile CCDF (dBm) / Channel bandwidth				
band	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-89.5 +TT	-86.5 +TT	-83.5 +TT	-80.5 +TT	
n258	-89.5 +TT	-86.5 +TT	-83.5 +TT	-80.5 +TT	
n260	-86.5 +TT	-83.5 +TT	-80.5 +TT	-77.5 +TT	
n261	-89.5 +TT	-86.5 +TT	-83.5 +TT	-80.5 +TT	

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.4.

NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal conditions as defined in Annex E.2.1.

Table 7.3.4.5-2: EIS spherical coverage for power class 2

Operating band	EIS at 60 th %ile CCDF (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-83.5 +TT	-80.5 +TT	-77.5 +TT	-74.5 +TT	
n258	-83.5 +TT	-80.5 +TT	-77.5 +TT	-74.5 +TT	
n261	-83.5 +TT	-80.5 +TT	-77.5 +TT	-74.5 +TT	

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.4.

NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal conditions as defined in Annex E.2.1.

Table 7.3.4.5-3: EIS spherical coverage for power class 3

Operating band	EIS at 50 th %ile CCDF (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-77.4 +TT	-74.4 +TT	-71.4 +TT	-68.4 +TT	
n258	-77.4 +TT	-74.4 +TT	-71.4 +TT	-68.4 +TT	
n260	-73.1 +TT	-70.1 +TT	-67.1 +TT	-64.1 +TT	
n261	-77.4 +TT	-74.4 +TT	-71.4 +TT	-68.4 +TT	

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.4.

NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal conditions as defined in Annex E.2.1.

Table 7.3.4.5-3a: UE multi-band relaxation factors for power class 3

Supported bands	∑MB _s (dB)
n257, n258	≤ 1.25
n258, n260	≤ 0.75 ³
n258, n261	≤ 1.25
n260, n261	≤ 0.75 ²
n257, n258, n261	≤ 1.75
n257, n260, n261	≤ 1.25 ³
n258, n260, n261	≤ 1.25³
n257, n258, n260, n261	≤ 1.75³

NOTE 1: The requirements in this table are applicable to UEs which support only the indicated bands.

NOTE 2: For supported bands n260 + n261, $\Delta MB_{s,n}$ is not applied for band n260.

NOTE 3: For n260, maximum applicable $\Delta MB_{s,n}$ is 0.4 dB

Table 7.3.4.5-3b: Test Tolerance (Reference sensitivity for power class 3)

Test Metric	f ≤ 40.8 GHz
IFF (Quiet Zone size ≤ 30 cm)	2.21 dB

Table 7.3.4.5-4: EIS spherical coverage for power class 4

Operating band	EIS at 20 th %ile CCDF (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-88.0 +TT	-85.0 +TT	-82.0 +TT	-79.0 +TT	
n258	-88.0 +TT	-85.0 +TT	-82.0 +TT	-79.0 +TT	
n260	-83.0 +TT	-80.0 +TT	-77.0 +TT	-74.0 +TT	
n261	-88.0 +TT	-85.0 +TT	-82.0 +TT	-79.0 +TT	

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.4

NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal conditions as defined in Annex E.2.1.

7.3A Reference sensitivity for CA

Editors note:

- TP analysis for Reference sensitivity CA pending.
- Beam peak direction for CA is TBD and cannot be assumed to be the same as single carrier.

7.3A.1 General

The reference sensitivity power level REFSENS for both Intra-band non-contiguous CA and Intra-band contiguous CA is defined as the EIS level at the centre of the quiet zone in the RX beam peak direction[(same as that found for single carrier scenario in clause 7.3.2)], at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3A.2 Reference sensitivity power level for CA

7.3A.2.0 Minimum Conformance Requirements

7.3A.2.0.1 Intra-band contiguous CA

For each component carrier in the intra-band contiguous carrier aggregation, the throughput in QPSK R = 1/3 shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annex A (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal) with peak reference sensitivity values determined from section 7.3.2.3, and relaxation applied to peak reference sensitivity requirement as specified in Table 7.3A.2.0.1-1.

The normative reference for this requirement is TS 38.101-2 [3] clause 7.3A.2.1.

Table 7.3A.2.0.1-1: ∆R_{IB} EIS Relaxation for CA operation by aggregated channel bandwidth

Aggregated Channel BW 'BW _{Channel_CA} ' (MHz)	ΔR _{IB} (dB)
BW _{Channel_CA} ≤ 800	0.0
800 < BW _{Channel_CA} ≤ 1200	0.5

7.3A.2.0.2 Intra-band non-contiguous CA

For each component carrier in the intra-band non-contiguous carrier aggregation, the throughput in QPSK R=1/3 shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annex A (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal) with peak reference sensitivity values determined from section 7.3.2.3, and relaxation applied to peak reference sensitivity requirement as specified in Table 7.3A.2.0.2-1.

The cumulative aggregated channel bandwidth is defined as the frequency band from the lowest edge of the lowest CC to the upper edge of the highest CC of all UL and DL configured CCs.

The normative reference for this requirement is TS 38.101-2 [3] clause 7.3A.2.2.

Table 7.3A.2.0.2-1: ΔR_{IB} EIS Relaxation for CA operation by cumulative aggregated channel bandwidth

Cumulative Aggregated Channel BW (MHz)	ΔR _{IB} (dB)
≤ 800	0.0
[> 800 and ≤ 1400]	[0.5]

7.3A.2.1 Reference sensitivity power level for CA (2DL CA)

7.3A.2.1.1 Test purpose

Same test purpose as in clause 7.3.2.1.

7.3A.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 2DL CA.

7.3A.2.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 7.3A.2.0.

7.3A.2.1.4 Test description

7.3A.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR CA configurations specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and are shown in Table 7.3A.2.1.4.1-1, Table 7.3A.2.1.4.1-2 and Table 7.3A.2.1.4.1-3. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.3A.2.1.4.1-1: Test Configuration Table

	Initial Conditions			
Test Environment as specified in TS 38.508-1 [10] subclause 4.1			Normal, TL/VL, TL/VH, TH/\	/L, TH/VH
Test Frequencies as specified in TS 38.508-1 [10] subclause 4.3.1			Low range, High range	
Test CA Bandwidth combination as specified in subclause 5.5A		Maximum aggregated BW (contiguous CA) or Maximum cumulative aggregated BW (non- contiguous CA)		
Test SCS as specified in Table 5.3.5-1			120kHz	
Test Para			meters	
Test ID	Downlink Co	onfiguration	Uplink Confi	iguration
	Modulation	RB allocation	Modulation	RB allocation
1	CP-OFDM QPSK	Full RB	DFT-s-OFDM QPSK	REFSENS (NOTE 2,
		(NOTE 1)		NOTE 3)
NOTE 1: F	NOTE 1: Full RB allocation shall be used per each SCS and component carrier as specified in Table			

NOTE 1: Full RB allocation shall be used per each SCS and component carrier as specified in Table 7.3A.2.1.4.1-2.

NOTE 2: REFSENS refers to Table 7.3A.2.1.4.1-3 which defines uplink RB configuration and start RB location for each SCS, channel BW.

NOTE 3: Use single carrier UL when testing reference sensitivity power level for CA.

Table 7.3A.2.1.4.1-2: Downlink Configuration of each RB allocation

Component Carrier Bandwidth	SCS kHz	LCRBmax	RB allocation (LCRB@RBstart)
50MHz	120	32	32@0
100MHz	120	64	64@0
200MHz	120	128	128@0
400MHz	120	256	256@0

NOTE 1: CA Bandwidths are checked separately for each NR band, the applicable CA bandwidths are specified in Table 5.3A.4-1.

Table 7.3A.2.1.4.1-3: Uplink configuration for reference sensitivity, LCRB@RBstart format

Operating Band	SCS kHz	50 MHz	100 MHz	200 MHz	400 MHz	Duplex Mode
n257	120	32@0	64@0	128@0	256@0	TDD
n258	120	32@0	64@0	128@0	256@0	TDD
n260	120	32@0	64@0	128@0	256@0	TDD
n261	120	32@0	64@0	128@0	256@0	TDD

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.1, and uplink signals according to Annex G.0, G.1 and G.3.1.
- 4. The UL Reference Measurement channels are set according to Table 7.3A.2.1.4.1-1, Table 7.3A.2.1.4.1-2 and Table 7.3A.2.1.4.1-3.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 7.3A.2.1.4.3.

7.3A.2.1.4.2 Test Procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [10] clause 5.5.1. Message contents are defined in clause 7.3A.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321[28], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[25], clause 9.2).
- 4. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.3A.2.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.3A.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 6. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .
- 7. Set the UE in the Rx beam peak direction [(same as that found for single carrier in clause 7.3.2)]. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Rx beam selection to complete.
- 8. For each component carrier, perform EIS procedure as stated in Annex K.1.4 to calculate "averaged EIS" by changing the power level of the wanted signal with a step size of 0.2dB. For each power step measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.
- 9. For each component carrier, compare the dB value of the "averaged EIS" value corresponding to the Rx beam peak direction (same as that found for single carrier in clause 7.3.2) identified in step 8 to the test requirement in Tables 7.3A.2.1.5-3 to Table 7.3A.2.1.5-7. If the EIS value is lower or equal to the value in Tables 7.3A.2.1.5-3 to Table 7.3A.2.1.5-7, pass the UE. Otherwise fail the UE.

NOTE 1: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

7.3A.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

7.3A.2.1.5 Test requirement

For each component carrier, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.2 and A.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5) with peak reference sensitivity specified in Tables 7.3A.2.1.5-3 to 7.3A.2.1.5-7. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link Angle).

Table 7.3A.2.1.5-1: △RIB EIS Relaxation per component carrier for intra-band contiguous CA

Aggregated Channel BW 'BW _{Channel_CA} ' (MHz)	ΔR _{IB} (dB) / CC
BW _{Channel_CA} ≤ 800	0.0
800 < BW _{Channel_CA} ≤ 1200	0.5

Table 7.3A.2.1.5-2: ΔR_{IB} EIS Relaxation per component carrier for intra-band non-contiguous CA

Cumulative Aggregated Channel BW (MHz)	ΔR _{IB} (dB) / CC
≤ 800	0.0
[> 800 and ≤ 1400]	[0.5]

Table 7.3A.2.1.5-3: Reference sensitivity per component carrier for power class 1

Operating	REFSENS (dBm) / CC			
band	50 MHz	100 MHz	200 MHz	400 MHz
n257	-97.5+TT+∆R _{IB}	-94.5+TT+∆R _{IB}	-91.5+TT+ΔR _{IB}	-88.5+TT+ΔR _{IB}
n258	-97.5+TT+∆R _{IB}	-94.5+TT+∆R _{IB}	-91.5+TT+ΔR _{IB}	-88.5+TT+ΔR _{IB}
n260	-94.5+TT+ΔR _{IB}	-91.5+TT+ΔR _{IB}	-88.5+TT+ΔR _{IB}	-85.5+TT+ΔR _{IB}
n261	-97.5+TT+∆R _{IB}	-94.5+TT+ΔR _{IB}	-91.5+TT+ΔR _{IB}	-88.5+TT+ΔR _{IB}

Table 7.3A.2.1.5-4: Reference sensitivity per component carrier for power class 2

Operating band	REFSENS (dBm) / CC			
	50 MHz	100 MHz	200 MHz	400 MHz
n257	-94.5+TT+ΔR _{IB}	-91.5+TT+∆R _{IB}	-88.5+TT+ΔR _{IB}	-85.5+TT+ΔR _{IB}
n258	-94.5+TT+ΔR _{IB}	-91.5+TT+ΔR _{IB}	-88.5+TT+ΔR _{IB}	-85.5+TT+ΔR _{IB}
n260				
n261	-94.5+TT+ΔR _{IB}	-91.5+TT+ΔR _{IB}	-88.5+TT+ΔR _{IB}	-85.5+TT+ΔR _{IB}

Table 7.3A.2.1.5-5: Reference sensitivity per component carrier for power class 3

Operating band	REFSENS (dBm) / Channel bandwidth			
	50 MHz	100 MHz	200 MHz	400 MHz
n257	-88.3+TT+ΔR _{IB}	-85.3+TT+ΔR _{IB}	-82.3+TT+ΔR _{IB}	-79.3+TT+ΔR _{IB}
n258	-88.3+TT+ΔR _{IB}	-85.3+TT+ΔR _{IB}	-82.3+TT+ΔR _{IB}	-79.3+TT+ΔR _{IB}
n260	-85.7+TT+ΔR _{IB}	-82.7+TT+ΔR _{IB}	-79.7+TT+∆R _{IB}	-76.7+TT+ΔR _{IB}
n261	-88.3+TT+ΔR _{IB}	-85.3+TT+∆R _{IB}	-82.3+TT+ΔR _{IB}	-79.3+TT+ΔR _{IB}

Table 7.3A.2.1.5-6a: Test Tolerance per component carrier (Reference sensitivity for power class 3)

Test Metric	f ≤ 40.8 GHz
IFF (Ouiet Zone size ≤ 30 cm)	3.37 dB

Table 7.3A.2.1.5-7: Reference sensitivity per component carrier for power class 4

Operating band	REFSENS (dBm) / Channel bandwidth					
	50 MHz	100 MHz	200 MHz	400 MHz		
n257	-97+TT+∆R _{IB}	-94+TT+ΔR _{IB}	-91+TT+ΔR _{IB}	-88+TT+∆R _{IB}		
n258	-97+TT+∆R _{IB}	-94+TT+ΔR _{IB}	-91+TT+ΔR _{IB}	-88+TT+∆R _{IB}		
n260	-95+TT+∆R _{IB}	-92+TT+ΔR _{IB}	-89+TT+ΔR _{IB}	-86+TT+∆R _{IB}		
n261	-97+TT+ΔR _{IB}	-94+TT+ΔR _{IB}	-91+TT+ΔR _{IB}	-88+TT+∆R _{IB}		

7.3A.2.2 Reference sensitivity power level for CA (3DL CA)

7.3A.2.2.1 Test purpose

Same test purpose as in clause 7.3A.2.1.1.

7.3A.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3DL CA.

7.3A.2.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 7.3A.2.0.

7.3A.2.2.4 Test description

Same test description as in clause 7.3A.2.1.4.

7.3A.2.2.5 Test requirement

For each component carrier, the test requirement is the same as in clause 7.3A.2.1.5.

7.3A.2.3 Reference sensitivity power level for CA (4DL CA)

7.3A.2.3.1 Test purpose

Same test purpose as in clause 7.3A.2.1.1.

7.3A.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 4DL CA.

7.3A.2.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 7.3A.2.0.

7.3A.2.3.4 Test description

Same test description as in clause 7.3A.2.1.4.

7.3A.2.3.5 Test requirement

For each component carrier, the test requirement is the same as in clause 7.3A.2.1.5.

7.3A.2.4 Reference sensitivity power level for CA (5DL CA)

7.3A.2.4.1 Test purpose

Same test purpose as in clause 7.3A.2.1.1.

7.3A.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 5DL CA.

7.3A.2.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 7.3A.2.0.

7.3A.2.4.4 Test description

Same test description as in clause 7.3A.2.1.4.

7.3A.2.4.5 Test requirement

For each component carrier, the test requirement is the same as in clause 7.3A.2.1.5.

7.3A.2.5 Reference sensitivity power level for CA (6DL CA)

7.3A.2.5.1 Test purpose

Same test purpose as in clause 7.3A.2.1.1.

7.3A.2.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 6DL CA.

7.3A.2.5.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 7.3A.2.0.

7.3A.2.5.4 Test description

Same test description as in clause 7.3A.2.1.4.

7.3A.2.5.5 Test requirement

For each component carrier, the test requirement is the same as in clause 7.3A.2.1.5.

7.3A.2.6 Reference sensitivity power level for CA (7DL CA)

7.3A.2.6.1 Test purpose

Same test purpose as in clause 7.3A.2.1.1.

7.3A.2.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 7DL CA.

7.3A.2.6.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 7.3A.2.0.

7.3A.2.6.4 Test description

Same test description as in clause 7.3A.2.1.4.

7.3A.2.6.5 Test requirement

For each component carrier, the test requirement is the same as in clause 7.3A.2.1.5.

7.3A.2.7 Reference sensitivity power level for CA (8DL CA)

7.3A.2.7.1 Test purpose

Same test purpose as in clause 7.3A.2.1.1.

7.3A.2.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports FR2 3DL CA.

7.3A.2.7.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 7.3A.2.0.

7.3A.2.7.4 Test description

Same test description as in clause 7.3A.2.1.4.

7.3A.2.7.5 Test requirement

For each component carrier, the test requirement is the same as in clause 7.3A.2.1.5.

7.3D Reference sensitivity for UL MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- OTA test procedure for UL MIMO is still under investigation
- 39.905 TP analysis for UL MIMO is pending
- Applicability of Beam peak of single UL is FFS.

7.3D.1 General

The reference sensitivity power level REFSENS for UL MIMO is the EIS level (total component) at the centre of the quiet zone in the RX beam peak direction [TBD], at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3D.2 Reference sensitivity power level

7.3D.2.1 Test purpose

To verify UL MIMO configured UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area of an g-NodeB.

7.3D.2.2 Test applicability

This test case applies to all types of *NR* UE release 15 and forward supporting UL MIMO.

7.3D.2.3 Minimum conformance requirements

For UE configured with UL MIMO, the minimum conformance requirements are defined in clause 7.3.2.3. The requirements shall be met with the UL MIMO configurations specified in Table 7.3D.2.3-1.

Table 7.3D.2.3-1: UL MIMO configuration

Transmission scheme	DCI format	TPMI Index	
Codebook based uplink	DCI format 0_1	0	

The normative reference for this requirement is TS 38.101-2 [3] clause 7.3D.

7.3D.2.4 Test description

7.3D.2.4.1 Initial conditions

Same initial condition in clause 7.3.2.4.1.

7.3D.2.4.2 Test procedure

Same test procedure as in clause 7.3.2.4.2 with the following added to step 2 for UL MIMO configuration:

2.1 The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [10] subclause 4.3.6.1.1.2.

7.3D.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

7.3D.2.5 Test requirement

The test requirement is the same as in clause 7.3.2.5.

7.3D.3 Void

7.3D.4EIS spherical coverage

7.3D.4.1 Test purpose

To verify that UL MIMO configured UE's EIS spherical coverage is acceptable under conditions of low signal level, ideal propagation and no added noise.

7.3D.4.2 Test applicability

This test case applies to all types of *NR* UE release 15 and forward supporting UL MIMO.

7.3D.4.3 Minimum conformance requirements

For UE configured with UL MIMO, the minimum conformance requirements are defined in clause 7.3.4.3. The requirements shall be met with the UL MIMO configurations specified in Table 7.3D.4.3-1.

Table 7.3D.4.3-1: UL MIMO configuration

Transmission scheme	DCI format	TPMI Index	
Codebook based uplink	DCI format 0_1	0	

The normative reference for this requirement is TS 38.101-2 [3] clause 7.3D.

7.3D.4.4 Test description

7.3D.4.4.1 Initial conditions

Same initial condition in clause 7.3.4.4.1.

7.3D.4.4.2 Test procedure

Same test procedure as in clause 7.3.4.4.2 with the following added to step 2 for UL MIMO configuration:

2.1 The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [10] subclause 4.3.6.1.1.2.

7.3D.4.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

7.3D.4.5 Test requirement

The test requirement is the same as in clause 7.3.4.5.

7.4 Maximum input level

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement uncertainty is FFS.
- UL power level configuration is TBD.

7.4.1 Test purpose

Maximum input level tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to a g-NodeB.

7.4.2 Test applicability

The minimum conformance requirements in this test case are not testable due to maximum input level unachievable in IFF OTA test setup. Other test setups have not been analysed. Thus the test case will not be tested as part of UE conformance testing.

NOTE: As a result TC 7.4 has not been included in the test case applicability table 4.1.2-1, TS 38.522. This does not preclude the test from being used for R&D or other purposes if deemed useful to all types of NR UE release 15 and forward.

7.4.3 Minimum conformance requirements

The maximum input level is defined as the maximum mean power, for which the throughput shall meet or exceed the minimum requirements for the specified reference measurement channel.

The maximum input level is defined as a directional requirement. The requirement is verified in beam locked mode in the direction where peak gain is achieved.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1) with parameters specified in Table 7.4.3-1. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

Table 7.4.3-1: Maximum input level

Rx Parameter	Units	Channel bandwidth				
		50 MHz	100 MHz	200 MHz	400 MHz	
Power in transmission bandwidth configuration	dBm	-25 (NOTE 2)				
NOTE 1: The transmitter shall be set to 4 dB below the lower limit of the P _{UMAX,f,c} inequality defined in subclause 6.2.4, with uplink configuration specified in Table 7.3.2.3-5. NOTE 2: Reference measurement channel is specified in Annex A.3.3: OPSK, R=1/3 variant with						

Table 7.4.3-2: Void

one sided dynamic OCNG Pattern as described in Annex A

The normative reference for this requirement is TS 38.101-2 [3] clause 7.4.

7.4.4 Test description

7.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.4.4.1-1: Test Configuration Table

Initial Conditions						
Test Environment as specifi subclause 4.1	ed in TS 38.508-1 [10]	Normal				
Test Frequencies as specific subclause 4.3.1	ed in TS 38.508-1 [10]	Mid range				
Test Channel Bandwidths as	s specified in TS	Lowest, Mid, Highest				
38.508-1 [10] subclause 4.3	.1					
Test SCS as specified in Tal	ole 5.3.5-1	120kHz				
	Test Parameters for	Channel Bandwidths				
Downlink Con	figuration	Uplink Configuration				
Modulation	RB allocation	Modulation	RB allocation			
CP-OFDM QPSK	NOTE1	DFT-s-OFDM QPSK	NOTE2			
NOTE 1: The specific configuration of downlink RB allocation is defined in Table 7.3.2.4.1-2. NOTE 2: The specific configuration of uplink RB allocation is defined in Table 7.3.2.4.1-3.						

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C, and uplink signals according to AnnexG.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message content are defined in clause 7.4.4.3.

7.4.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.4.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.4.4.1-1. Since the UL has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level for θ -polarization to the value as defined in Table 7.4.5-1.
- 4. Set the UE in the Rx beam peak direction found with a 3D EIS scan as performed in Annex K.1.2. Allow at least BEAM_SELECT_WAIT_TIME (NOTE) for the UE Rx beam selection to complete.
- 5. Send Uplink power control commands to the UE (less or equal to [TBD] dB step size should be used), to ensure that the UE output power is within [TBD] dB of the target power level in Table 7.4.5-1, for at least the duration of the Throughput measurement.
- 6. SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Rx Only.
- 7. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.
- 8. SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.
- 9. Repeat steps from 3 to 8, for the downlink signal from φ -polarization.
- 10. Compare the results for both the θ -polarization and ϕ -polarization against the requirement. If either result meets the requirements, pass the UE.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in Annex K.1.1.

7.4.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6.

7.4.5 Test requirement

The throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A with parameters specified in Tables 7.4.5-1.

Table 7.4.5-1: Maximum input level

Rx Parameter	Units	Channel bandwidth				
		50	100	200	400	
		MHz	MHz	MHz	MHz	
Power in Transmission	dBm	-5:	1 (NOTE 2,3) for bar	nd n257, n258	and n261	
Bandwidth Configuration	иын		-59 (NOTE 2,3	3) for band n26	0	
NOTE 1: The transmitter shall	NOTE 1: The transmitter shall be set to 4 dB below the lower limit of the P _{UMAX,f,c} inequality					
defined in subclause	e 6.2.4, witl	h uplink d	configuration specifie	ed in Table 7.3.	.2.3-5.	
NOTE 2: Reference measure	ment chan	nel is spe	ecified in Annex A.3.	3: QPSK, R=1/	/3 variant with	
	one sided dynamic OCNG Pattern as described in Annex A.					
NOTE 3: The test requiremer	IOTE 3: The test requirements deviate from minimum requirements by 26dB relaxation for 24.25					
~ 29.5 GHz and 34 dB relaxation for 37 ~ 40 GHz.						

7.4A Maximum input level for CA

FFS

7.4D Maximum input level for UL MIMO

FFS

7.5 Adjacent channel selectivity

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement Uncertainty is FFS.
- The minimum conformance requirements for Case 2 in this test case are not testable due to maximum input level unachievable in IFF OTA test setup. Other test setups have not been analysed.

7.5.1 Test purpose

Adjacent channel selectivity tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel, under conditions of ideal propagation and no added noise.

7.5.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

7.5.3 Minimum conformance requirements

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The requirement applies at the Radiated Interface Boundary (RIB) when the AoA of the incident wave of the wanted signal and the interfering signal are both from the direction where peak gain is achieved.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

The UE shall fulfil the minimum requirement specified in Table 7.5.3-1 for all values of an adjacent channel interferer up to -25 dBm. However, it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.3-2 and Table 7.5.3-3 where the throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A(with QPSK, R=1/3 and one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

Table 7.5.3-1: Adjacent channel selectivity

		Channel bandwidth				
Rx Parameter	Units	50 MHz	100 MHz	200 MHz	400 MHz	
ACS for band n257, n258, n261	dB	23	23	23	23	
ACS for band n260	dB	22	22	22	22	

Table 7.5.3-2: Test parameters for adjacent channel selectivity, Case 1

Rx Parameter	Units		Channel bandwidth					
		50 MHz	400 MHz					

Power in Transmission Bandwidth Configuration	dBm	REFSENS + 14 dB					
P _{Interferer} for band n257, n258, n261	dBm	REFSENS + 35.5 dB	REFSENS +35.5dB	REFSENS +35.5dB	REFSENS +35.5dB		
P _{Interferer} for band n260	dBm	REFSENS + 34.5 dB	REFSENS +34.5dB	REFSENS +34.5dB	REFSENS +34.5dB		
BW _{Interferer}	MHz	50	100	200	400		
F _{Interferer} (offset)	MHz	50 / -50 NOTE 3	100 / -100 NOTE 3	200 / -200 NOTE 3	400 / -400 NOTE 3		

- NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A with one sided dynamic OCNG Pattern as described in Annex A and set-up according to Annex C.
- NOTE 2: The REFSENS power level is specified in Table 7.3.2.3-1., which are applicable to different UE power classes.
- NOTE 3: The absolute value of the interferer offset F_{Interferer} (offset) shall be further adjusted to $(\lceil |F_{Interferer}|/SCS\rceil + 0.5)SCS \text{ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have same SCS.}$

Table 7.5.3-3: Test parameters for adjacent channel selectivity, Case 2

Rx Parameter	Units	Channel bandwidth				
		50 MHz	100 MHz	200 MHz	400 MHz	
Power in Transmission Bandwidth Configuration for band n257, n258, n261	dBm	-46.5	-46.5	-46.5	-46.5	
Power in Transmission Bandwidth Configuration for band n260	dBm	-45.5	-45.5	-45.5	-45.5	
P _{Interferer}	dBm			-25		
BW _{Interferer}	MHz	50	100	200	400	
F _{Interferer} (offset)	MHz	50 / -50 NOTE 2	100 / -100 NOTE 2	200 / -200 NOTE 2	400 / -400 NOTE 2	

NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A with one sided dynamic OCNG Pattern TDD as described in Annex A.5.2.1 and set-up according to Annex C.

NOTE 2: The absolute value of the interferer offset FInterferer (offset) shall be further adjusted to MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have same SCS.

The normative reference for this requirement is TS 38.101-2 [3] clause 7.5.

7.5.4 Test description

7.5.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in table 7.5.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A. The details of the OCNG patterns used are specified in Annex A. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.5.4.1-1: Test Configuration

Initial Conditions						
Test Environment as specified in TS 38.508-1 [10]		Normal				
subclause 4						
	encies as specified in TS 38	.508-1 [10]	Mid range			
subclause 4						
	el Bandwidths as specified	in TS	50 MHz, 10	0 MHz		
38.508-1 [1	38.508-1 [10] subclause 4.3.1					
Test SCS a	s specified in Table 5.3.5-1		120 kHz			
		T	est Paramet	ers		
Test ID	Downlink Co	nfiguration		Uplink Con	figuration	
	Modulation	RB allo	ocation	Modulation	RB allocation	
1	CP-OFDM QPSK	NOTE 1		DFT-s-OFDM QPSK	NOTE 1	
NOTE 1: The specific configuration of each RB allocation is defined in Table 7.3.2.4.1-1.						

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, Figure A.3.1.4.1 for TE diagram and section A.3.4 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.1, and uplink signals according to Annex G.0, G.1 and G.3.1.
- 4. The UL Reference Measurement channels are set according to Table 7.5.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [10] clause 4.5. Message contents are defined in clause 7.5.4.3.

7.5.4.2 Test procedure

- 1. Set the UE in the Rx beam peak direction found with a Rx beam peack search direction as performed in Annex K.
- 2. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.5.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 3. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.5.4.1-1. Since the UL has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 4. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .
- 5. Perform Blocking measurement procedure as stated in Annex K.1.8 using Downlink signal level and Interferer signal level as defined in Table 7.5.5-2 (Case 1). Modulated interferer signal characteristics as defined in Annex D with frequency below the wanted signal.
- 6. Repeat step 5 using an interfering signal frequency above the wanted signal in Case 1.
- 7. Perform Blocking measurement procedure as stated in Annex K.1.8 using Downlink signal level and Interferer signal level as defined in Table 7.5.5-3 (Case 2). Modulated interferer signal characteristics as defined in Annex D with frequency below the wanted signal.. Measure throughput for a duration sufficient to achieve statistical significance according to Annex H.2.
- 8. Repeat step 7 using an interfering signal frequency above the wanted signal in Case 2.
- 9. Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

7.5.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with TRANSFORM_PRECODER_ENABLED condition in Table 4.6.3-118 PUSCH-Config.

7.5.5 Test requirements

The throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A, under the conditions specified in Table 7.5.5-2 and also under the conditions specified in Table 7.5.5-3.

Table 7.5.5-1: Adjacent channel selectivity

		Channel bandwidth				
Rx Parameter	Units	50 MHz	100 MHz	200 MHz	400 MHz	
ACS for band n257, n258, n261	dB	23	23	23	23	
ACS for band n260	dB	22	22	22	22	

Table 7.5.5-2: Test parameters for adjacent channel selectivity, Case 1

Rx Parameter	Units	Channel bandwidth					
		50 MHz	100 MHz	200 MHz	400 MHz		
Power in Transmission Bandwidth Configuration for band n257, n258, n261	dBm	REFSENS + 14 dB					
Power in Transmission Bandwidth Configuration for band n260	dBm	REFSENS + 14 - 1.8 dB NOTE 4	REFSEN + 14 - 4.8 dB NOTE 4	REFSENS + 14 dB	REFSENS + 14 dB		
P _{Interferer} for band n257, n258, n261	dBm	REFSENS + 35.5 dB	REFSENS +35.5dB	REFSENS +35.5dB NOTE 5	REFSENS +35.5dB NOTE 5		
P _{Interferer} for band n260	dBm	REFSENS + 34.5 - 1.8 dB NOTE 4	REFSENS +34.5 - 4.8 dB NOTE 4	REFSENS +34.5dB NOTE 5	REFSENS +34.5dB NOTE 5		
BW _{Interferer}	MHz	50	100	200	400		
F _{Interferer} (offset)	MHz	50 / -50 NOTE 3	100 / -100 NOTE 3	200 / -200 NOTE 3	400 / -400 NOTE 3		

NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A with one sided dynamic OCNG Pattern as described in Annex A.5.2.1 and set-up according to Annex C [].

NOTE 2: The REFSENS power level is specified in Table 7.3.2.3-1.

NOTE 3: The absolute value of the interferer offset F_{Interferer} (offset) shall be further adjusted to

 $([F_{Interferer}]/SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have same SCS.

NOTE 4: Core requirement cannot be tested due to testability issue and test requirement for wanted signal and interferer includes relaxation to achieve feasible interferer power level.

NOTE 5: Core requirement cannot be tested due to testability issue.

Table 7.5.5-3: Test parameters for adjacent channel selectivity, Case 2

Rx Parameter	Units	Channel bandwidth					
		50 MHz 100 MHz		200 MHz	400 MHz		

Power in Transmission Bandwidth Configuration for band n257, n258, n261	dBm	-46.5	-46.5	-46.5	-46.5		
Power in Transmission Bandwidth Configuration for band n260	dBm	-45.5	-45.5	-45.5	-45.5		
P _{Interferer}	dBm	-25					
BW _{Interferer}	MHz	50	100	200	400		
F _{Interferer} (offset)	MHz	50 / -50 NOTE 2	100 / -100 NOTE 2	200 / -200 NOTE 2	400 / -400 NOTE 2		

NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A with one sided dynamic OCNG Pattern TDD as described in Annex A.5.2.1 and set-up according to Annex C.

NOTE 2: The absolute value of the interferer offset FInterferer (offset) shall be further adjusted to ([|F_{Interferer}|/SCS] + 0.5)SCS MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have same SCS.

7.5A Adjacent channel selectivity for CA

FFS

7.5D Adjacent channel selectivity for UL MIMO

FFS

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

The requirement applies at the RIB when the AoA of the incident wave of the wanted signal and the interfering signal are both from the direction where peak gain is achieved.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

7.6.1 General

FFS

7.6.2 In-band blocking

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement uncertainty is FFS.

7.6.2.1 Test purpose

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the spectrum equivalent to twice the channel bandwidth below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels.

7.6.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

7.6.2.3 Minimum conformance requirements

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the spectrum equivalent to twice the channel bandwidth below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels.

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A with one sided dynamic OCNG Pattern for the DL-signal as described in Annex A The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

Table 7.6.2.3-1: In band blocking requirements

Rx parameter	Units	Channel bandwidth				
		50 MHz	100 MHz	200 MHz	400 MHz	
Power in Transmission Bandwidth Configuration	dBm	REFSENS + 14dB				
BW _{Interferer}	MHz	50	100	200	400	
P _{Interferer} for bands n257, n258, n261	dBm	REFSENS + 35.5 dB	REFSENS + 35.5 dB	REFSENS + 35.5 dB	REFSENS + 35.5 dB	
P _{Interferer} for band n260	dBm	REFSENS + 34.5 dB	REFSENS + 34.5 dB	REFSENS + 34.5 dB	REFSENS + 34.5 dB	
F _{loffset}	MHz	≤ 100 & ≥ -100 NOTE 5	≤ 200 & ≥ -200 NOTE 5	≤ 400 & ≥ -400 NOTE 5	≤ 800 & ≥ -800 NOTE 5	
F _{Interferer}	MHz	F _{DL_low} + 25	F _{DL_low} + 50	F _{DL_low} + 100	F _{DL_low} + 200	
		to	to	to	to	
		F _{DL_high} - 25	F _{DL_high} - 50	F _{DL_high} - 100	F _{DL_high} - 200	

- NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A with one sided dynamic OCNG Pattern as described in Annex A and set-up according to Annex C.
- NOTE2: The REFSENS power level is specified in Section 7.3.2, which are applicable according to different UE power classes.
- NOTE 3: The wanted signal consists of the reference measurement channel specified in Annex A QPSK, R=1/3 with one sided dynamic OCNG pattern as described in Annex A and set-up according to Annex C.
- NOTE 4: F_{loffset} is the frequency separation between the centre of the aggregated CA bandwidth and the centre frequency of the Interferer signal.
- NOTE 5: The absolute value of the interferer offset $F_{loffset}$ shall be further adjusted to ([| $F_{lnterferer}$ |/SCS] + 0.5)SCS([| $F_{lnterferer}$ |/SCS] + 0.5)SCS MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have same SCS.
- NOTE 6: Finterferer range values for unwanted modulated interfering signals are interferer centre frequencies.

The normative reference for this requirement is TS 38.101-2 [10] clause 7.6.2.

7.6.2.4 Test description

7.6.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.6.2.4.1-1. The details of the uplink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2. The details of the OCNG patterns used are specified in Annex A.5.

Table 7.6.2.4.1-1: Test Configuration Table

	Initial Conditions						
Test Enviro	nment as specified in TS 38	3.508-1 [10]	Normal				
subclause 4	4.1						
Test Freque	encies as specified in TS 38	.508-1 [10]	Mid range				
subclause 4							
Test Chann	nel Bandwidths as specified	in TS	50 MHz, 100 MHz				
38.508-1 [1	.0] subclause 4.3.1						
Test SCS a	Test SCS as specified in Table 5.3.5-1			120 kHz			
		T	est Paramete	ers			
Test ID	Downlink Co	onfiguration		Uplink Cor	plink Configuration		
	Modulation	RB allo	ocation	Modulation	RB allocation		
1	CP-OFDM QPSK	NOTE 1		DFT-s-OFDM QPSK	NOTE 1		
NOTE 1: The specific configuration of each RB allocation is defined in Table 7.3.2.4.1-1.							

- 1. Connection between SS and UE is shown in TS 38.508-1 [10] Annex A, in Figure A.3.1.4.1 for TE diagram and section A.3.4 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [10] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.1, and uplink signals according to Annex G.0, G.1 and G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.6.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38-508-1 [10] clause 4.5. Message content are defined in clause 7.6.2.4.3.

7.6.2.4.2 Test procedure

- 1. Set the UE in the Rx beam peak direction found with a Rx beam peack search direction as performed in Annex K.
- 2. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 3. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.6.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 4. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200msec for the UE to reach P_{UMAX} .
- 5. Perform Blocking measurement procedure as stated in Annex K.1.8 using Downlink signal level and Interferer signal level as defined in Table 7.6.2.5-1. Modulated interferer signal characteristics as defined in Annex D. Measure throughput for a duration sufficient to achieve statistical significance according to Annex H.2.
- 6. Repeat steps using interfering signals specified in 7.6.2.5-1. The ranges are covered in steps equal to the interferer bandwidth.

7.6.2.4.3 Message contents

Message contents are according to TS 38.508-1 [10] subclause 4.6 with TRANSFORM_PRECODER_ENABLED condition in Table 4.6.3-118 PUSCH-Config.

7.6.2.5 Test requirement

The throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A with parameters specified in Tables 7.6.2.5-1.

Table 7.6.2.5-1: In band blocking test requirement

Rx parameter	Units	Channel bandwidth					
-		50 MHz	100 MHz	200 MHz	400 MHz		
Power in Transmission Bandwidth Configuration for bands n257, n258, n261	dBm	REFSENS + 14dB					
Power in Transmission Bandwidth Configuration for band n260	dBm	REFSENS + 14 - 1.8 dB NOTE 7	REFSENS + 14 - 4.8 dB NOTE 7	REFSENS + 14 dB	REFSENS + 14 dB		
BW _{Interferer}	MHz	50	100	200	400		
P _{Interferer} for bands n257, n258, n261	dBm	REFSENS + 35.5 dB	REFSENS + 35.5 dB	REFSENS + 35.5 dB NOTE 8	REFSENS + 35.5 dB NOTE 8		
P _{Interferer} for band n260	dBm	REFSENS + 34.5 - 1.8 dB NOTE 7	REFSENS + 34.5 - 1.8 dB NOTE 7	REFSENS + 34.5 dB NOTE 8	REFSENS + 34.5 dB NOTE 8		
F _{loffset}	MHz	≤ 100 & ≥ -100 NOTE 5	≤ 200 & ≥ -200 NOTE 5	≤ 400 & ≥ -400 NOTE 5	≤ 800 & ≥ -800 NOTE 5		
F _{Interferer}	MHz	F _{DL_low} + 25	F _{DL_low} + 25 F _{DL_low} + 50		F _{DL_low} + 200		
		to	to	to	to		
		F _{DL_high} - 25	F _{DL_high} - 50	F _{DL_high} - 100	F _{DL_high} - 200		
NOTE 1: The inte	NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A with one sided						

- NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A with one sided dynamic OCNG Pattern as described in Annex A and set-up according to Annex C.
- NOTE2: The REFSENS power level is specified in Section 7.3.2, which are applicable according to different UE power classes.
- NOTE 3: The wanted signal consists of the reference measurement channel specified in Annex A QPSK, R=1/3 with one sided dynamic OCNG pattern as described in Annex A and set-up according to Annex C.
- NOTE 4: F_{loffset} is the frequency separation between the centre of the aggregated CA bandwidth and the centre frequency of the Interferer signal.
- NOTE 5: The absolute value of the interferer offset $F_{loffset}$ shall be further adjusted to ([| $F_{lnterferer}$ |/SCS] + 0.5)SCS([| $F_{lnterferer}$ |/SCS] + 0.5)SCS MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have same SCS.
- NOTE 6: F_{Interferer} range values for unwanted modulated interfering signals are interferer centre frequencies.
- NOTE 7: Core requirement cannot be tested due to testability issue and test requirement for wanted signal and interferer includes relaxation to achieve feasible interferer power level.
- NOTE 8: Core requirement cannot be tested due to testability issue.

7.6.3 Void

7.6A Blocking characteristics for CA

7.6A.1 General

FFS

7.6A.2 In-band blocking for CA

FFS

7.6D Blocking characteristics for UL MIMO

FFS

7.7 Void

7.8 Void

7.9 Spurious emissions

Editor's note: This test case is not complete. Following aspects are either missing or not yet determined:

- The testability of this test case is pending further analysis on relaxation of the requirement.
- Noise impact for Band n257 (34 to 40 GHz) is to be completed by RAN5#86 (Feb-2020). If by RAN5#86 the noise impact is not concluded, the agreement is to retain 17.2 dB relaxation.

7.9.1 Test purpose

Test verifies the UE's spurious emissions meet the requirements described in clause 7.9.3.

Excess spurious emissions increase the interference to other systems.

7.9.2 Test applicability

FFS

7.9.3 Minimum conformance requirements

The spurious emissions power is the power of emissions generated or amplified in a receiver. The spurious emissions power level is measured as TRP.

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.3-1. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction).

Table 7.9.3-1: General receiver spurious emission requirements

Frequency range	Measurement bandwidth	Maximum level	NOTE
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	1
1GHz ≤ f ≤ 2^{nd} harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 dBm	

NOTE 1: Unused PDCCH resources are padded with resource element groups with power level given by PDCCH as defined in Annex C.3.1.

The normative reference for this requirement is TS 38.101-2 [3] clause 7.9.

7.9.4 Test description

7.9.4.1 Initial conditions

FFS

7.9.4.2 Test procedure

FFS

7.9.4.3 Message contents

FFS

7.9.5 Test requirement

The measured spurious emissions derived in step [TBD], shall not exceed the maximum level specified in Table 7.9.5-1 and 7.9.5-2.

Table 7.9.5-1: General receiver spurious emission requirements (Band n257)

Frequency range	Measurement bandwidth	Maximum level	NOTE
6GHz ≤ f < 20GHz	1 MHz	-47 + 10.2 dBm	1
20GHz ≤ f < 34GHz	1 MHz	-47 + 17.2 dBm	1
34GHz ≤ f < 40GHz	1 MHz	-47 + [17.2] dBm	1
40 GHz \leq f \leq 2 nd harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 + 33.1 dBm	1
NOTE 1: Unused PDCCH res	sources are padde	d with resource	e element groups with power level given

by PDCCH as defined in Annex C.3.1.

Table 7.9.5-2: General receiver spurious emission requirements (Band n258, n260, n261)

Frequency range	Measurement bandwidth	Maximum level	NOTE
6GHz ≤ f < 20GHz	1 MHz	-47 + [TBD] dBm	1
20GHz ≤ f < 40GHz	1 MHz	-47 + [TBD] dBm	1
40GHz ≤ f ≤ 2 nd harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 + [TBD] dBm	1

NOTE 1: Unused PDCCH resources are padded with resource element groups with power level given by PDCCH as defined in Annex C.3.1.

7.10 Void

Annex A (normative): Measurement channels

A.1 General

TBD

A.2 UL reference measurement channels

A.2.1 General

TBD

A.2.2 Void

A.2.3 Reference measurement channels for TDD

For UL RMCs defined below, TDD slot pattern defined in Table A.2.3-1 will be used for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, TDD slot patterns defined for reference sensitivity tests in Table A.3.3.1-1 will be used.

Table A.2.3-1 Additional reference channels parameters for TDD

		Va	lue
	Parameter	SCS 60 kHz (μ=2)	SCS 120 kHz (μ=3)
UL-DL	referenceSubcarrierSpacing	60 kHz	120 kHz
configuration	dl-UL-TransmissionPeriodicity	2 ms	2 ms
	nrofDownlinkSlots	3	7
	nrofDownlinkSymbols	4	12
	nrofUplinkSlot	4	8
	nrofUplinkSymbols	0	0
	UL slot numbers	mod(slot index, 32) = {28,,31}	mod(slot index, 64) = {56,,63}

A.2.3.1DFT-s-OFDM Pi/2-BPSK

Table A.2.3.1-1: Reference Channels for DFT-s-OFDM pi/2-BPSK for 60 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-200	60	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	50-200	60	16	11	pi/2 BPSK	0	1/4	480	16	2	1	2024	2024
	50	60	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	50	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	200	60	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	200	60	256	11	pi/2 BPSK	0	1/4	7944	24	2	3	33792	33792

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 6.1.4.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.2.3.1-2: Reference Channels for DFT-s-OFDM pi/2-BPSK for 120 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-400	120	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	50	120	16	11	pi/2 BPSK	0	1/4	504	16	2	1	2112	2112
	50	120	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	100	120	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	100	120	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	200	120	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	200	120	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
·	400	120	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	400	120	256	11	pi/2 BPSK	0	1/4	7944	24	2	3	33792	33792

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 6.1.4.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.2.3.2 DFT-s-OFDM QPSK

Table A.2.3.2-1: Reference Channels for DFT-s-OFDM QPSK for 60 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-200	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	50-200	60	16	11	QPSK	2	1/6	768	16	2	1	4048	2024
	50	60	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	50	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	200	60	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	200	60	256	11	QPSK	2	1/6	12808	24	2	4	67584	33792

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 6.1.4.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.2.3.2-2: Reference Channels for DFT-s-OFDM QPSK for 120 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-400	120	1	11	QPSK	2	1/6	56	16	2	1	264	132
	50	120	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	50	120	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	100	120	20	11	QPSK	2	1/6	984	16	2	1	5060	2530
	100	120	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	100	120	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	200	120	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	200	120	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	400	120	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	400	120	256	11	QPSK	2	1/6	12808	24	2	4	67584	33792

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 6.1.4.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: UL slot numbers are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, UL slot numbers are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.3 DFT-s-OFDM 16QAM

Table A.2.3.3-1: Reference Channels for DFT-s-OFDM 16QAM for 60 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-200	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	50	60	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	50	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	200	60	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	200	60	256	11	16QAM	10	1/3	45096	24	1	6	135168	33792

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 6.1.4.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit.

Note 5: UL slot numbers are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, UL slot numbers are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

Table A.2.3.3-2: Reference Channels for DFT-s-OFDM 16QAM for 120 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-400	120	1	11	16QAM	10	1/3	176	16	2	1	528	132
	50	120	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	50	120	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	100	120	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	100	120	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	200	120	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	200	120	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	400	120	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	400	120	256	11	16QAM	10	1/3	45096	24	1	6	135168	33792

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 6.1.4.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit.

Note 4: UL slot numbers are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, UL slot numbers are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.4 DFT-s-OFDM 64QAM

Table A.2.3.4-1: Reference Channels for DFT-s-OFDM 64QAM for 60 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-200	60	1	11	64QAM	18	1/2	408	16	2	1	792	132
	50	60	32	11	64QAM	18	1/2	12808	24	1	2	25344	4224
	50	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	100	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	100	60	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	200	60	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	200	60	256	11	64QAM	18	1/2	102416	24	1	13	202752	33792

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 6.1.4.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit.

Table A.2.3.4-2: Reference Channels for DFT-s-OFDM 64QAM for 120 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	DFT-S- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-400	120	1	11	64QAM	18	1/2	408	16	2	1	792	132
	50	120	16	11	64QAM	18	1/2	6400	24	1	1	12672	2112
	50	120	32	11	64QAM	18	1/2	12808	24	1	2	25344	4224
	100	120	32	11	64QAM	18	1/2	12808	24	1	2	25344	4224
	100	120	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	200	120	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	200	120	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	400	120	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	400	120	256	11	64QAM	18	1/2	102416	24	1	13	202752	33792

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 6.1.4.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit.

Note 4: UL slot numbers are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, UL slot numbers are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.5 CP-OFDM QPSK

Table A.2.3.5-1: Reference Channels for CP-OFDM QPSK for 60 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-200	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	50-200	60	16	11	QPSK	2	1/6	768	16	2	1	4048	2024
	50	60	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	50	60	66	11	QPSK	2	1/6	3368	16	2	1	17424	8712
	100	60	66	11	QPSK	2	1/6	3368	16	2	1	17424	8712
	100	60	132	11	QPSK	2	1/6	6536	24	2	2	34848	17424
	200	60	132	11	QPSK	2	1/6	6536	24	2	2	34848	17424
	200	60	264	11	QPSK	2	1/6	13064	24	2	4	69696	34848

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 5.1.3.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.5-2: Reference Channels for CP-OFDM QPSK for 120 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-400	120	1	11	QPSK	2	1/6	56	16	2	1	264	132
	50	120	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	50	120	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	100	120	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	100	120	66	11	QPSK	2	1/6	3368	16	2	1	17424	8712
	200	120	66	11	QPSK	2	1/6	3368	16	2	1	17424	8712
	200	120	132	11	QPSK	2	1/6	6536	24	2	2	34848	17424
	400	120	132	11	QPSK	2	1/6	6536	24	2	2	34848	17424
	400	120	264	11	QPSK	2	1/6	13064	24	2	4	69696	34848

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 5.1.3.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 4: UL slot numbers are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, UL slot numbers are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.6 CP-OFDM 16QAM

Table A.2.3.6-1: Reference Channels for CP-OFDM 16QAM for 60 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-200	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	50	60	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	50	60	66	11	16QAM	10	1/3	11528	24	1	2	34848	8712
	100	60	66	11	16QAM	10	1/3	11528	24	1	2	34848	8712
	100	60	132	11	16QAM	10	1/3	23040	24	1	3	69696	17424
	200	60	132	11	16QAM	10	1/3	23040	24	1	3	69696	17424
	200	60	264	11	16QAM	10	1/3	46104	24	1	6	139392	34848

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 5.1.3.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit.

Table A.2.3.6-2: Reference Channels for CP-OFDM 16QAM for 120 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-400	120	1	11	16QAM	10	1/3	176	16	2	1	528	132
	50	120	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	50	120	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	100	120	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	100	120	66	11	16QAM	10	1/3	11528	24	1	2	34848	8712
	200	120	66	11	16QAM	10	1/3	11528	24	1	2	34848	8712
	200	120	132	11	16QAM	10	1/3	23040	24	1	3	69696	17424
	400	120	132	11	16QAM	10	1/3	23040	24	1	3	69696	17424
	400	120	264	11	16QAM	10	1/3	46104	24	1	6	139392	34848

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 5.1.3.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit.

Note 5: UL slot numbers are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, UL slot numbers are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.7 CP-OFDM 64QAM

Table A.2.3.7-1: Reference Channels for CP-OFDM 64QAM for 60k Hz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 5)	Total number of bits per slot for UL slots (Note 5)	Total modulated symbols per slot for UL slots (Note 5)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-200	60	1	11	64QAM	19	1/2	408	16	2	1	792	132
	50	60	33	11	64QAM	19	1/2	13064	24	1	2	26136	4356
	50	60	66	11	64QAM	19	1/2	26120	24	1	4	52272	8712
	100	60	66	11	64QAM	19	1/2	26120	24	1	4	52272	8712
	100	60	132	11	64QAM	19	1/2	53288	24	1	7	104544	17424
	200	60	132	11	64QAM	19	1/2	53288	24	1	7	104544	17424
	200	60	264	11	64QAM	19	1/2	106576	24	1	13	209088	34848

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 5.1.3.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit.

Table A.2.3.7-2: Reference Channels for CP-OFDM 64QAM for 120 kHz SCS

Parameter	Channel bandwidt h	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	kHz						Bits	Bits			Bits	
	50-400	120	1	11	64QAM	19	1/2	408	16	2	1	792	132
	50	120	16	11	64QAM	19	1/2	6400	24	1	1	12672	2112
	50	120	32	11	64QAM	19	1/2	12808	24	1	2	25344	4224
	100	120	33	11	64QAM	19	1/2	13064	24	1	2	26136	4356
	100	120	66	11	64QAM	19	1/2	26120	24	1	4	52272	8712
	200	120	66	11	64QAM	19	1/2	26120	24	1	4	52272	8712
	200	120	132	11	64QAM	19	1/2	53288	24	1	7	104544	17424
	400	120	132	11	64QAM	19	1/2	53288	24	1	7	104544	17424
	400	120	264	11	64QAM	19	1/2	106576	24	1	13	209088	34848

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS Table 5.1.3.1-1 defined in TS 38.214 [23].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit.

Note 5: UL slot numbers are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, UL slot numbers are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.3 DL reference measurement channels

A.3.1 General

Unless otherwise stated, Tables A.3.3.2-1 and A.3.3.2-2 are applicable for measurements of the Receiver Characteristics (clause 7).

Unless otherwise stated, Tables A.3.3.2-1 and A.3.3.2-2 also apply for the modulated interferer used in Clauses 7.5 and 7.6 with test specific bandwidths.

CSI-RS configuration parameter defined in A.3.1-2 is used for verifying the beam correspondence requirement, 2 slots of CSI-RS shall be provided at each test grid point. The DL channel shall be configured for zero power on all tones except those used by CSI-RS in slots containing CSI-RS for beam refinement, and the DL and UL channel sizes shall be the same during verification.

Table A.3.1-1 Test parameters

Parameter	Unit	Value
CORESET frequency domain allocation		Full BW
CORESET time domain allocation		2 OFDM symbols at the begin of each slot
PDSCH mapping type		Type A
PDSCH start symbol index (S)		2
Number of consecutive PDSCH symbols (L)		12
PDSCH PRB bundling	PRBs	2
Dynamic PRB bundling		false
MCS table for TBS determination		64QAM
Overhead value for TBS determination		0
First DMRS position for Type A PDSCH mapping		2
DMRS type		Type 1
Number of additional DMRS		2
FDM between DMRS and PDSCH		Disable
TRS configuration		1 slot, periodicity 10 ms, offset 0
PTRS configuration		PTRS is not configured

Table A.3.1-2: CSI-RS parameters

Resource Type	aperiodic
Resource Set Config	
repetition	on
aperiodicTriggeringOffset	Depending on UE capability
Resource Config	
	30 for resource #0
	31 for resource #1
	32 for resource #2
nzp-CSI-RS-Resourceld	33 for resource #3
112p-C31-N3-Nesourceiu	34 for resource #4
	35 for resource #5
	36 for resource #6
	37 for resource #7
powerControlOffset	0
powerControlOffsetSS	db0
nrofPorts	1
	6 for resource #0
	7 for resource #1
	8 for resource #2
firstOFDMSymbolInTimeDomain	9 for resource #3
Instorbinsymbolinimeboliam	10 for resource #4
	11 for resource #5
	12 for resource #6
	13 for resource #7
cdm-Type	noCDM
density	3
nrofRBs	48 for channel bandwdith≥100MHz
THORNES	32 for channel bandwidth=50MHz
qcl-info	Type D to SSB

A.3.2 Void

A.3.3 DL reference measurement channels for TDD

A.3.3.1 General

Table A.3.3.1-1: Additional test parameters for TDD

	Doromotor	Va	lue
	Parameter	SCS 60 kHz (µ=2)	SCS 120 kHz (µ=3)
UL-DL	referenceSubcarrierSpacing	60 kHz	120 kHz
configuration	dl-UL-TransmissionPeriodicity	1.25 ms	0.625 ms
	nrofDownlinkSlots	3	3
	nrofDownlinkSymbols	4	10
	nrofUplinkSlot	1	1
	nrofUplinkSymbols	4	2
Number of HARQ F	Processes	8	8
K1 value		K1 = 4 if mod(i,5) = 0	K1 = 4 if mod(i,5) = 0
		K1 = 3 if mod(i,5) = 1	K1 = 3 if mod(i,5) = 1
		K1 = 2 if mod(i,5) = 2	K1 = 2 if mod(i,5) = 2
		where i is slot index per frame; i	where i is slot index per frame; i
		= {0,,39}	= {0,,79}

A.3.3.2 FRC for receiver requirements for QPSK

Table A.3.3.2-1: Fixed Reference Channel for Receiver Requirements (SCS 60 kHz, TDD)

Parameter	Unit		Value	
Channel bandwidth	MHz	50	100	200
Subcarrier spacing configuration $^{\mu}$		2	2	2
Allocated resource blocks		66	132	264
Subcarriers per resource block		12	12	12
Allocated slots per Frame		23	23	23
MCS index		4	4	4
Modulation		QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1
Information Bit Payload per Slot				
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$ (NOTE 5)	Bits	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{1,,39\}$ (NOTE 6)	Bits	4224	8456	16896
Transport block CRC	Bits	24	24	24
LDPC base graph		1	1	1
Number of Code Blocks per Slot				
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$ (NOTE 5)	CBs	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{1,,39\}$ (NOTE 6)	CBs	1	2	2
Binary Channel Bits Per Slot				
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$ (NOTE 5)	Bits	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{1,,39\}$ (NOTE 6)	Bits	14256	28512	57024
Max. Throughput averaged over 1 frame	Mbps	9.715	19.449	38.861

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 3: SS/PBCH block is transmitted in slot 0 of each frame

Note 4: Slot i is slot index per frame

Note 5: When this DL RMC used together with the UL RMC for the transmitter requirements requiring at least one sub frame (1ms) for the measurement period, Slot i, if mod(i, 8) = {3,4,5,6,7} for i from {0,...,39} together with the TDD UL-DL configuration specified in A2.3.

Note 6: When this DL RMC used together with the UL RMC for the transmitter requirements requiring at least one sub frame (1ms) for the measurement period, Slot i, if mod(i, 8) = {0,1,2} for i from {0,...,39} together with the TDD UL-DL configuration specified in A2.3.

Table A.3.3.2-2: Fixed Reference Channel for Receiver Requirements (SCS 120 kHz, TDD)

Parameter	Unit		Va	lue	
Channel bandwidth	MHz	50	100	200	400
Subcarrier spacing configuration μ		3	3	3	3
Allocated resource blocks		32	66	132	264
Subcarriers per resource block		12	12	12	12
Allocated slots per Frame		47	47	47	47
MCS index		4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1
Information Bit Payload per Slot					
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,79\}$ (NOTE 5)	Bits	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{1,,79\}$ (NOTE 6)	Bits	2088	4224	8456	16896
Transport block CRC	Bits	16	24	24	24
LDPC base graph		2	1	1	1
Number of Code Blocks per Slot					
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,79\}$ (NOTE 5)	CBs	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{1,,79\}$ (NOTE 6)	CBs	1	1	2	2
Binary Channel Bits Per Slot					
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,79\}$ (NOTE 5)	Bits	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{1,,79\}$ (NOTE 6)	Bits	6912	14256	28512	57024
Max. Throughput averaged over 1 frame	Mbps	9.814	19.853	39.743	79.411

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 3: SS/PBCH block is transmitted in slot 0 of each frame

Note 4: Slot i is slot index per frame

Note 5: When this DL RMC used together with the UL RMC for the transmitter requirements requiring at least one sub frame (1ms) for the measurement period, Slot i, if $mod(i, 16) = \{7,...,15\}$ for i from $\{0,...,79\}$ together with the TDD UL-DL configuration specified in A2.3.

Note 6: When this DL RMC used together with the UL RMC for the transmitter requirements requiring at least one sub frame (1ms) for the measurement period, Slot i, if mod(i, 16) = {0,...,6} for i from {0,...,79} together with the TDD UL-DL configuration specified in A2.3.

A.3.3.3 FRC for receiver requirements for 16QAM

TBD

A.3.3.4 FRC for receiver requirements for 64QAM

Table A.3.3.4-1 Fixed Reference Channel for Receiver Requirements (SCS 60 kHz, TDD)

Parameter	Unit		Value				
Channel bandwidth	MHz	50	100	200			
Subcarrier spacing configuration $^{\mu}$		2	2	2			
Allocated resource blocks		66	132	264			
Subcarriers per resource block		12	12	12			
Allocated slots per Frame		23	23	23			
MCS index		19	19	19			
Modulation		64QAM	64QAM	64QAM			
Target Coding Rate		1/2	1/2	1/2			
Maximum number of HARQ transmissions		1	1	1			
nformation Bit Payload per Slot							
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	Bits	N/A	N/A	N/A			
For Slot i, if mod(i, 10) = $\{0,1,2\}$ for i from $\{1,,39\}$	Bits	20496	40976	81976			
Transport block CRC	Bits	24	24	24			
_DPC base graph		1	1	1			
Number of Code Blocks per Slot							
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	CBs	N/A	N/A	N/A			
For Slot i, if $mod(i, 10) = \{0,1,2\}$ for i from $\{1,,39\}$	CBs	3	5	10			
Binary Channel Bits Per Slot							
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,39\}$	Bits	N/A	N/A	N/A			
For Slot i, if $mod(i, 10) = \{0,1,2\}$ for i from $\{1,,39\}$	Bits	40986	81972	163944			
Max. Throughput averaged over 1 frame	Mbps	47.141	94.245	188.545			

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 3: SS/PBCH block is transmitted in slot 0 of each frame

Note 4: Slot i is slot index per frame

Note 5: PTRS is configured on symbols containing PDSCH with 1 port, per 2PRB in frequency domain, per symbol in time domain. Overhead for TBS calculation is assumed to be 6.

Table A.3.3.4-2 Fixed Reference Channel for Receiver Requirements (SCS 120 kHz, TDD)

Parameter	Unit		Va	lue	
Channel bandwidth	MHz	50	100	200	400
Subcarrier spacing configuration μ		3	3	3	3
Allocated resource blocks		32	66	132	264
Subcarriers per resource block		12	12	12	12
Allocated slots per Frame		47	47	47	47
MCS index		19	19	19	19
Modulation		64QAM	64QAM	64QAM	64QAM
Target Coding Rate		1/2	1/2	1/2	1/2
Maximum number of HARQ transmissions		1	1	1	1
Information Bit Payload per Slot					
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,79\}$	Bits	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = $\{0,1,2\}$ for i from $\{1,,79\}$	Bits	9992	20496	40976	81976
Transport block CRC	Bits	24	24	24	24
LDPC base graph		1	1	1	1
Number of Code Blocks per Slot					
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,79\}$	CBs	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{1,,79\}$	CBs	2	3	5	10
Binary Channel Bits Per Slot					
For Slots 0 and Slot i, if $mod(i, 5) = \{3,4\}$ for i from $\{0,,79\}$	Bits	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,1,2\}$ for i from $\{1,,79\}$	Bits	19872	40986	81972	163944
Max. Throughput averaged over 1 frame	Mbps	46.962	96.331	192.587	385.287

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 3: SS/PBCH block is transmitted in slot 0 of each frame

Note 4: Slot i is slot index per frame

Note 5: PTRS is configured on symbols containing PDSCH with 1 port, per 2PRB in frequency domain, per symbol in time domain. Overhead for TBS calculation is assumed to be 6.

A.4 Void

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1 OCNG Patterns for FDD

TBD

A.5.2 OCNG Patterns for TDD

A.5.2.1 OCNG TDD pattern 1: Generic OCNG TDD Pattern for all unused REs

Table A.5.2.1-1: OP.1 TDD: Generic OCNG TDD Pattern for all unused REs

OCNG Distribution	Control Region	Data Region		
OCNG Parameters	(Core Set)			
Resources allocated	All unused REs (Note 1)	All unused REs (Note 2)		
Structure	PDCCH	PDSCH		
Content	Uncorrelated pseudo random QPSK modulated data	Uncorrelated pseudo random QPSK modulated data		
Transmission scheme for multiple antennas ports transmission	Single Tx port transmission	Spatial multiplexing using any precoding matrix with dimensions same as the precoding matrix for PDSCH		
		Same as for RMC PDSCH in the active BWP		
Power Level	Same as for RMC PDCCH	Same as for RMC PDSCH		
Note 1: All unused REs in the active CORESETS appointed by the search spaces in use.				
Note 2: Unused available REs refer to REs in PRBs not allocated for any physical channels, CORESETs, synchronization signals or reference signals in channel bandwidth.				

Annex B (normative): Propagation conditions

B.0 No interference

The downlink connection between the System Simulator and the UE is without Additive White Gaussian Noise, and has no fading or multipath effects.

Annex C (normative): Downlink Physical Channels

C.0 Downlink signal levels

Editor's Note: Consideration to minimize the required number of additional FR2 link is under discussion

The downlink power settings in Table C.0-1 is used unless otherwise specified in a test case.

Table C.0-1: Default Downlink power levels for NR

SCS		Unit		Channel E	Bandwidth	
(kHz)		Onit	50 MHz	100 MHz	200 MHz	400 MHz
60	Number of RBs		66	132	264	N/A
60	Channel BW power	dBm	-70	-67	-64	N/A
120	Number of RBs		32	66	132	264
120	Channel BW power	dBm	-70	-67	-64	-61
	SS/PBCH SSS FPRF	dBm/60kHz	[-99]	[-99]	[-99]	[-99]

- Note 1: The channel bandwidth powers are informative, based on [-99]dBm/60kHz SS/PBCH SSS EPRE, then scaled according to the number of RBs and rounded to the nearest integer dBm value. Full RE allocation with no boost or deboost is assumed.
- Note 2: The power level is specified at the centre of quiet zone.
- Note 3: DL level is applied for any of the Subcarrier Spacing configuration (μ) with the same power spectrum density of [-99]dBm/60kHz.

The default downlink signal level uncertainty is +/- TBD dB, for any level specified. If the uncertainty value is critical for the test purpose, a tighter uncertainty is specified for the related test case in Annex F.

For TRP measurement, DL signal may be supplied from RSRP based pathloss compensation link. Downlink signal level using RSRP based pathloss compensation link is specified in Table C.0-2 or Table C.0-3.

Table C.0-2: Downlink power levels for RSRP based pathloss compensation link for TRP measurement for n257, n258 and n260

SCS		Unit		Channel E	Bandwidth	
(kHz)		Oilit	50 MHz	100 MHz	200 MHz	400 MHz
60	Number of RBs		66	132	264	N/A
60	Channel BW power	dBm	≥ -87	≥ -84	≥ -80	N/A
120	Number of RBs		32	66	132	264
120	Channel BW power	dBm	≥ -87	≥ -84	≥ -80	≥ -77
	SS/PBCH SSS EPRE	dBm/60kHz	≥ -115.5	≥ -115.5	≥ -115.5	≥ -115.5

- Note 1: The channel bandwidth powers are informative, based on -115.5dBm/60kHz SS/PBCH SSS EPRE, then scaled according to the number of RBs and rounded to the nearest integer dBm value. Full RE allocation with no boost or deboost is assumed.
- Note 2: The power level is specified at the RSRP reference point as defined in TS 38.215 [24].
- Note 3: DL level is applied for any of the Subcarrier Spacing configuration (μ) with the same power spectrum density of \geq -115.5 dBm/60kHz.

Table C.0-3: Downlink power levels for RSRP based pathloss compensation link for TRP measurement for n261

SCS		Unit		Channel I	Bandwidth	
(kHz)		Onit	50 MHz	100 MHz	200 MHz	400 MHz
60	Number of RBs		66	132	264	N/A
60	Channel BW power	dBm	≥ -84	≥ -81	≥ -78	N/A
120	Number of RBs		32	66	132	264
120	Channel BW power	dBm	≥ -84	≥ -81	≥ -78	≥ -75
	SS/PBCH SSS EPRE	dBm/60kHz	≥ -113	≥ -113	≥ -113	≥ -113

- Note 1: The channel bandwidth powers are informative, based on -113dBm/60kHz SS/PBCH SSS EPRE, then scaled according to the number of RBs and rounded to the nearest integer dBm value. Full RE allocation with no boost or deboost is assumed.
- Note 2: The power level is specified at the RSRP reference point as defined in TS 38.215 [24].
- Note 3: DL level is applied for any of the Subcarrier Spacing configuration (μ) with the same power spectrum density of \geq -113 dBm/60kHz.

C.1 General

The following clauses describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.2 Setup

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-up

Physical Channel
PBCH
SSS
PSS
PDCCH
PDSCH
PBCH DMRS
PDCCH DMRS
PDSCH DMRS
CSI-RS
PTRS

As common PDSCH and PDCCH configuration parameters the parameters in Table A.3.1-1, C.2-2, C.2-3, and C.2-4 shall be used to bring up the connection setup for FR1 NR cell.

Table C.2-2: PDSCH and PDCCH configuration

Parameter	Unit	Value
Number of HARQ processes		8 (TDD)
Aggregation level	CCE	4

Table C.2-3: Additional test parameters for TDD for SCS 60 KHz

Pa	arameter	Unit	UL-DL pattern
TDD Slot Configuration pattern (Note 1)			DDSU
Special Slot Configuration	(Note 2)		11D+3G+0U
UL-DL configuration	referenceSubcarrierSpacing	kHz	60
(tdd-UL-DL-	dl-UL-TransmissionPeriodicity	ms	1
ConfigurationCommon)	nrofDownlinkSlots		2

	nrofDownlinkSymbols	11
	nrofUplinkSlot	1
	nrofUplinkSymbols	0
K1 value		K1 = 3 if mod(i,4) = 0
(PDSCH-to-HARQ-timing-	indicator)	K1 = 2 if mod(i,4) = 1
		K1 = 5 if mod(i,4) = 2

Note 1: D denotes a slot with all DL symbols; S denotes a slot with a mix of DL, UL and guard symbols; U denotes a slot with all UL symbols. The field is for information.

Table C.2-4: Additional test parameters for TDD for SCS 120 KHz

Pa	arameter	Unit	UL-DL pattern
TDD Slot Configuration pattern (Note 1)			DDDSU
Special Slot Configuration	(Note 2)		10D+2G+2U
UL-DL configuration	referenceSubcarrierSpacing	kHz	120
(tdd-UL-DL-	dl-UL-TransmissionPeriodicity	ms	0.625
ConfigurationCommon)	nrofDownlinkSlots		3
	nrofDownlinkSymbols		10
	nrofUplinkSlot		1
	nrofUplinkSymbols		2
K1 value			K1 = [4] if mod(i,5) = 0
(PDSCH-to-HARQ-timing-indicator)			K1 = [3] if mod(i,5) = 1
			K1 = [2] if mod(i,5) = 2
			K1 = [6] if $mod(i,5) = 3$

Note 1: D denotes a slot with all DL symbols; S denotes a slot with a mix of DL, UL and guard symbols; U denotes a slot with all UL symbols. The field is for information.

C.3 Connection

C.3.0 Measurement of Transmitter Characteristics

Unless otherwise stated, Table C.3.0-1 is applicable for measurements on the Transmitter Characteristics (clause 6).

Table C.3.0-1: Downlink Physical Channels transmitted during a connection (TDD)

W dB dB	Test specific 0 0
dB	0
	0
٩D	
l uB	0
dB	0
dB	0
dB	3
dB	-3
dB	0
dB	Test specific
dB	0
dB	0
	dB dB dB dB dB

Note 1: No boosting is applied to any of the channels except PDSCH DMRS. For PDSCH DMRS, 3 dB power boosting is applied assuming DMRS Type 1 configuration when DMRS and PDSCH are TDM'ed and only half of the DMRS REs are occupied.

Note 2: D, G, U denote DL, guard and UL symbols, respectively. The field is for information.

Note 3: i is the slot index per frame; $i = \{0,...,39\}$

Note 2: D, G, U denote DL, guard and UL symbols, respectively. The field is for information.

Note 3: i is the slot index per frame; $i = \{0,...,79\}$

Note 2: Number of DMRS CDM groups without data for PDSCH DMRS configuration for OCNG is set to 1.

C.3.1 Measurement of Receiver Characteristics

Unless otherwise stated, Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (TDD)

Parameter	Unit	Value
SSS transmit power	W	Test specific
EPRE ratio of PSS to SSS	dB	0
EPRE ratio of PBCH DMRS to SSS	dB	0
EPRE ratio of PBCH to PBCH DMRS	dB	0
EPRE ratio of PDCCH DMRS to SSS	dB	0
EPRE ratio of PDCCH to PDCCH DMRS	dB	0
EPRE ratio of PDSCH DMRS to SSS (Note 1)	dB	3
EPRE ratio of PDSCH to PDSCH DMRS (Note 1)	dB	-3
EPRE ratio of CSI-RS to SSS	dB	0
EPRE ratio of PTRS to PDSCH	dB	Test specific
EPRE ratio of OCNG DMRS to SSS	dB	0
EPRE ratio of OCNG to OCNG DMRS (Note 1)	dB	0

Note 1: No boosting is applied to any of the channels except PDSCH DMRS. For PDSCH DMRS, 3 dB power boosting is applied assuming DMRS Type 1 configuration when DMRS and PDSCH are TDM'ed and only half of the DMRS REs are occupied.

Note 2: Number of DMRS CDM groups without data for PDSCH DMRS configuration for OCNG is set to 1.

Annex D (normative): Characteristics of the interfering signal

D.1 General

Unless otherwise stated, a modulated full bandwidth NR downlink signal, which equals to channel bandwidth of the wanted signal for Single Carrier case is used as interfering signals when RF performance requirements for NR UE receiver are defined. For intra-band contiguous CA case, a modulated NR downlink signal which equals to the aggregated channel bandwidth of the wanted signal is used.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel bandwidth options.

Table D.2-1: Description of modulated NR interferer

	Channel bandwidth for Single Carrier				Intra band
	50 MHz	100 MHz	200 MHz	400 MHz	contiguous CA
BW _{Interferer}	50 MHz	100 MHz	200 MHz	400MHz	BW _{Channel_CA}
RB	NOTE1				
NOTE 1: The RB configured for interfering signal is the same as maximum RB number					
defined in Table 5.3.2-1 for each sub-carrier spacing.					

Annex E (normative): Global In-Channel TX-Test

NOTE: Clauses E.2.2 to E.5.9.3 are descriptions, which assume no power ramping adjacent to the measurement

period.

E.1 General

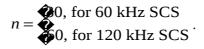
The global in-channel TX test enables the measurement of all relevant parameters that describe the in-channel quality of the output signal of the TX under test in a single measurement process.

The parameters describing the in-channel quality of a transmitter, however, are not necessarily independent. The algorithm chosen for description inside this annex places particular emphasis on the exclusion of all interdependencies among the parameters.

E.2 Signals and results

E.2.1 Basic principle

The process is based on the comparison of the actual **output signal of the TX under test**, received by an ideal receiver, with a **reference signal**, that is generated by the measuring equipment and represents an ideal error free received signal. All signals are represented as equivalent (generally complex) baseband signals.


The description below uses numbers as examples. These numbers are taken from TDD with normal CP length and 100 MHz bandwidth with 60 kHz SCS. The application of the text below, however, is not restricted to this frame structure and bandwidth.

E.2.2 Output signal of the TX under test

The output signal of the TX under test is acquired by the measuring equipment and stored for further processing. It is sampled at a sampling rate of 122.88 Mbps. In the time domain it comprises at least 10 uplink subframes. The measurement period is derived by concatenating the correct number of individual uplink slots until the correct measurement period is reached. The output signal is named z(v). Each slot is modelled as a signal with the following parameters: demodulated data content, carrier frequency, amplitude and phase for each subcarrier, timing, carrier leakage.

NOTE 1: TDD

Since the uplink subframes are not continuous, the n slots should be extracted from more than 1 continuous radio frame where

E.2.3 Reference signal

Two types of reference signal are defined:

The reference signal $i_1(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: demodulated data content, nominal carrier frequency, nominal amplitude and phase for each subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of 122.88 Mbps in the time domain.

The reference signal $i_2(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: restricted data content: nominal reference symbols, (all modulation symbols for user data symbols are set to 0V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of 122.88 Mbps in the time domain.

NOTE: The PUCCH is off during the time under test.

E.2.4 Measurement results

The measurement results, achieved by the global in channel TX test are the following:

- Carrier Frequency error
- EVM (Error Vector Magnitude)
- Carrier leakage
- Unwanted emissions, falling into non allocated resource blocks.
- EVM equalizer spectrum flatness

E.2.5 Measurement points

The unwanted emission falling into non-allocated RB(s) is calculated directly after the FFT as described below. In contrast to this, the EVM for the allocated RB(s) is calculated after the IDFT for DFT-s-OFDM or after the Tx-Rx chain equalizer for CP-OFDM. The samples after the TX-RX chain equalizer are used to calculate EVM equalizer spectrum flatness. Carrier frequency error and carrier leakage is calculated in the block "RF correction".

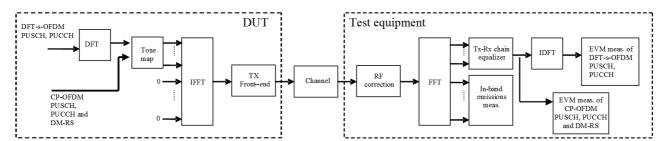


Figure E.2.5-1: EVM measurement points

E.3 Signal processing

E.3.1 Pre FFT minimization process

Before applying the pre-FFT minimization process, z(v) and i(v) are portioned into n pieces, comprising one slot each, where

$$n =$$
0, for 60 kHz SCS
0, for 120 kHz SCS.

Each slot is processed separately. Sample timing, Carrier frequency and carrier leakage in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

The carrier frequency variation and the IQ variation are the measurement results: Carrier Frequency Error and Carrier leakage.

From the acquired samples *n* carrier frequencies and *n* carrier leakages can be derived.

- NOTE 1: The minimisation process, to derive carrier leakage and RF error can be supported by Post FFT operations. However the minimisation process defined in the pre FFT domain comprises all acquired samples (i.e. it does not exclude the samples in between the FFT widths and it does not exclude the bandwidth outside the transmission bandwidth configuration
- NOTE 2: The algorithm would allow deriving Carrier Frequency error and Sample Frequency error of the TX under test separately. However there are no requirements for Sample Frequency error. Hence the algorithm models the RF and the sample frequency commonly (not independently). It returns one error and does not distinguish between both.

After this process the samples z(v) are called $z^{0}(v)$.

E.3.2 Timing of the FFT window

The FFT window length is 2048 samples per OFDM symbol. 14 FFTs (28672 samples) cover less than the acquired number of samples (30720 samples). The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP. There are three different instants for FFT:

Centre of the reduced window, called $\Delta \widetilde{c}$, $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2.

The timing of the measured signal is determined in the pre FFT domain as follows, using $z^0(v)$ and $i_2(v)$:

- 1. The measured signal is delay spread by the TX filter. Hence the distinct boarders between the OFDM symbols and between Data and CP are also spread and the timing is not obvious.
- 2. In the Reference Signal $i_2(v)$ the timing is known.
- 3. Correlation between (1.) and (2.) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The meaning of "impulse response" assumes that the autocorrelation of the reference signal $i_2(v)$ is a Dirac peak and that the correlation between the reference signal $i_2(v)$ and the data in the measured signal is 0. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal.

From the acquired samples, *n* timings can be derived.

For all calculations, except EVM, the number of samples in $z^0(v)$ is reduced to 14 blocks of samples, comprising 2048 samples (FFT width) and starting with $\Delta \widetilde{c}$ in each OFDM symbol including the demodulation reference signal.

For the EVM calculation the output signal under test is reduced to 28 blocks of samples, comprising 2048 samples (FFT width) and starting with $\Delta\widetilde{c}$ -W/2 and $\Delta\widetilde{c}$ +W/2 in each OFDM symbol including the demodulation reference signal.

The number of samples, used for FFT is reduced compared to $z^0(v)$. This subset of samples is called z'(v).

The timing of the centre $\Delta \widetilde{c}$ with respect to the different CP length in a slot is as follows: (TDD, normal CP length)

 $\Delta \widetilde{c}$ is on T_i =72 (=CP/2) within the CP of length 144 FFT samples (in OFDM symbols except 0 and 28 (=7 · 2 $^{\mu}$), where symbol 0 is the first symbol of each subframe) for channel bandwidth of 100 MHz and SCS = 60 kHz.

 $\Delta \widetilde{c}$ is on T_f =88 (=160-72) within the CP of length 160 FFT samples (in OFDM symbol 0 and 28 (=7 \cdot 2 μ), where symbol 0 is the first symbol of each subframe) for channel bandwidth of 100 MHz and SCS = 60 kHz.

E.3.3 Post FFT equalisation

Perform 14 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \widetilde{c}$, including the demodulation reference symbol. The result is an array of samples, 14 in the time axis t times 2048 in the frequency axis f. The samples represent the data symbols (in OFDM-symbol 0,1,3,4,5,6,8,9,10,12,13 in each slot) and demodulation reference

symbols (OFDM symbol 2, 7, 11 in each slot) in the allocated RBs and inband emissions in the non allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal demodulation reference symbols and nominal data symbols are used to equalize the measured data symbols. (Location for equalization see Figure E.2.5-1)

NOTE: The nomenclature inside this note is local and not valid outside.

The nominal data symbols are created by a demodulation process. The location to gain the demodulated data symbols is "EVM" in Figure E.2.5-1. For CP-OFDM, the process described in Annex E.5 can be applied. A demodulation process as follows is recommended for DFT-s-OFDM:

- 1. Equalize the measured data symbols using the reference symbols for equalisation. Result: Equalized data symbols
- 2. Only for DFT-s-OFDM, iDFT transform the equalized data symbols: Result: Equalized data symbols
- 3. Decide for the nearest constellation point: Result: Nominal data symbols
- 4. Only for DFT-s-OFDM, DFT transform the nominal data symbols: Result: Nominal data symbols

At this stage we have an array of \underline{M} easured data- \underline{S} ymbols and reference- \underline{S} ymbols (MS(f,t))

versus an array of Nominal data-Symbols and reference Symbols (NS(f,t))

(complex, the arrays comprise 11 data symbols and 3 demodulation reference symbol in the time axis and the number of allocated subcarriers in the frequency axis.)

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f) is defined as

$$EC(f) = \frac{\sum_{t=0}^{13} NS(f,t)^* NS(f,t)}{\sum_{t=0}^{13} NS(f,t)^* MS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the DFT-coded data symbols. The measured DFT-coded data and the references symbols are equalized by:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

With denoting multiplication.

Z'(f,t), restricted to the data symbol (excluding t=2,7,11) is used to calculate EVM, as described in E.4.1.

EC(f) is used in E.4.4 to calculate EVM equalizer spectral flatness.

NOTE: The post FFT minimisation process is done over 14 symbols (11 DFT-coded data symbols and 3 reference symbols).

The samples of the non allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.4 Derivation of the results

E.4.1 EVM

For EVM create two sets of Z'(f,t)., according to the timing " $\Delta \widetilde{c}$ -W/2 and $\Delta \widetilde{c}$ +W/2" using the equalizer coefficients from E.3.3.

Perform the iDFTs on Z'(f,t) in the case of DFT-s-OFDM waveform. The IDFT-decoding preserves the meaning of t but transforms the variable f (representing the allocated sub carriers) into another variable g, covering the same count and representing the demodulated symbols. The samples in the post IDFT domain are called iZ'(g,t). The equivalent ideal samples are called iI(g,t). Those samples of Z'(f,t), carrying the reference symbols (=symbol 2,7,11) are not iDFT processed.

The EVM is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{t \in T} \sum_{g \in G} |iZ^{\cdot}(g,t) - iI(g,t)|^{2}}{|G| \cdot |T| \cdot P_{0}}},$$

where

t covers the count of demodulated symbols with the considered modulation scheme being active within the measurement period, (i.e. symbol 0,1,3,4,5,6,8,9,10,12,13 in each slot, $\rightarrow |T|=11$)

g covers the count of demodulated symbols with the considered modulation scheme being active within the allocated bandwidth. ($|G|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

iZ'(g,t) are the samples of the signal evaluated for the EVM.

iI(g,t) is the ideal signal reconstructed by the measurement equipment, and

 $P_{
m o}$ is the average power of the ideal signal. For normalized modulation symbols $P_{
m o}$ is equal to 1.

From the acquired samples 2n EVM values can be derived, n values for the timing $\Delta \widetilde{c}$ -W/2 and n values for the timing $\Delta \widetilde{c}$ +W/2

E.4.2 Averaged EVM

EVM is averaged over all basic EVM measurements.

The averaging comprises n UL slots

$$\overline{EVM} = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} EVM_{i}^{2}$$

where

$$n =$$
0, for 60 kHz SCS 0, for 120 kHz SCS

for PUCCH, PUSCH.

The averaging is done separately for timing $^{\text{!`}}$ $\Delta\widetilde{c}$ $_{-W/2}$ and $\Delta\widetilde{c}$ $_{+W/2}$ leading to \overline{EVM}_{1} and \overline{EVM}_{h}

 $EVM_{final} = max(\overline{EVM}_1, \overline{EVM}_h)$ is compared against the test requirements.

E.4.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

Explanatory Note:

The inband emission measurement is only meaningful with allocated RB(s) next to non-allocated RB. The allocated RB(s) are necessary but not under test. The non allocated RBs are under test. The RB allocation for this test is as follows: The allocated RB(s) are at one end of the channel BW, leaving the other end unallocated. The number of allocated RB(s) is smaller than half of the number of RBs, available in the channel BW. This means that the vicinity of the carrier in the centre is unallocated.

There are 3 types of inband emissions:

- 1. General
- 2. IQ image
- 3. Carrier leakage

Carrier leakage are inband emissions next to the carrier.

IQ image are inband emissions symmetrically (with respect to the carrier) on the other side of the allocated RBs.

General are applied to all unallocated RBs.

For each evaluated RB, the minimum requirement is calculated as the higher of P_{RB} - 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply.

In specific the following combinations:

- Power (General)
- Power (General + Carrier leakage)
- Power (General + IQ Image)

1 and 2 is expressed in terms of power in one non allocated RB under test, normalized to the average power of an allocated RB (unit dB).

3 is expressed in terms of power in one non allocated RB, normalized to the power of all allocated RBs. (unit dBc).

This is the reason for two formulas *Emissions* relative.

Create one set of Y(t,f) per slot according to the timing " $\Delta \widetilde{c}$ "

For the non-allocated RBs below the in-band emissions are calculated as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{bmatrix} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{max(f_{min}, (c_{l}+12 \Delta_{RB}+11)*\Delta f \\ max(f_{min}, (c_{l}+12 \Delta_{RB}*\Delta f))}} |Y(t, f)|^{2}, \Delta_{RB} < 0$$

$$= \begin{bmatrix} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{min(f_{max}, (c_{h}+12 \Delta_{RB}*\Delta f)) \\ c_{h}+(12 \Delta_{RB}-11)*\Delta f}} |Y(t, f)|^{2}, \Delta_{RB} > 0$$

where

the upper formula represents the in band emissions below the allocated frequency block and the lower one the in band emissions above the allocated frequency block.

 T_s is a set of $|T_s|$ DFT-s-OFDM symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ for the first upper or $\Delta_{RB}=-1$ for the first lower adjacent RB),

 $f_{
m min}$ and $f_{
m max}$ are the lower and upper edge of the UL transmission BW configuration,

 C_l and C_h are the lower and upper edge of the allocated BW,

 Δf is the SCS, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.3.3

The allocated RB power per RB and the total allocated RB power are given by:

$$P_{RB} = \frac{1}{|T_{S}| \cdot L_{CRBS}} \sum_{t \in T_{S}}^{c_{1} + (12 \cdot L_{CRBS} - 1) \cdot \Delta f} |\text{MS}(t, f)|^{2} [\text{dBm}/(12\Delta f)]$$

$$P_{All-RBS} = \frac{1}{|T_{S}|} \sum_{t \in T_{S}}^{c_{1} + (12 \cdot L_{CRBS} - 1) \cdot \Delta f} |\text{MS}(t, f)|^{2} [\text{dBm}]$$

The relative in-band emissions, applicable for General and IQ image, are given by:

$$Emissions_{relative}(\Delta_{RB}) = 10 \cdot \log_{10} \left(\frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{|T_S| \cdot L_{CRBS}} \sum_{t \in T_S} \sum_{c_l}^{c_l + (12 \cdot L_{CRBS} - 1) \cdot \Delta f} |\mathsf{MS}(t, f)|^2} \right) [\mathsf{dB}] = Emissions_{absolute}(\Delta_{RB}) [\mathsf{dBm}/12\Delta f] - P_{RB}[dBm/12\Delta f]$$

where

 L_{CRBs} is the number of allocated resource blocks,

and

MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.3.3.

The relative in-band emissions, applicable for carrier leakage, is given by:

$$\begin{split} Emissions_{relative} &= 10 \cdot \log_{10} \left(\frac{Emissions_{absolute}(RBnextDC)}{\frac{1}{|T_s|} \sum_{t \in T_s} \sum_{c_l}^{c_l + (12 \cdot L_{CRBs} - 1) \cdot \Delta f} |\mathsf{MS}(t, f)|^2} \right) [\mathsf{dBc}] \\ &= Emissions_{absolute}(RBnextDC)[\mathsf{dBm}/12\Delta f] - P_{All\ RBs}[\mathsf{dBm}] \end{split}$$

where RBnextDC means: Resource Block next to the carrier.

This can be one RB or one pair of RBs, depending whether the DC carrier is inside an RB or in-between two RBs.

Although an exclusion period may be applicable in the time domain, when evaluating EVM, the inband emissions measurement interval is defined over one complete slot in the time domain.

From the acquired samples *n* functions for general in band emissions and IQ image inband emissions can be derived. n values or n pairs of carrier leakage inband emissions can be derived. They are compared against different limits.

The in-band emissions are averaged over the *n* samples (equivalent to 10 UL subframes):

$$\overline{Emissions}_{absolute}(\Delta_{RB}) = \frac{1}{n} \bigoplus_{i=1}^{n} Emissions_{absolute,i}(\Delta_{RB})$$

$$\overline{Emissions}_{relative}(\Delta_{RB}) = 10*\log_{10} \bigoplus_{i=1}^{n} 0^{Emissions_{relative,i}(\Delta_{RB})/10} \bigoplus_{i=1}^{n} [dB]$$

$$\overline{Emissions}_{relative} = 10*\log_{10} \bigoplus_{i=1}^{n} 0^{Emissions_{relative,i}/10} \bigoplus_{i=1}^{n} [dBc]$$

E.4.4 EVM equalizer spectrum flatness

For EVM equalizer spectrum flatness use EC(f) as defined in E.3.3. Note, EC(f) represents equalizer coefficient $f \in F$, f is the allocated subcarriers within the transmission bandwidth (($|F|=12*L_{CRBs}$)

From the acquired samples n functions EC(f) can be derived.

EC(f) is broken down to 2 functions:

$$EC_1(f), f \in Range 1$$

$$EC_2(f), f \in Range 2$$

Where Range 1 and Range 2 are as defined in Table 6.5.2.4.5-1 for normal condition and Table 6.5.2.4.5-2 for extreme condition

The following peak to peak ripple is calculated:

 $RP_1 = 20 * log (max (| EC_1(f) |) / min(| EC_1(f) |))$, which denote the maximum ripple in Range 1

 $RP_2 = 20 * log (max (| EC_2(f) |) / min(| EC_2(f) |))$, which denote the maximum ripple in Range 2

 $RP_{12} = 20*log(max(|EC_1(f)|)/min(|EC_2(f)|))$, which denote the maximum ripple between the upper side of Range 1 and lower side of Range 2

 $RP_{21} = 20 * log (max (| EC_2(f) |) / min(| EC_1(f) |))$, which denote the maximum ripple between the upper side of Range 2 and lower side of Range 1

E.4.5 Frequency error and Carrier leakage

See E.3.1.

E.4.6 EVM of Demodulation reference symbols (EVM_{DMRS})

For the purpose of EVM $_{\text{DMRS}}$, the steps E.2.2 to E.4.2 are repeated 6 times, constituting 6 EVM $_{\text{DMRS}}$ sub-periods. The only purpose of the repetition is to cover the longer gross measurement period of EVM $_{\text{DMRS}}$ (6 \cdot n time slots) and to derive the FFT window timing per sub-period.

The bigger of the EVM results in one n TS period corresponding to the timing $\Delta \widetilde{c} - W/2$ or $\Delta \widetilde{c} + W/2$ is compared against the limit. (Clause E.4.2) This timing is re-used for EVM _{DMRS} in the equivalent EVM _{DMRS} sub-period.

For EVM the demodulation reference symbols are excluded, while the data symbols are used. For EVM $_{\text{DMRS}}$ the data symbols are excluded, while the demodulation references symbols are used. This is illustrated in figure E.4.6-1

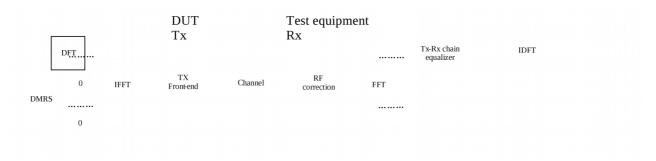


Figure E.4.6-1: EVM_{DMRS} measurement points

Re-use the following formula from E.3.3:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

To calculate EVM_{DMRS} , the data symbol (t=0,1,3,4,5,6,8,9,10,12,13) in Z'(f,t) are excluded and only the reference symbols (t=2,7,11) is used.

The EVM $_{\text{DMRS}}$ is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{DMRS} = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F} \left| Z^{\cdot \cdot \left(f, t\right) - I\left(f, t\right) \right|^{2}}{\left| T \left| \cdot P_{0} \cdot \middle| F \right|}},$$

where

t covers the count of demodulation reference symbols (i.e. symbols 2,7,11 in each slot, so count=3)

f covers the count of demodulation reference symbols within the allocated bandwidth. ($|F|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

Z'(f,t) are the samples of the signal evaluated for the EVM _{DMRS}

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 $P_{
m o}$ is the average power of the ideal signal. For normalized modulation symbols $P_{
m o}$ is equal to 1.

n such results are generated per measurement sub-period.

E.4.6.1 1st average for EVM DMRS

EVM DMRS is averaged over all basic EVM DMRS measurements in one sub-period

The averaging comprises n UL slots

$$1stEVM_{DMRS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (EVM_{DMRS,i})^{2}}$$

The timing is taken from the EVM for the data. 6 of those results are achieved from the samples. In general the timing is not the same for each result.

E.4.6.2 Final average for EVM DMRS

$$finalEVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{i=1}^{6} \left(1stEVM_{DMRS,i}\right)^{2}}$$

E.5 EVM and inband emissions for PUCCH

For the purpose of worst case testing, the PUCCH shall be located on the edges of the Transmission Bandwidth Configuration (6,15,25,50,75,100 RBs).

The EVM for PUCCH (EVM $_{PUCCH}$) is averaged over n slots, where

$$n =$$
 0, for 60 kHz SCS 0 , for 120 kHz SCS.

At least *n* TSs shall be transmitted by the UE without power change. SRS multiplexing shall be avoided during this period. The following transition periods are applicable: One OFDM symbol on each side of the slot border (instant of band edge alternation).

The description below is generic in the sense that all 5 PUCCH formats are covered. Although the number of OFDM symbols in one slot can be different from 7 (depending on the format, configuration and cyclic prefix length), the text below uses 7 without excluding the others.

E.5.1 Basic principle

The basic principle is the same as described in E.2.1

E.5.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

E.5.3 Reference signal

The reference signal is defined same as in E.2.3. Same as in E.2.3, $i_1(v)$ is the ideal reference for EVM_{PUCCH} and $i_2(v)$ is used to estimate the FFT window timing.

Note PUSCH is off during the PUCCH measurement period.

E.5.4 Measurement results

The measurement results are:

- EVM_{PUCCH}
- Inband emissions with the sub-results: General in-band emission, IQ image (according to: 38.101. Annex F.4, Clause starting with: "At this stage the")

E.5.5 Measurement points

The measurement points are illustrated in the Figure E.2.5-1.

E.5.6 Pre FFT minimization process

The pre FFT minimisation process is the same as describes in clause E.3.1.

NOTE: although an exclusion period for EVM_{PUCCH} is applicable in E.5.9.1, the pre FFT minimisation process is done over the complete slot.

RF error, and carrier leakage are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.5.7 Timing of the FFT window

Timing of the FFT window is estimated with the same method as described in E.3.2.

E.5.8 Post FFT equalisation

The post FFT equalisation is described separately without reference to E.3.3:

Perform 14 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \widetilde{c}$, including the demodulation reference symbol. The result is an array of samples, 14 in the time axis t times 2048 in the frequency axis f. The samples represent the OFDM symbols (data and reference symbols) in the allocated RBs and inband emissions in the non allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal reference symbols and **nominal** OFDM data symbols are used to equalize the measured data symbols.

Note: (The nomenclature inside this note is local and not valid outside)

The nominal OFDM data symbols are created by a demodulation process. A demodulation process as follows is recommended:

- 1. Equalize the measured OFDM data symbols using the reference symbols for equalisation. Result: Equalized OFDM data symbols
- 2. Decide for the nearest constellation point, however not independent for each subcarrier in the RB. 12 constellation points are decided dependent, using the applicable CAZAC sequence. Result: Nominal OFDM data symbols

At this stage we have an array of \underline{M} easured data- \underline{S} ymbols and reference- \underline{S} ymbols (MS(f,t))

versus an array of \underline{N} ominal data- \underline{S} ymbols and reference \underline{S} ymbols (NS(f,t))

The arrays comprise in sum 7 data and reference symbols, depending on the PUCCH format, in the time axis and the number of allocated sub-carriers in the frequency axis.

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f)

$$EC(f) = \frac{\sum_{t=0}^{6} NS(f,t)^{*} NS(f,t)}{\sum_{t=0}^{6} MS(f,t)^{*} NS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the OFDM data together with the demodulation reference symbols by:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

With denoting multiplication.

Z'(f,t) is used to calculate EVM_{PUCCH} , as described in E.5.9 1

NOTE: although an exclusion period for EVM_{PUCCH} is applicable in E.5.9.1, the post FFT minimisation process is done over 7 OFDM symbols.

The samples of the non allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.5.9 Derivation of the results

E.5.9.1 EVM_{PUCCH}

For EVM_{PUCCH} create two sets of Z'(f,t)., according to the timing " $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2" using the equalizer coefficients from E.5.8

The EVM_{PUCCH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{PUCCH} = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F} \left| Z^{\cdot (f, t)} - I(f, t) \right|^{2}}{\left| T \right| \cdot P_{0} \cdot \left| F \right|}},$$

where

the OFDM symbols next to slot boarders (instant of band edge alternation) are excluded:

t covers less than the count of demodulated symbols in the slot (|T| = 5)

f covers the count of subcarriers within the allocated bandwidth. (|F|=12)

Z'(f,t) are the samples of the signal evaluated for the EVM_{PUCCH}

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 $P_{
m o}$ is the average power of the ideal signal. For normalized modulation symbols $\,P_{
m o}\,$ is equal to 1.

From the acquired samples 2n EVM_{PUCCH} value can be derived, n values for the timing $\Delta \widetilde{c}$ -W/2 and n values for the timing $\Delta \widetilde{c}$ +W/2

E.5.9.2 Averaged EVM_{PUCCH}

EVM_{PUCCH} is averaged over all basic EVM_{PUCCH} measurements

The averaging comprises *n* UL slots

$$\overline{EVM}_{PUCCH} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (EVM_{PUCCH,i})^2}$$

The averaging is done separately for timing $\Delta \widetilde{C}$ –W/2 and $\Delta \widetilde{C}$ +W/2 leading to $\overline{EVM}_{PUCCH,low}$ and $\overline{EVM}_{PUCCH,high}$

 $EVM_{PUCCH, final} = \max(\overline{EVM}_{PUCCH, low}, \overline{EVM}_{PUCCH, high})$ is compared against the test requirements.

E.5.9.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

Create one set of Y(t,f) per slot according to the timing " $\Delta \widetilde{C}$ "

For the non-allocated RBs the in-band emissions are calculated as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{bmatrix} \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\max(f_{min}, (c_l + 12 \cdot \Delta_{RB} + \Delta f))}^{c_l + (12 \cdot \Delta_{RB} + \Delta f))} |Y(t, f)|^2, \Delta_{RB} < 0 \\ \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{c_h + (12 \cdot \Delta_{RB} - 11) * \Delta f}^{\min(f_{max}, (c_h + 12 \cdot \Delta_{RB} * \Delta f))} |Y(t, f)|^2, \Delta_{RB} > 0 \end{bmatrix}$$

where

the upper formula represents the inband emissions below the allocated frequency block and the lower one the inband emissions above the allocated frequency block.

 T_s is a set of $|T_s|$ OFDM symbols in the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ for the first upper or $\Delta_{RB}=-1$ for the first lower adjacent RB),

 f_{\min} and f_{\max} are the lower and upper edge of the UL system BW,

 C_l and C_h are the lower and upper edge of the allocated BW,

 Δf is the SCS, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.5.8

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = 10 * \log_{10} \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{\left|T_{s}\right| \cdot L_{CRBs}} \sum_{t \in T_{s}}^{c_{1} + (12 \cdot L_{CRBs} - 1) * \Delta f} \left|MS(t, f)\right|^{2}} [dB]$$

where

 $L_{\it CRBs}$ is the number of allocated RBs,

and MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.5.8

Although an exclusion period for EVM is applicable in E.5.9.1, the inband emissions measurement interval is defined over one complete slot in the time domain.

From the acquired samples n functions for inband emissions can be derived.

The in-band emissions are averaged over the *n* samples (equivalent to 10 UL subframes) with the same PUCCH position to prevent averaging of allocated and non-allocated RBs due to PUCCH frequency hopping:

$$\overline{Emissions}_{absolute}(\Delta_{RB}) = \frac{1}{n} \sum_{i=1}^{n} Emissions_{absolute,i}(\Delta_{RB})$$

$$\overline{Emissions}_{relative}(\Delta_{RB}) = 10*\log_{10} \bigoplus_{i=1}^{n} 0^{Emissions_{relative,i}(\Delta_{RB})/10} \bigoplus_{i=1}^{n} [dB]$$

Since the PUCCH allocation is always on the upper or lower band-edge, the opposite of the allocated one represents the IQ image, and the remaining inner RBs represent the general inband emissions. They are compared against different limits.

E.6 EVM for PRACH

The description below is generic in the sense that all PRACH formats are covered. The numbers, used in the text below are taken from PRACH format B4 without excluding the other formats. The sampling rate for the PUSCH, 122.88 Mbps in the time domain, is re-used for the PRACH. The carrier spacing of the PUSCH is up to 48 times higher than that of PRACH depending on the PRACH format and SCS. This results in an oversampling factor *ovf* of up to 48, when acquiring the time samples for the PRACH. The pre-FFT algorithms (clauses E.6.6 and E.6.7) use all time samples, although oversampled. For the FFT the time samples are decimated by the *ovf*, resulting in the same FFT size as for the other transmit modulation tests. Decimation requires a decision, which samples are used and which ones are rejected. The algorithm in E.6.6, Timing of the FFT window, can also be used to decide about the used samples.

E.6.1 Basic principle

The basic principle is the same as described in E.2.1

E.6.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

The measurement period is different since 2 PRACH preambles are recorded for long preamble formats as defined in Table 6.3.3.1-1 in [9] and 10 preambles are recorded for short preamble formats as defined in Table 6.3.3.1-2 in [9].

E.6.3 Reference signal

The test description in 6.4.2.1.4.1 is based on non-contention based access:

- PRACH configuration index (responsible for Preamble format, System frame number and subframe number)
- Preamble ID
- Preamble power

signalled to the UE, defines the reference signal unambiguously, such that no demodulation process is necessary to gain the reference signal.

The reference signal i(v) is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: the applicable Zadoff Chu sequence, nominal carrier frequency, nominal amplitude and phase for each subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of 122.88 Mbps in the time domain.

E.6.4 Measurement results

The measurement result is:

- EVMPRACH

E.6.5 Measurement points

The measurement points are illustrated in the figure below:

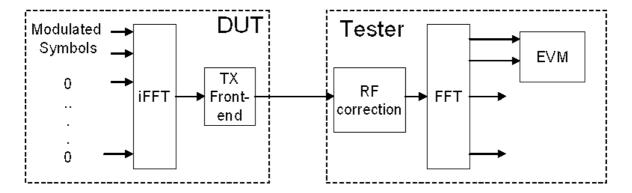


Figure E.6.5-1: Measurement points

E.6.6 Pre FFT minimization process

The pre-FFT minimization process is applied to each PRACH preamble separately. The time period for the pre-FFT minimisation process includes the complete CP and Zadoff-Chu sequence (in other words, the power transition period is per definition outside of this time period) Sample timing, Carrier frequency and carrier leakage in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

After this process the samples z(v) are called $z^{0}(v)$.

RF error, and carrier leakage are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.6.7 Timing of the FFT window

The FFT window length is 819202^{-0} samples for preamble format B4, however in the measurement period at least 1193602^{-0} samples are taken where $\mu \in \{2,3\}$. The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP.

The reference instant for the FFT start is the centre of the reduced window, called $\,\Delta \widetilde{c}\,$,

EVM is measured at the following two instants: $\Delta \widetilde{c}$ -W/2 and $\Delta \widetilde{c}$ +W/2.

The timing of the measured signal $z^0(v)$ with respect to the ideal signal i(v) is determined in the pre FFT domain as follows:

Correlation between $z^0(v)$ and i(v) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal with respect to the ideal signal.

W is different for different preamble formats and shown in Table E.6.7-1 for L_{RA} =139 and Δf^{RA} =15 $\cdot 2^{\mu}$ kHz where $\mu \in \{2,3\}$.

Preamble format	$\begin{array}{c} \text{Cyclic} \\ \text{prefix} \\ \text{length} \ N_{cp} \end{array}$	Nominal FFT size ¹	EVM window length W in FFT samples	Ratio of W to CP*
A1	1152 ^[] 2- ^[]	819202 ⁻⁰	57602 ⁻⁰	50.0%
A2	230402-0	819202-0	1728 ^[] 2 ^{-[]}	75.0%
A3	345602-0	819202-0	288002-0	83.3%
B1	86402 ⁻⁰	819202-0	28802-0	33.3%
B2	144002-0	819202-0	86402 ⁻⁰	60.0%
В3	2016[]2-1	819202-0	144002-0	71.4%
B4	374402-0	819202-0	3168 ^[] 2 ^{-//}	84.6%
C0	496002-0	819202-0	4384\[]2 ^{-\(\alpha\)}	88.4%
C2	819202 ⁻⁰	819202-0	7616 ^[] 2 ^{-//}	93.0%
Note 1: The use of other FFT sizes is possible as long as appropriate scaling of the window length is applied.				

Table E.6.7-1 EVM window length for PRACH formats for $L_{\rm RA}$ =139

Note 2: These percentages are informative

The number of samples, used for FFT is reduced compared to $z^0(v)$. This subset of samples is called z''(v).

The sample frequency 122.88 MHz is oversampled with respect to the PRACH-subcarrier spacing of $\Delta f^{RA} = 15.2^{\mu}$ kHz. EVM is based on 819202-9 samples per PRACH preamble and requires decimation of the time samples by the factor of $12 \cdot 2^{\mu}$. The final number of samples per PRACH preamble, used for FFT is reduced compared to z"(v) by the same factor. This subset of samples is called z'(v).

E.6.8 Post FFT equalisation

Equalisation is not applicable for the PRACH.

E.6.9 Derivation of the results

E.6.9.1 EVMPRACH

Perform FFT on z'(v) and i(v) using the FFT timing $\Delta \widetilde{c}$ -W/2 and $\Delta \widetilde{c}$ +W/2.

For format B4 the first and the repeated preamble sequence are FFT-converted separately using the standard FFT length of 8192.

The EVM_{PRACH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s).

$$EVM_{PRACH} = \sqrt{\frac{ \left| \bigodot \right| Z \left| \left(f, t \right) - I \left(f, t \right) \right|^{2}}{\left| T \right| \bigodot_{0} \bigodot_{0} \left| \right|}}$$

where

t covers the count of demodulated symbols in the slot.

f covers the count of demodulated symbols within the allocated bandwidth.

Z'(f,t) are the samples of the signal evaluated for the EVM_{PRACH}

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 $P_{
m o}$ is the average power of the ideal signal. For normalized modulation symbols $\,P_{
m o}\,$ is equal to 1.

From the acquired samples 2m EVM_{PRACH} values can be derived, m values for the timing $\Delta \widetilde{c}$ -W/2 and m values for the timing $\Delta \widetilde{c}$ +W/2.

E.6.9.2 Averaged EVM_{PRACH}

The PRACH EVM, EVM_{PRACH} , is averaged over m preamble sequence measurements.

$$\overline{EVM}_{PRACH} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} EVM_{PRACH,i}}^{2}$$

where m is the number of recorded preambles as defined in Annex E.6.2.

The averaging is done separately for timing $\Delta \widetilde{C}$ –W/2 and $\Delta \widetilde{C}$ +W/2 leading to $\overline{EVM}_{PRACH,low}$ and $\overline{EVM}_{PRACH,high}$

 $EVM_{PRACH, final} = \max(\overline{EVM}_{PRACH, low}, \overline{EVM}_{PRACH, high})$ is compared against the test requirements.

Annex F (normative): Measurement uncertainties and Test Tolerances

F.1 Acceptable uncertainty of Test System (normative)

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipment under test to be measured with an uncertainty not exceeding the specified values. Care should be taken to ensure that each conformance test implementation including the OTA chamber aspects meets the specified measurement uncertainty for each test case by requiring the test laboratory to maintain a detailed measurement uncertainty test report showing compliance to all the measurement uncertainty requirements. The detailed measurement uncertainty report would contain the justification for each measurement uncertainty component and its value and distribution. The derivation of these values is based on the minimum conformance requirements plus relaxation, i.e., test tolerance is not to be considered. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains 95 % of the performance of a population of test equipment.

The downlink signal uncertainties apply at the defined quiet zone with the UE properly positioned in the quiet zone. The uplink signal uncertainties apply at the measurement equipment with the UE positioned properly in the quiet zone.

F.1.1 Measurement of test environments

TBD

F.1.2 Measurement of transmitter

Editor's note: The measurement uncertainties for 6.5.2.1 Spectrum Emission Mask and 6.5.2.3 Adjacent Channel Leakage Ratio are based on a preliminary MU assessment and require an approval of the uncertainty contributors to be included in the uncertainty assessment as well as the contributors need further technical analysis.

Table F.1.2-1: Maximum Test System Uncertainty (MTSU) for transmitter tests

C.2.1.1 UE maximum output power (EIRP)	Sub clause	Maximum Test System Uncertainty	Derivation of MTSU
Minimum peak EIRP, Max EIRP Quet Zone size ≤ 30 cm			
Quiet Zone size ≤ 30 cm + 4.48 9 dB (FR2a) + 1.50.9 dB (FR2b)			
±4.89 dB (FR2a)			,
6.2.1.2 UE maximum output power (TRP) Comparison Co			
Max TRP		±5.09 dB (FR2b)	
G.2.1.2 UE maximum output power (Spherical coverage) 6.2.2 UE maximum output power for modulation / channel bandwidth 6.2.3 UE maximum output power for modulation / channel bandwidth 6.2.3 UE maximum output power with additional requirements 6.2.3 UE maximum output power EIRP and TRP for CA (2UL CA) 6.2.1.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) 6.2.1.2.1 Spherical coverage for CA (2UL CA) 6.2.3.1 E maximum output port of CA (3UL CA) 6.2.3.1 E maximum output for CA (2UL CA) 6.2.3.1.3 Spherical coverage for CA (2UL CA) 6.2.3 Spherical coverage for CA (2UL CA) 6.2.3 Spherical coverage for CA (2UL CA) 6.2.3 Spherical coverage for CA (2UL CA) 6.2.3 Spherical coverage for CA (2UL CA) 6.2.3 Spherical coverage for CA (2UL CA) 6.2.4 Spherical coverage for CA (2UL CA) 6.2.4 Spherical coverage for CA (2UL CA) 6.2.5 Spherical coverage for CA (2UL CA) 6.2.5 Spherical coverage for CA (2UL CA) 6.2.6 Spherical coverage fo	6.2.1.1 UE maximum output		MTSU = 1.00 x MU (from Table
\$\frac{2.4.2 \text{ de (FR2a)}{2.4.6 \text{ de (FR2a)}}\$ \$\frac{4.4 \text{ de (FR2a)}{4.6 \text{ de (FR2a)}}\$ \$\frac{4.4 \text{ de (FR2a)}}{4.6 \text{ de (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a))}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a)}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 de		Max TRP	
\$\frac{2.4.2 \text{ de (FR2a)}{2.4.6 \text{ de (FR2a)}}\$ \$\frac{4.4 \text{ de (FR2a)}{4.6 \text{ de (FR2a)}}\$ \$\frac{4.4 \text{ de (FR2a)}}{4.6 \text{ de (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a)}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a))}}\$ \$\frac{4.4 \text{ de (B (FR2a)}}{4.6 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a)}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.6 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 \text{ de (B (FR2a))}}\$ \$\frac{4.5 \text{ de (B (FR2a))}}{4.5 de		Quiet Zone size ≤ 30 cm	,
6.2.1.2 UE maximum output power (Spherical coverage) 6.2.2 UE maximum output power for modulation / channel bandwidth 6.2.3 UE maximum output power for modulation / channel bandwidth 6.2.3 UE maximum output power with additional requirements 6.2.4 Configured transmitted power 6.2.4 Configured transmitted power 6.2.4.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) 6.2.1.1.1 UE maximum aggregated BW ≤ 400MHz TBD 6.2.1.2.1 Spherical coverage for CA (2UL CA) 6.2.1.2.1 Spherical coverage for CA (2UL CA) 6.2.1.2.2 Spherical coverage for CA (3UL CA) 6.2.1.2.3 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.2.5 Spherical coverage for CA (3UL CA) 6.2.1.1.5 UE maximum output power - EIRP and TRP for CA (3UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz		±4.42 dB (FR2a)	
power (Spherical coverage) 6.2.2 UE maximum output power for modulation / channel bandwidth 6.2.3 UE maximum output power with additional requirements 6.2.4 Configured transmitted power - EIRP and TRP for CA (2UL CA) 6.2.1.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) 6.2.1.2.1 Spherical coverage for CA (2UL CA) 6.2.1.2.2 Spherical coverage for CA (3UL CA) 6.2.1.2.3 Spherical coverage for CA (3UL CA) 6.2.1.2.4 Spherical coverage for CA (3UL CA) 6.2.2.1.2 Spherical coverage for CA (3UL CA) Intra-band contiguous CA TBD 1ntra-band		±4.62 dB (FR2b)	
\$\frac{\psi_46.0 dB (FR2a)}{\psi_52.0 dB (FR2b)}\$ 6.2.2 UE maximum output power for modulation / channel bandwidth 6.2.3 UE maximum output power with additional requirements 6.2.4 Configured transmitted power 6.2.4.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1	6.2.1.2 UE maximum output	PC3	MTSU = 1.00 x MU (from Table
#5.20 dB (FR2b) 6.2.2 UE maximum output power for modulation / channel bandwidth 6.2.3 UE maximum output power with additional requirements 6.2.4 Configured transmitted power - EIRP and TRP for CA (2UL CA) 6.2A.1.2.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) 6.2A.1.2.1.3 Spherical coverage for CA (2UL CA) 6.2A.1.2.2 Spherical coverage for CA (2UL CA) 6.2A.1.2.3 Spherical coverage for CA (3UL CA) 6.2A.1.2.4 Spherical coverage for CA (3UL CA) 6.2A.1.2.5 Spherical coverage for CA (3UL CA) 6.2A.1.2.5 Spherical coverage for CA (3UL CA) 6.2A.1.2.5 Spherical coverage for CA (3UL CA) 6.2A.1.2.6 Spherical coverage for CA (3UL CA) 6.2A.1.2.7 Spherical coverage for CA (3UL CA) 6.2A.1.2.8 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.2 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1.1 Spherical coverage for CA (3UL CA) 6.2A.1 Spherical coverage for CA (3UL CA) 6.2A.1 Spherical coverage for CA (3UL CA) 6.2A.1 Spherical coverage for CA (3UL CA) 6.2A.1 Spherical coverage for CA (3UL CA) 6.2A.1 Spherical coverage for CA (3UL CA) 6.2A.1 Spherical coverage for CA (3UL CA) 6.2A.1 Spherical coverage for CA (3UL CA) 6.2	power (Spherical coverage)	Quiet Zone size ≤ 30 cm	B.3-2-4 in TR 38.903)
6.2.2 LE maximum output power or modulation / channel bandwidth 6.2.3 UE maximum output power with additional requirements 6.2.4 Configured transmitted power 6.2.4.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) 6.2.1.2.1 Spherical coverage for CA (2UL CA) 6.2.1.2.2 Spherical coverage for CA (2UL CA) 6.2.4.1.2.3 Spherical coverage for CA (2UL CA) 6.2.4.1.2.4 Spherical coverage for CA (2UL CA) 6.2.4.1.2.5 Spherical coverage for CA (2UL CA) 6.2.4.1.2.5 Spherical coverage for CA (2UL CA) 6.2.4.1.2.6 Spherical coverage for CA (2UL CA) 6.2.4.1.2.7 Spherical coverage for CA (2UL CA) 6.2.4.1.2.8 Spherical coverage for CA (2UL CA) 6.2.4.1.2.9 Spherical coverage for CA (3UL CA) 6.2.4.1.2.1 Spherical coverage for CA (3UL CA) 6.2.4.1.2		±4.60 dB (FR2a)	·
Dower of modulation / channel handwidth		±5.20 dB (FR2b)	
bandwidth 6.2.3 UE maximum output power with additional requirements 6.2.4 Configured transmitted power 6.2.4.1.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) TBD Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band contiguous CA TBD 6.2.4.1.2.1 Spherical coverage for CA (2UL CA) 6.2.4.1.2.3 Spherical coverage for CA (3UL CA) 6.2.4.1.2.3 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (4UL CA) 6.2.4.1.2.5 Spherical coverage for CA (5UL CA) 6.2.4.1.2.5 Spherical coverage for CA (7UL CA) 6.2.4.1.2.7 Spherical coverage for CA (8UL CA) 6.2.4.1.2.5 Spherical coverage for CA (8UL CA) 6.2.4.1.2.6 Spherical coverage for CA (8UL CA) 6.2.4.1.2.7 Spherical coverage for CA (8UL CA) 6.2.4.1.2 Elmaximum output power - EIRP and TRP for CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1		TBD	
6.2.3 LE maximum output power with additional requirements 6.2.4 Configured transmitted power 6.2.4.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) 6.2.4.1.2.1 Spherical coverage for CA (2UL CA) 6.2.4.1.2.2 Spherical coverage for CA (3UL CA) 6.2.4.1.2.3 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.5 Spherical coverage for CA (3UL CA) 6.2.4.1.2.6 Spherical coverage for CA (3UL CA) 6.2.4.1.3 UE maximum output power - EIRP and TRP for CA 7 TBD 7			
power with additional requirements 6.2.4 Configured transmitted power 6.2.4.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD			
requirements 6.2.4.1.1.0 UE maximum output power - EIRP and TRP for CA (2UL CA) Maximum aggregated BW ≤ 400MHz		TBD	
6.2.4. Configured transmitted power - EIRP and TRP for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz			
Dower C.A. 1.1.1 UE maximum output prover - EIRP and TRP for CA (2UL CA)			
6.2A.1.1.1 UE maximum output power - EIRP and TRP for CA (2UL CA) Maximum aggregated BW ≤ 400MHz		TBD	
Maximum aggregated BW ≤ 400MHz			
Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous. Inter-band CA TBD 6.2A.1.2.1 Spherical coverage for CA (2UL CA) 6.2A.1.2.2 Spherical coverage for CA (3UL CA) 6.2A.1.2.3 Spherical coverage for CA (4UL CA) 6.2A.1.2.3 Spherical coverage for CA (4UL CA) FBD 6.2A.1.2.4 Spherical coverage for CA (4UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.1 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum aggregated BW > 400MHz TBD 6.3 I Minimum output power TBD			
Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.2.1 Spherical coverage for CA (2UL CA) 6.2A.1.2.2 Spherical coverage for CA (3UL CA) 6.2A.1.2.3 Spherical coverage for CA (4UL CA) 6.2A.1.2.4 Spherical coverage for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (6UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.3A.1 Minimum output power 7 ED 6.3.1 Minimum output power 7 ED 6.3.1 Minimum output power			
Intra-band non-contiguous. Inter-band CA TBD 6.2A.1.2.1 Spherical coverage for CA (2UL CA) 6.2A.1.2.2 Spherical coverage for CA (3UL CA) 6.2A.1.2.3 Spherical coverage for CA (4UL CA) 6.2A.1.2.4 Spherical coverage for CA (3UL CA) 6.2A.1.2.5 Spherical coverage for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (8UL CA) 6.2A.1.2.5 Spherical coverage for CA (8UL CA) 7BD 6.2A.1.1.0 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL C	(2UL CA)	Same as 6.2.1.1	
Intra-band non-contiguous. Inter-band CA TBD 6.2A.1.2.1 Spherical coverage for CA (2UL CA) 6.2A.1.2.2 Spherical coverage for CA (3UL CA) 6.2A.1.2.3 Spherical coverage for CA (4UL CA) 6.2A.1.2.4 Spherical coverage for CA (3UL CA) 6.2A.1.2.5 Spherical coverage for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (8UL CA) 6.2A.1.2.5 Spherical coverage for CA (8UL CA) 7BD 6.2A.1.1.0 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5UL C			
Intra-band non-contiguous, Inter-band CA TBD			
TBD		TBD	
TBD			
6.2A.1.2.1 Spherical coverage for CA (2UL CA) 6.2A.1.2.2 Spherical coverage for CA (3UL CA) 6.2A.1.2.3 Spherical coverage for CA (3UL CA) 6.2A.1.2.3 Spherical coverage for CA (4UL CA) 6.2A.1.2.4 Spherical coverage for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.2.8 Spherical coverage for CA (8UL CA) 6.2A.1.1.9 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP			
for CA (2UL CA) 6.2A.1.2.2 Spherical coverage for CA (3UL CA) 6.2A.1.2.3 Spherical coverage for CA (4UL CA) 6.2A.1.2.4 Spherical coverage for CA (4UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.2.8 Spherical coverage for CA (8UL CA) 6.2A.1.2.9 Intra-band contiguous CA TBD 6.2A.1.1.2 Us maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA Amximum aggregated BW > 400MHz TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA Amximum aggregated BW > 400MHz TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA Amximum aggregated BW > 400MHz TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA Amximum aggregated BW > 400MHz TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA Amximum aggregated BW > 400MHz TBD 6.2A.1.1.3 UE maximum output power TBD			
6.2A.1.2.2 Spherical coverage for CA (3UL CA) 6.2A.1.2.3 Spherical coverage for CA (4UL CA) 6.2A.1.2.4 Spherical coverage for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (6UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.3 UE maximum output power - EIRP and TRP for CA (5			
for CA (3UL CA) 6.2A.1.2.3 Spherical coverage for CA (4UL CA) 6.2A.1.2.4 Spherical coverage for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.8 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (7UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (7UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (7UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (7UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (7UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (7UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (7UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (7UL CA) 6.2A.1.1.3 UE maximum output power output power - EIRP and TRP for CA (7UL CA) 6.2A.1.1.3 UE maximum output power out		l -	
6.2A.1.2.3 Spherical coverage for CA (AUL CA) 6.2A.1.2.4 Spherical coverage for CA (SUL CA) 6.2A.1.2.5 Spherical coverage for CA (BUL CA) 6.2A.1.2.5 Spherical coverage for CA (GUL CA) 6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (AUL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (AUL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (AUL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (AUL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (AUL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (AUL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (AUL CA) 6.2A.1.1.3 UE maximum output power TBD 6.2A.1.1.3 UE maximum output power TBD			
for CA (4UL CA) 6.2A.1.2.4 Spherical coverage for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (5.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (6			
6.2A.1.2.4 Spherical coverage for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power binary aggregated BW > 400MHz TBD 6.2A.1.1.3 UE maximum output power binary aggregated BW > 400MHz TBD 6.2A.1.1.3 UE maximum output power binary aggregated BW > 400MHz TBD 6.2A.1.1.3 UE maximum output power binary aggregated BW > 400MHz TBD 6.2A.1.1.3 UE maximum output power binary aggregated BW > 400MHz TBD 6.3.1 Minimum output power binary aggregated BW > 400MHz TBD			
for CA (5UL CA) 6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.3.1 Minimum output power TBD 6.3.1 Minimum output power TBD			
6.2A.1.2.5 Spherical coverage for CA (6UL CA) 6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power TBD 6.3.1 Minimum output power TBD			
for CA (6UL CA) TBD 6.2A.1.2.6 Spherical coverage for CA (7UL CA) Intra-band contiguous CA TBD 6.2A.1.2.7 Spherical coverage for CA (8UL CA) Intra-band contiguous CA TBD 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.1.3 UE maximum output power TBD Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz 6.2A.1.1.3 UE maximum output power Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz 6.3.1 Minimum output power TBD			
6.2A.1.2.6 Spherical coverage for CA (7UL CA) 6.2A.1.2.7 Spherical coverage for CA (8UL CA) 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.3.1 Minimum output power TBD			
for CA (7UL CA) TBD 6.2A.1.2.7 Spherical coverage for CA (8UL CA) Intra-band contiguous CA TBD 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD			
6.2A.1.2 VE maximum output power - EIRP and TRP for CA (3UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) 6.2A.1.1.3 UE maximum output power -			
for CA (8UL CA) TBD 6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD			
6.2A.1.1.2 UE maximum output power - EIRP and TRP for CA (3UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD		1	
power - EIRP and TRP for CA (3UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD		<u> </u>	
Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD			
Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD			
TBD Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD	(002 0/1)	Came as v.z.i.i	
TBD Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD		Maximum aggregated RW > 400MHz	
Intra-band non-contiguous, Inter-band CA TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD			
TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD		.55	
TBD 6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD		Intra-band non-contiguous, Inter-hand CA	
6.2A.1.1.3 UE maximum output power - EIRP and TRP for CA (4UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD			
power - EIRP and TRP for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD	6.2A.1.1.3 UE maximum output		
(4UL CA) Same as 6.2.1.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD			
Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD			
TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD	,		
TBD Intra-band non-contiguous, Inter-band CA TBD 6.3.1 Minimum output power TBD		Maximum aggregated BW > 400MHz	
TBD 6.3.1 Minimum output power TBD			
TBD 6.3.1 Minimum output power TBD			
6.3.1 Minimum output power TBD			
6.3.2 Transmit OFF power TBD		TBD	
		TBD	

	T	I
6.3.3.2 General ON/OFF time	TBD	
mask		
6.3.3.4 PRACH time mask	TBD	
6.3.3.6 SRS time mask	TBD	
6.3.4.2 Absolute power	TBD	
tolerance		
6.3.4.3 Relative power	TBD	
tolerance		
6.3.4.4 Aggregate power	TBD	
tolerance		
6.3A.2.1 Transmit OFF power for CA (2UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz	
TOT ON (201 ON)	Same as 6.3.2	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.3A.2.2 Transmit OFF power for CA (3UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.3.2	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.3A.2.3 Transmit OFF power for CA (4UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.3.2	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.4.1 Frequency error	± 0.01 ppm	MTSU = 1.00 x MU (from B.10.1 and B.10.2 in TR 38.903)
6.4.2.1 Error vector magnitude	TBD	
6.4.2.2 Carrier leakage	TBD	
6.4.2.3 In-band emissions	TBD	
6.4.2.4 EVM equalizer spectrum	TBD	
flatness 6.4.2.5 EVM equalizer spectrum	TBD	
flatness for BPSK modulation		
6.4A.1.1 Frequency error for CA (2UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.4A.2.2.1 Carrier leakage for CA (2UL CA)	TBD	
6.4A.1.2 Frequency error for CA (3UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.4A.2.2.2 Carrier leakage for	TBD	
CA (3UL CA)		

6 44 2 2 2 Carrier leakage for	TDD	
6.4A.2.2.3 Carrier leakage for CA (4UL CA)	TBD	
6.4A.1.3 Frequency error for CA (4UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5.1 Occupied bandwidth	TBD	
6.5.2.1 Spectrum Emission Mask	Quiet Zone size ≤ 30 cm ±4.94 dB (FR2a) ±5.32 dB (FR2b)	MTSU = 1.00 x MU (from Table B.16.2-2, B.16.2-3 in TR 38.903)
6.5.2.3 Adjacent Channel Leakage Ratio	Quiet Zone size ≤ 30cm TBD	
6.5.3.1 Transmitter Spurious emissions	Quiet Zone size ≤ 30 cm Maximum in-band BW ≤ 400MHz	MTSU = 1.00 x MU (from Table B.18-1 in TR 38.903)
	\pm TBD dB (6GHz ≤ f ≤ 12.75GHz) \pm TBD dB (12.75GHz < f ≤ 23.45GHz) \pm TBD dB (23.45GHz < f < 40.8GHz) \pm TBD dB (40.8GHz ≤ f ≤ 66GHz) \pm TBD dB (66GHz ≤ f ≤ 80GHz)	
6.5.3.2 Spurious emission band UE co-existence	TBD	
6.5.3.3 Additional Spurious emission	TBD	
6.5A.1.1 Occupied bandwidth for CA (2UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.1	
	Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA	
	TBD	
6.5A.1.2 Occupied bandwidth for CA (3UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.1.3 Occupied bandwidth for CA (4UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.1.4 Occupied bandwidth for CA (5UL CA)	TBD	
6.5A.1.5 Occupied bandwidth for CA (6UL CA)	TBD	
6.5A.1.6 Occupied bandwidth for CA (7UL CA)	TBD	
6.5A.1.7 Occupied bandwidth for CA (8UL CA)	TBD	

6.5A.2.1.1 Spectrum Emission Mask for CA (2UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.2.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.1.2 Spectrum Emission Mask for CA (3UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.2.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.1.3 Spectrum Emission Mask for CA (4UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.2.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.1.4 Spectrum Emission Mask for CA (5UL CA)	TBD	
6.5A.2.1.5 Spectrum Emission Mask for CA (6UL CA)	TBD	
6.5A.2.1.6 Spectrum Emission Mask for CA (7UL CA)	TBD	
6.5A.2.1.7 Spectrum Emission Mask for CA (8UL CA)	TBD	
6.5A.2.2.1 Adjacent channel leakage ratio for CA (2UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.2.3	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.2.2 Adjacent channel leakage ratio for CA (3UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.2.3	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.2.3 Adjacent channel leakage ratio for CA (4UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.2.3	
	Maximum aggregated BW > 400MHz TBD	
0.54.0.0.44.11	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.2.4 Adjacent channel leakage ratio for CA (5UL CA)	TBD	
6.5A.2.2.5 Adjacent channel leakage ratio for CA (6UL CA)	TBD	
6.5A.2.2.6 Adjacent channel leakage ratio for CA (7UL CA)	TBD	

6.5A.2.2.7 Adjacent channel leakage ratio for CA (8UL CA)	TBD	
6.5A.3.1.1 Transmitter Spurious emissions for CA (2UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.3.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.3.1.2 Transmitter Spurious emissions for CA (3UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.3.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.3.1.3 Transmitter Spurious emissions for CA (4UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.3.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.3.1.4 Transmitter Spurious emissions for CA (5UL CA)	TBD	
6.5A.3.1.5 Transmitter Spurious emissions for CA (6UL CA)	TBD	
6.5A.3.1.6 Transmitter Spurious emissions for CA (7UL CA)	TBD	
6.5A.3.1.7 Transmitter Spurious emissions for CA (8UL CA)	TBD	
6.5A.3.2.1 Spurious emission band UE co-existence for CA (2UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.3.2	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.3.2.2 Spurious emission band UE co-existence for CA (3UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.3.2	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.3.2.3 Spurious emission band UE co-existence for CA (4UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.3.2	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.3.2.4 Spurious emission band UE co-existence for CA (5UL CA)	TBD	

6.5A.3.2.5 Spurious emission band UE co-existence for CA (6UL CA)	TBD	
6.5A.3.2.6 Spurious emission band UE co-existence for CA (7UL CA)	TBD	
6.5A.3.2.7 Spurious emission band UE co-existence for CA (8UL CA)	TBD	
6.5A.3.3.1 Additional spurious emissions for CA (2UL CA)	TBD	
6.5A.3.3.2 Additional spurious emissions for CA (3UL CA)	TBD	
6.5A.3.3.3 Additional spurious emissions for CA (4UL CA)	TBD	
6.5A.3.3.4 Additional spurious emissions for CA (5UL CA)	TBD	
6.5A.3.3.5 Additional spurious emissions for CA (6UL CA)	TBD	
6.5A.3.3.6 Additional spurious emissions for CA (7UL CA)	TBD	
6.5A.3.3.7 Additional spurious emissions for CA (8UL CA)	TBD	
NOTE 1: FR2a: 23.45GHz ≤ f ≤ 32.125GHz FR2b: 32.125GHz ≤ f ≤ 40.8GHz		

F.1.3 Measurement of receiver

Table F.1.3-1: Maximum Test System Uncertainty (MTSU) for receiver tests

Sub clause	Maximum Test System Uncertainty	Derivation of MTSU	
7.3.2 Reference sensitivity power level	±5.19 dB (Quiet Zone size ≤ 30 cm, FR2a, FR2b)	MTSU = 1.00 x MU (from Table B.19-2-2 in TR 38.903)	
7.3.4 EIS spherical coverage	[±4.90] dB (Quiet Zone size ≤ 30 cm, FR2a, FR2b)	MTSU = 1.00 x MU (from Table B.19-2-2 in TR 38.903)	
7.4 Maximum input level	TBD	·	
7.5 Adjacent channel selectivity	TBD		
7.6.2 In-band blocking	TBD		
7.9 Spurious emissions	TBD		
NOTE 1: FR2a and FR2b are specified in Table F.1.2-1.			

F.2 Interpretation of measurement results (normative)

The actual measurement uncertainty of the Test System for the measurement of each parameter shall be included in the test report.

The recorded value for the Test System uncertainty shall be, for each measurement, equal to or lower than the appropriate figure in clause F.1 of the present document.

If the Test System using one of the permitted test methods defined in TR38.903 [20] for a test is known to have a measurement uncertainty greater than that specified in clause F.1, it is still permitted to use this apparatus provided that an adjustment is made value as follows:

Any additional uncertainty in the Test System over and above that specified in clause F.1 shall be used to tighten the Test Requirement, making the test harder to pass. For some tests, for example receiver tests, this may require modification of stimulus signals. This procedure will ensure that a Test System not compliant with clause F.1does not increase the chance of passing a device under test where that device would otherwise have failed the test if a Test System compliant with clause F.1 had been used.

F.3 Test Tolerance and Derivation of Test Requirements (informative)

TBD

F.3.1 Measurement of test environments

TBD

F.3.2 Measurement of transmitter

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Influence of noise is subtracted from MTSU before calculating the TT for lower limit Tx test cases.

Table F.3.2-1: Derivation of Test Requirements (Transmitter tests)

Sub clause	Test Tolerance (TT)	Formula for test requirement
6.2.1.1 UE maximum output	PC3	Minimum peak EIRP
power (EIRP)	Minimum peak EIRP	$TT = 0.60 \times (MTSU_{IFF} - 0.1) (FR2a)$
	IFF (Quiet Zone size ≤ 30 cm)	$TT = 0.60 \times (MTSU_{IFF} - 0.3) (FR2b)$
	2.87 dB (FR2a)	
	2.87 dB (FR2b)	
	Max EIRP	
	0 dB	
6.2.1.1 UE maximum output	PC3	Max TRP
power (TRP)	Max TRP	$TT = 0.60 \times MTSU_{IFF}$
	IFF (Quiet Zone size ≤ 30 cm)	
	2.87 dB (FR2a)	
0.0.1.0.115	3.00 dB (FR2b)	D00
6.2.1.2 UE maximum output power (Spherical coverage)	PC1 TBD	PC3
power (Sprierical coverage)	TBD	$TT = 0.60 \times (MTSU_{IFF} - 0.3) (FR2a)$ $TT = 0.60 \times (MTSU_{IFF} - 0.9) (FR2b)$
	PC2	11 - 0.00 x (W1130## 0.3) (112b)
	TBD	
	PC3	
	IFF (Quiet Zone size ≤ 30 cm)	
	2.58 dB (FR2a)	
	2.58 dB (FR2b)	
	PC4	
	TBD	
6.2.2 UE maximum output	TBD	
power for modulation /		
channel bandwidth	TDD	
6.2.3 UE maximum output power with additional	TBD	
requirements		
6.2.4 Configured transmitted	TBD	
power	100	
6.2A.1.1.1 UE maximum	Intra-band contiguous CA	
output power - EIRP and	Maximum aggregated BW ≤ 400MHz	
TRP for CA (2UL CA)	Same as 6.2.1.1	
,		
	Maximum aggregated BW > 400MHz	
	TBD	
	Intra-band non-contiguous, Inter-band CA	
C 2A 1 2 1 Cmb = ::!	TBD	
6.2A.1.2.1 Spherical	Intra-band contiguous CA	
coverage for CA (2UL CA) 6.2A.1.2.3 Spherical	TBD Intra-band contiguous CA	
coverage for CA (4UL CA)	TBD	
6.2A.1.2.4 Spherical	Intra-band contiguous CA	
coverage for CA (5UL CA)	TBD	
6.2A.1.2.5 Spherical	Intra-band contiguous CA	
coverage for CA (6UL CA)	TBD	
6.2A.1.2.6 Spherical	Intra-band contiguous CA	
coverage for CA (7UL CA)	<u>TBD</u>	
6.2A.1.2.7 Spherical	Intra-band contiguous CA	
coverage for CA (8UL CA)	TBD	
6.2A.1.1.2 UE maximum	Intra-band contiguous CA	
output power - EIRP and	Maximum aggregated BW ≤ 400MHz	
TRP for CA (3UL CA)	Same as 6.2.1.1	
	Maximum aggregated PW > 400MUz	
	Maximum aggregated BW > 400MHz TBD	
	100	
	Intra-band non-contiguous, Inter-band CA	
	TBD	
	!	

6.2A.1.1.3 UE maximum output power LEIP and TRP for CA (4U. CA) Maximum aggregated BW ≤ 400MHz TBD G.3.1 Minimum output power G.3.2 Transmit OFF power G.3.2 General ON/OFF time mask G.3.2 Hera over to tolerance G.3.4 2 Absolute power TBD G.3.4 PRACH time mask G.3.4 a PRACH time mask G.3.4			1
TBD	output power - EIRP and		
TBD 6.3.1 Minimum output power 6.3.2 Transmit OFF power 6.3.3.2 General ON/OFF time mask 6.3.4.2 Absolute power tolerance 6.3.4.3 Relative power tolerance 6.3.4.1 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.3 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 7 TBD 7 TBD 8 TBD 8 TBD 8 TBD 8 TBD 9 TBD 9 TBD 1 T			
6.3.2 Transmit OFF power of CA (2UL CA) 6.3.4 2 Absolute power tolerance of CA (2UL CA) 6.3.4 CA (2UL CA) 6.3.4 2 Transmit OFF power for CA (2UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.4.2 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.			
6.3.2 Transmit OFF power of CA (2UL CA) 6.3.4.2 A special ONOFF time mask of CA (2UL CA) 6.3.4.2 A special power tolerance of CA (2UL CA) 6.3.4.2 Transmit OFF power for CA (2UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.3.4.2 Transmit OFF power for CA (3UL CA) 6.4.2 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.4 Transmit OFF power for CA (3UL CA) 6.4.5 Transmit OFF p	6.3.1 Minimum output power	TBD	
6.3.3.2 General ON/OFF time mask 6.3.4 PRACH time mask 6.3.4 PRACH time mask 6.3.4 PRACH time mask 6.3.4 PRACH time mask 6.3.4 PRACH time mask 6.3.4 Carbioute power tolerance 6.3.4.3 Relative power tolerance 6.3.4.3 Relative power for CA (2UL CA) TBD tintra-band contiguous CA maximum aggregated BW ≤ 400MHz TBD 6.3.4.2.1 Transmit OFF power for CA (3UL CA) 6.3.4.2.2 Transmit OFF power for CA (3UL CA) 6.3.4.3 Transmit OFF power for CA (3UL CA) 6.3.4.3 Transmit OFF power for CA (4UL CA) 6.3.4.3 Transmit OFF power for CA (4UL CA) 6.3.4.2 Transmit OFF power for CA (5UL CA) 6.3.4.3 Transmit OFF power for CA (5UL CA) 6.3.4.3 Transmit OFF power for CA (5UL CA) 6.3.4 Transmit OFF power for CA (5UL CA) 6.3.4 Transmit OFF power for CA (5UL CA) 6.3.4 Transmit OFF power for CA (5UL CA) 6.3.4 Transmit OFF power for CA (6UL CA) 6.3.4 Transmit OFF power for CA (6UL CA) 6.3.4 Transmit OFF power for CA (6UL CA) 6.3.4 Transmit OFF power for CA (6UL CA) 6.3.4 Transmit OFF power for CA (6UL CA) 6.3.4 Transmit OFF power for CA (6UL CA) 6.3.4 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.2 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.2 Transmit OFF power for CA (6UL CA) 6.4.3 Transmit OFF power for CA (6UL CA) 6.4.4 Transmit OFF power for CA (6UL CA) 6.4.5 Transmit OFF power for CA (6UL CA) 6.4.5 Transmit OFF power for CA (6UL CA) 6.4.5 Transmit OFF power for CA (6UL CA) 6.4.6 Transmit OFF power for CA (6UL CA) 6.4.1 Transmit OFF power for CA (6UL CA) 6.4.2 Transmit OFF power for CA (6UL CA) 6.4.2 Transmit OFF power for CA (6UL CA) 6.4.3 Transmit OFF power for CA (6UL CA) 6.4.4 Transmit OFF power for C		0 dB	
6.3.4.2 APACH time mask TBD	6.3.3.2 General ON/OFF time		
6.3.4.2 Absolute power tolerance 6.3.4.3 Relative power tolerance 6.3.4.2 Transmit OFF power for CA (2UL CA) 6.3.2.1 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (3UL CA) 6.3.2.2 Transmit OFF power for CA (4UL CA) 6.3.2.2 Transmit OFF power for CA (4UL CA) 6.3.2 Transmit OFF power for CA (4UL CA) 6.4.2 Transmit OFF power for CA (4UL CA) 6.4.2 Transmit OFF power for CA (4UL CA) 6.4.2 Transmit OFF power for CA (4UL CA) 6.4.2 Transmit OFF power for CA (4UL CA) 6.4.3 Frequency error for CA (4UL CA) 6.4.4 Trequency error for CA (4UL CA) 6.4.2 Transmit OFF power for CA (4UL CA) 6.4.3 Frequency error for CA (4UL CA) 6.4.4 EVM equalizer spectrum flatness for BPSK modulation 6.4.2 IL Transmit OFF power for CA (2UL CA) 6.4.3 Frequency error for CA (2UL CA) 6.4.4.2 Transmit OFF power for CA (2UL CA) 6.4.4.2 Transmit OFF power for CA (2UL CA) 6.4.4.2 Transmit OFF power for CA (2UL CA) 6.4.4.2 Transmit OFF power for CA (2UL CA) 6.4.4.2 Transmit OFF power for CA (2UL CA) 6.4.4.2 Transmit OFF power for CA (2UL CA) 6.4.4.2 Transmit OFF power for OA (2UL CA) 6.4.4.4.4.4 EVM equalizer spectrum flatness for BPSK modulation 6.4.4.4 EVM equalizer spectrum flatness for BPSK modulation 6.4.4.5 EVM equalizer spectrum flatness for BPSK modulation 6.4.4.5 EVM equalizer spectrum flatness for BPSK modulation 6.4.4.5 EVM equalizer spectrum flatness for BPSK modulation 6.4.5 EVM equalizer spectrum flatness for BPSK modulation 6.4.4.5 EVM equalizer spectrum flatness for BPSK modulation 6.4.4.5 EVM equalizer spectrum flatness for BPSK modulation 6.4.4.5 EVM equalizer spectrum flatness for BPSK modulation 6.4.5 EVM equalizer spectrum flatness for BPSK modulation 6.4.6 EVM equalizer s		TBD	
tolerance 6.3.4.3 Relative power tolerance 6.3.4.4 Aggregate power tolerance 6.3.4.2 Transmit OFF power for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW > 400MHz Same as 6.3.2			
TBD			
TBD Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW ≤ 400MHz TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW ≤ 400MHz TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW ≤ 400MHz TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band emissions TBD Intra-band	6.3.4.3 Relative power	TBD	
6.3A.2.1 Transmit OFF power for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz	6.3.4.4 Aggregate power	TBD	
Same as 6.3.2 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous. Inter-band CA TBD 6.3A.2.2 Transmit OFF power for CA (3UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous. Inter-band CA TBD 6.3A.2.3 Transmit OFF power for CA (4UL CA) Maximum aggregated BW ≥ 400MHz Same as 6.3.2 Maximum aggregated BW ≥ 400MHz TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA TBD Intra-band non-contiguous. Inter-band CA TBD 6.4.1 Frequency error 6.4.2.1 Error vector magnitude 6.4.2.2 Carrier leakage 6.4.2.2 Carrier leakage 6.4.2.3 In-band emissions TBD 6.4.2.4 EVM equalizer spectrum flatness 6.4.2.5 TBD TBD TBD TBD TBD TBD TBD TBD	6.3A.2.1 Transmit OFF power		
TBD Intra-band non-contiguous, Inter-band CA TBD 6.3A.2.2 Transmit OFF power for CA (3UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4.1 Frequency error 0.005 ppm TT = 0.5 x MTSU 6.4.2.1 Error vector 0%, up to 64QAM Minimum requirement + TT magnitude 6.4.2.2 Carrier leakage 6.4.2.3 In-band emissions 6.4.2.3 In-band emissions FBD 6.4.2.4 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Maximum aggregated BW ≤ 400MHz TBD Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.3.1 Maximum aggregated BW ≤ 400MHz TBD Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous, Inter-band CA TBD	for CA (2UL CA)		
6.3A.2.2 Transmit OFF power for CA (3UL CA) 6.3A.2.3 Transmit OFF power for CA (4UL CA) 6.3A.2.3 Transmit OFF power for CA (4UL CA) 6.3A.2.3 Transmit OFF power for CA (4UL CA) 6.4.1 Frequency error 6.4.2.1 Error vector magnitude 6.4.2.2 Carrier leakage 6.4.2.3 In-band emissions 6.4.2.4 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness 6.4.1.1 Frequency error for CA (2UL CA) 6.4A.1.1 Frequency error for CA (2UL CA) 6.4A.1.1 Frequency error for CA (2UL CA) Maximum aggregated BW ≤ 400MHz TBD TBD TT = 0.5 x MTSU Minimum requirement + TT Minimum requirement + TT Minimum requirement + TT Minimum requirement + TT Maximum aggregated BW ≤ 400MHz TBD Minimum requirement + TD			
Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous CA Maximum aggregated BW ≤ 400MHz Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Intra-band non-contiguous, Inter-band CA Intra-band non-contiguous, Inter-band non-contiguous, Inter-band CA Intra-band non-contiguous, Inter-band non-contiguous,			
Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz TBD	6.2A.2.2 Transmit OEE nower		
TBD Intra-band non-contiguous, Inter-band CA TBD		Maximum aggregated BW ≤ 400MHz	
TBD 6.3A.2.3 Transmit OFF power for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4.1 Frequency error 6.4.2.1 Error vector magnitude 6.4.2.2 Carrier leakage 6.4.2.2 Carrier leakage 6.4.2.3 In-band emissions TBD 6.4.2.4 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band contiguous CA Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD			
for CA (4UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.3.2 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4.1 Frequency error 0.005 ppm TT = 0.5 x MTSU 6.4.2.1 Error vector magnitude 6.4.2.2 Carrier leakage 6.4.2.3 In-band emissions FBD 6.4.2.4 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD		Intra-band non-contiguous, Inter-band CA TBD	
TBD Intra-band non-contiguous, Inter-band CA TBD 6.4.1 Frequency error 0.005 ppm TT = 0.5 x MTSU 6.4.2.1 Error vector magnitude 6.4.2.2 Carrier leakage 6.4.2.3 In-band emissions TBD 6.4.2.4 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD		Maximum aggregated BW ≤ 400MHz	
6.4.1 Frequency error 6.4.2.1 Error vector magnitude 6.4.2.2 Carrier leakage 6.4.2.3 In-band emissions 6.4.2.4 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD		1	
6.4.2.1 Error vector magnitude 6.4.2.2 Carrier leakage 6.4.2.3 In-band emissions 6.4.2.4 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD			
magnitude 6.4.2.2 Carrier leakage TBD 6.4.2.3 In-band emissions TBD 6.4.2.4 EVM equalizer spectrum flatness TBD 6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation TBD 6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD	6.4.1 Frequency error		
6.4.2.2 Carrier leakage TBD 6.4.2.3 In-band emissions TBD 6.4.2.4 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD Intra-band non-contiguous CA TBD In		0%, up to 64QAM	Minimum requirement + TT
6.4.2.3 In-band emissions 6.4.2.4 EVM equalizer spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD		TBD	
Spectrum flatness 6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD			
6.4.2.5 EVM equalizer spectrum flatness for BPSK modulation 6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Captable CA TBD TBD Captable CA TBD	6.4.2.4 EVM equalizer		
6.4A.1.1 Frequency error for CA (2UL CA) Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD	6.4.2.5 EVM equalizer spectrum flatness for BPSK	TBD	
CA (2UL CA) Maximum aggregated BW ≤ 400MHz Same as 6.4.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD		Intro hand continue 2.2	
TBD Intra-band non-contiguous, Inter-band CA TBD 6.4A.2.2.1 Carrier leakage for TBD		Maximum aggregated BW ≤ 400MHz	
TBD 6.4A.2.2.1 Carrier leakage for TBD			
		TBD	
		TBD	

6.4A.1.2 Frequency error for CA (3UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.4A.2.2.2 Carrier leakage for CA (3UL CA)	TBD	
6.4A.2.2.3 Carrier leakage for CA (4UL CA)	TBD	
6.4A.1.3 Frequency error for CA (4UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.4.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5.1 Occupied bandwidth	0 kHz	Minimum requirement + TT
6.5.2.1 Spectrum Emission Mask	IFF (Quiet Zone size ≤ 30 cm) 3.21 dB (FR2a) 3.46 (FR2b)	TT = 0.65 x MTSU _{IFF}
6.5.2.3 Adjacent Channel Leakage Ratio	Absolute requirement 0 dB	TT = 0.65 x MTSU _{IFF}
	Relative requirement	
	IFF (Quiet Zone size \leq 30 cm) BW = 50MHz [2.97] dB (23.45GHz \leq f \leq 30.3GHz)	
	[3.20] dB (30.3GHz ≤ f ≤ 40.8GHz)	
6.5.3.1 Transmitter Spurious emissions	0 dB	Minimum requirement + TT
6.5.3.2 Spurious emission band UE co-existence	0 dB	Minimum requirement + TT
6.5A.1.1 Occupied bandwidth for CA (2UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.1.2 Occupied bandwidth	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz	
for CA (3UL CA)	Same as 6.5.1	
IOT CA (3UL CA)		
	Same as 6.5.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD	
6.5A.1.3 Occupied bandwidth for CA (4UL CA)	Same as 6.5.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA	
6.5A.1.3 Occupied bandwidth	Same as 6.5.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz	
6.5A.1.3 Occupied bandwidth	Same as 6.5.1 Maximum aggregated BW > 400MHz TBD Intra-band non-contiguous, Inter-band CA TBD Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.1 Maximum aggregated BW > 400MHz	

6.5A.1.5 Occupied bandwidth	TBD	
for CA (6UL CA)		
6.5A.1.6 Occupied bandwidth for CA (7UL CA)	TBD	
6.5A.1.7 Occupied bandwidth for CA (8UL CA)	TBD	
6.5A.2.1.1 Spectrum Emission Mask for CA (2UL	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz	
CA)	Same as 6.5.2.1	
	Maximum aggregated BW > 400MHz	
	TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.1.2 Spectrum	Intra-band contiguous CA	
Emission Mask for CA (3UL CA)	Maximum aggregated BW ≤ 400MHz Same as 6.5.2.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.1.3 Spectrum Emission Mask for CA (4UL	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz	
CA)	Same as 6.5.2.1	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.1.4 Spectrum Emission Mask for CA (5UL CA)	TBD	
6.5A.2.1.5 Spectrum	TBD	
Emission Mask for CA (6UL CA)		
6.5A.2.1.6 Spectrum Emission Mask for CA (7UL CA)	TBD	
6.5A.2.1.7 Spectrum	TBD	
Emission Mask for CA (8UL CA)		
6.5A.2.2.1 Adjacent channel leakage ratio for CA (2UL	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz	
CA)	Same as 6.5.2.3	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA	
6.5A.2.2.2 Adjacent channel	Intra-band contiguous CA	
leakage ratio for CA (3UL CA)	Maximum aggregated BW ≤ 400MHz Same as 6.5.2.3	
	Maximum aggregated BW > 400MHz TBD	
	Intra-band non-contiguous, Inter-band CA TBD	
6.5A.2.2.3 Adjacent channel leakage ratio for CA (4UL CA)	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz Same as 6.5.2.3	
	Maximum aggregated BW > 400MHz	

	TBD	
	Intra-band non-contiguous, Inter-band CA	
	TBD	
6.5A.2.2.4 Adjacent channel leakage ratio for CA (5UL	TBD	
CA)		
6.5A.2.2.5 Adjacent channel	TBD	
leakage ratio for CA (6UL		
CA)		
6.5A.2.2.6 Adjacent channel	TBD	
leakage ratio for CA (7UL CA)		
6.5A.2.2.7 Adjacent channel	TBD	
leakage ratio for CA (8UL		
CA)		
6.5A.3.1.1 Transmitter Spurious emissions for CA	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz	
(2UL CA)	Same as 6.5.3.1	
(202 0.1)		
	Maximum aggregated BW > 400MHz	
	TBD	
	Intra-band non-contiguous, Inter-band CA	
	TBD	
6.5A.3.1.2 Transmitter	Intra-band contiguous CA	
Spurious emissions for CA	Maximum aggregated BW ≤ 400MHz	
(3UL CA)	Same as 6.5.3.1	
	Maximum aggregated BW > 400MHz	
	TBD	
	Intra-band non-contiguous, Inter-band CA	
6.5A.3.1.3 Transmitter	TBD	
Spurious emissions for CA	Intra-band contiguous CA Maximum aggregated BW ≤ 400MHz	
(4UL CA)	Same as 6.5.3.1	
,		
	Maximum aggregated BW > 400MHz	
	TBD	
	Intra-band non-contiguous, Inter-band CA	
	TBD	
NOTE 1: FR2a: 23.45GHz ≤ f		
FR2b: 32.125GHz ≤	: f ≤ 40.8GHz	

F.3.3 Measurement of receiver

Table F.3.3-1: Derivation of Test Requirements (Receiver tests)

Sub clause	Test Tolerance (TT)	Formula for test requirement				
7.3.2 Reference sensitivity power level	IFF (Quiet Zone size ≤ 30 cm, FR2a, FR2b) 2.34 dB	TT = 0.45 x MTSU _{IFF}				
7.3.4 EIS spherical coverage	IFF (Quiet Zone size ≤ 30 cm, FR2a, FR2b) 2.21 dB	PC3 TT = 0.45 x MTSU _{IFF}				
7.4 Maximum input level	<u>TBD</u>					
7.5 Adjacent channel selectivity	<u>0 dB</u>	Wanted signal power + TT				
		T-put limit unchanged				
7.6.2 In-band blocking	<u>0 dB</u>	Wanted signal power + TT T-put limit unchanged				
7.9 Spurious emissions	<u>0 dB</u>	Minimum requirement + TT				
		T-put limit unchanged				
NOTE 1: FR2a and FR2b are specified in Table F.3.2-1.						

Annex G (normative): Uplink Physical Channels

G.0 Uplink Signal Levels

Please refer to Annex G.0 in TS 38.521-1 [13].

G.1 General

Please refer to Annex G.1 in TS 38.521-1 [13].

G.2 Set-up

Please refer to Annex G.2 in TS 38.521-1 [13].

G.3 Connection

Please refer to Annex G.3 in TS 38.521-1 [13].

G.3.0 Measurement of Transmitter Characteristics

Please refer to Annex G.3.0 in TS 38.521-1 [13].

G.3.1 Measurement of Receiver Characteristics

Please refer to Annex G.3.1 in TS 38.521-1 [13].

Annex H (normative): Statistical Testing

Editor's Note: Further investigate the technical details behind this statistical method to ensure that this is applicable for FR2 radiated test cases.

H.1 General

FFS.

H.2 Statistical testing of receiver characteristics

H.2.1 General

The test of receiver characteristics is twofold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for all receiver tests is >95% of the maximum throughput.

All receiver tests are performed in static propagation conditions. No fading conditions are applied.

H.2.2 Mapping throughput to error ratio

- a) The measured information bit throughput R is defined as the sum (in kilobits) of the information bit payloads successfully received during the test interval, divided by the duration of the test interval (in seconds).
- b) In measurement practice the UE indicates successfully received information bit payload by signalling an ACK to the SS.
 - If payload is received, but damaged and cannot be decoded, the UE signals a NACK.
- c) Only the ACK and NACK signals, not the data bits received, are accessible to the SS. The number of bits is known in the SS from knowledge of what payload was sent.
- d) For the reference measurement channel, applied for testing, the number of bits is different in different subframes, however in a radio frame it is fixed during one test.
- e) The time in the measurement interval is composed of successfully received subframes (ACK), unsuccessfully received subframes (NACK) and no reception at all (DTX-subframes).
- f) DTX-subframes may occur regularly according the applicable reference measurement channel (regDTX). In real live networks this is the time when other UEs are served. In TDD these are the UL and special subframes. regDTX vary from test to test but are fixed within the test.
- g) Additional DTX-subframes occur statistically when the UE is not responding ACK or NACK where it should. (statDTX)
 - This may happen when the UE was not expecting data or decided that the data were not intended for it.

The pass / fail decision is done by observing the:

- number of NACKs

- number of ACKs and
- number of statDTXs (regDTX is implicitly known to the SS)

The ratio (NACK + statDTX)/(NACK+ statDTX + ACK) is the Error Ratio (ER). Taking into account the time consumed by the ACK, NACK, and DTX-TTIs (regular and statistical), ER can be mapped unambiguously to throughput for any single reference measurement channel test.

H.2.3 Design of the test

The test is defined by the following design principles (see clause H.x, Theory...):

- 1. The early decision concept is applied.
- 2. A second limit is introduced: Bad DUT factor M>1
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail

Customer Risk is applied based on the specified DUT quality

The test is defined by the following parameters:

- 1. Limit ER = 0.05 (Throughput limit = 95%)
- 2. Bad DUT factor M=1.5 (selectivity)
- 3. Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

H.2.4 Numerical definition of the pass fail limits

Table H.2.4-1: pass fail limits

ne	ns _p	ns _f	ne	ns _p	ns _f	ne	ns _p	ns _f	ne	ns _p	ns _f
0	67	NA	39	763	500	78	1366	1148	117	1951	1828
1	95	NA	40	778	516	79	1381	1166	118	1965	1845
2	119	NA	41	794	532	80	1396	1183	119	1980	1863
3	141	NA	42	810	548	81	1412	1200	120	1995	1881
4	162	NA	43	826	564	82	1427	1217	121	2010	1899
5	183	NA	44	842	580	83	1442	1234	122	2025	1916
6	202	NA	45	858	596	84	1457	1252	123	2039	1934
7	222	NA	46	873	612	85	1472	1269	124	2054	1952
8	241	NA	47	889	629	86	1487	1286	125	2069	1969
9	259	NA	48	905	645	87	1502	1303	126	2084	1987
10	278	76	49	920	661	88	1517	1321	127	2099	2005
11	296	88	50	936	678	89	1532	1338	128	2113	2023
12	314	100	51	952	694	90	1547	1355	129	2128	2040
13	332	113	52	967	711	91	1562	1373	130	2143	2058
14	349	126	53	983	727	92	1577	1390	131	2158	2076
15	367	140	54	998	744	93	1592	1407	132	2172	2094
16	384	153	55	1014	760	94	1607	1425	133	2187	2111
17	401	167	56	1029	777	95	1623	1442	134	2202	2129
18	418	181	57	1045	793	96	1637	1459	135	2217	2147
19	435	195	58	1060	810	97	1652	1477	136	2231	2165
20	452	209	59	1076	827	98	1667	1494	137	2246	2183
21	469	224	60	1091	844	99	1682	1512	138	2261	2201
22	486	238	61	1106	860	100	1697	1529	139	2275	2218
23	503	253	62	1122	877	101	1712	1547	140	2290	2236
24	519	268	63	1137	894	102	1727	1564	141	2305	2254
25	536	283	64	1153	911	103	1742	1582	142	2320	2272
26	552	298	65	1168	928	104	1757	1599	143	2334	2290
27	569	313	66	1183	944	105	1772	1617	144	2349	2308
28	585	328	67	1199	961	106	1787	1634	145	2364	2326
29	602	343	68	1214	978	107	1802	1652	146	2378	2344
30	618	359	69	1229	995	108	1817	1669	147	2393	2361
31	634	374	70	1244	1012	109	1832	1687	148	2408	2379
32	650	389	71	1260	1029	110	1847	1704	149	2422	2397
33	667	405	72	1275	1046	111	1861	1722	150	2437	2415
34	683	421	73	1290	1063	112	1876	1740	151	2452	2433
35	699	436	74	1305	1080	113	1891	1757	152	2466	2451
36	715	452	75	1321	1097	114	1906	1775	153*)	NA	2469
37	731	468	76	1336	1114	115	1921	1793			
38	747	484	77	1351	1131	116	1936	1810	*) no	te 2 in F	1.2.5

NOTE 1: The first column is the number of errors (ne = number of NACK + statDTX)

NOTE 2: The second column is the number of samples for the pass limit (ns_p , ns=Number of Samples= number of NACK + statDTX + ACK)

NOTE 3: The third column is the number of samples for the fail limit (ns_f)

H.2.5 Pass fail decision rules

The pass fail decision rules apply for a single test, comprising one component in the test vector. The overall Pass /Fail conditions are defined in clause H.2.6and H.2A.6

Having observed 0 errors, pass the test at 67+ samples, otherwise continue

Having observed 1 error, pass the test at 95+ otherwise continue

Having observed 2 errors, pass the test at 119+ samples, fail the test at 2- samples, otherwise continue

Etc. etc.

Having observed 151 errors, pass the test at 2452+ samples, fail the test at 2433- samples, otherwise continue

Having observed 152 errors, pass the test at 2466+ samples, fail the test at 2451- samples.

Where x+ means: x or more, x- means x or less

NOTE 1: an ideal DUT passes after 67 samples. The maximum test time is 2466 samples.

NOTE 2: It is allowed to deviate from the early decision concept by postponing the decision (pass/fail or continue). Postponing the decision to or beyond the end of Table H.2.4-1 requires a pass fail decision against the test limit: pass the DUT for ER<0.0618, otherwise fail.

Annex I:Void

Annex J (normative): Test applicability per permitted test method

This annex describes, per test requirement, the permitted test methodologies as a function of DUT antenna configuration.

Table J-1: Test case applicability per permitted test method

Clause	No DUT antenna configuration declaration	DUT antenna configuration declaration					
		Configuration 1	Configuration 2	Configuration 3			
		(one antenna panel with D ≤	(More than one antenna	(Any phase			
		5 cm active at any one time)	panel D ≤ 5 cm without	coherent			
			phase coherency between	antenna panel of			
			panels active at any one time)	any size)			
6.5.1 Occupied bandwidth	IFF	DFF, DFF simplification, IFF, NFTF	DFF, DFF simplification, IFF, NFTF	IFF			
6.5.2.1	IFF	DFF, DFF simplification, IFF,	DFF, DFF simplification, IFF,	IFF			
Spectrum		NFTF	NFTF				
Emission Mask							
6.5.2.3	IFF	DFF, DFF simplification, IFF,	DFF, DFF simplification, IFF,	IFF			
Adjacent		NFTF	NFTF				
leakage ratio							
7.5 Adjacent	IFF	DFF, DFF simplification, IFF,	DFF, DFF simplification, IFF,	IFF			
Channel		NFTF	NFTF				
Selectivity							
7.6.2 In-band	IFF	DFF, DFF simplification, IFF,	DFF, DFF simplification, IFF,	IFF			
Blocking		NFTF	NFTF				
NOTE: D = DUT radiating aperture declared by UE vendor.							

Annex K (normative): EIRP, TRP, and EIS measurement procedures

Editor's Note: The measurement procedures are applicable only for single-carrier test cases

Annex K defines the EIRP, TRP, and EIS measurement procedures which includes Tx and Rx beam peak direction search, spherical coverage procedures and TRP procedures for the permitted testing methodologies defined in [5].

K.1 Direct far field (DFF)

K.1.1 TX beam peak direction search

This Tx beam peak search procedure applies to DUTs with and without beam correspondence. The TX beam peak direction is found with a 3D EIRP scan (separately for each orthogonal downlink polarization). The TX beam peak direction search grid points for this single grid approach are defined in Annex M.2.1. Alternatively, a coarse and fine grid approach could be used according to the definition in Annex M.2.2.

The measurement procedure includes the following steps:

- 1) Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2) Position the DUT in DUT Orientation 1 from Tables J.2-1 through J.2-3 [3].
- 3) Connect the SS (System Simulator) with the DUT through the measurement antenna with $Pol_{Link}=\theta$ polarization to form the TX beam towards the measurement antenna. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE TX beam selection to complete.
- 4) For beam correspondence, DUT refines its TX beam toward that direction depending on DUT's beam correspondence capability which shall match OEM declaration: if DUT's beam correspondence capability is [bit-1], then DUT autonomously chooses the corresponding TX beam for PUSCH transmission using downlink reference signals to transmit in the direction of the incoming DL signal, which is based on beam correspondence without relying on UL beam sweeping; if DUT's beam correspondence capability is [bit-0], then DUT chooses the TX beam for PUSCH transmission which is based on beam correspondence with relying on both DL measurements on downlink reference signals and network-assisted uplink beam sweeping (NOTE 2).
- 5) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 6) Measure the mean power $P_{meas}(Pol_{Meas}=\theta, Pol_{Link}=\theta)$ of the modulated signal arriving at the power measurement equipment (such as a spectrum analyser, power meter, or gNB emulator).
- 7) Calculate EIRP ($Pol_{Meas}=\theta$, $Pol_{Link}=\theta$) by adding the composite loss of the entire transmission path for utilized signal path, $L_{EIRP,\theta}$, and frequency to the measured power $P_{meas}(Pol_{Meas}=\theta, Pol_{Link}=\theta)$.
- 8) Measure the mean power P_{meas} ($Pol_{Meas} = \phi$, $Pol_{Link} = \theta$) of the modulated signal arriving at the power measurement equipment.
- 9) Calculate EIRP ($Pol_{Meas} = \phi$, $Pol_{Link} = \theta$) by adding the composite losses of the entire transmission path for utilized signal path, $L_{EIRP,\phi}$, and frequency to the measured power P_{meas} ($Pol_{Meas} = \phi$, $Pol_{Link} = \theta$).
- 10) Calculate total EIRP(Pol_{Link}= θ) = EIRP(Pol_{Meas}= θ , Pol_{Link}= θ) + EIRP(Pol_{Meas}= ϕ , Pol_{Link}= θ).
- 11) SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.3.

- 12)Connect the SS (System Simulator) with the DUT through the measurement antenna with Pol_{Link}=φ polarization to form the TX beam towards the measurement antenna. Allow at least BEAM_SELECT_WAIT_TIME for the UE TX beam selection to complete.
- 13) Advance to the next grid point and repeat steps 3 through 12 until measurements within zenith range 0°≤θ≤90° have been completed
- 14) After the measurements within zenith range 0°≤θ≤90° have been completed and
 - a) if the re-positioning concept is applied to the TX test cases, position the device in DUT Orientation 2 (either Options 1 or 2) from Tables J.2-1 through J.2-3 [3] for the Alignment Option selected in Step 1. For the TX beam peak search in the second hemisphere, perform steps 3 through 13 for the range of zenith angles 90°<θ≤0°.
 - b) if the re-positioning concept is not applied to the TX test cases, continue steps 3 through 13 for the range of zenith angles $90^{\circ} < \theta \le 180^{\circ}$

For beam correspondence capability [bit-0] DUT, the above step 3) can be further clarified as following sub-steps:

- 3.1) DUT uses downlink reference signals to select proper RX beam and uses autonomous beam correspondence to select the TX beam.
- 3.2) SS configures M=8 SRS resources to DUT, with the field *spatialRelationInfo* omitted. In case DUT supports less than 8 SRS resources, SS configures the number of SRS resources according to the maximum number of SRS resources indicated by UE capability signalling.
- 3.3) Based on the TX beam autonomously selected by DUT, DUT chooses TX beams to transmit SRS-resources configured by SS.
- 3.4) Based on measurement of the received SRS, SS chooses the best SRS beam which is indicated in the field of SRS Resource Indicator (SRI) in the scheduling grant for PUSCH.
- 3.5) DUT transmits PUSCH corresponding to the SRS resource indicated by the SRI.

The TX beam peak direction is where the maximum total component of $EIRP(Pol_{Link}=\theta)$ or $EIRP(Pol_{Link}=\theta)$ is found.

- NOTE 1: The default value for BEAM_SELECT_WAIT_TIME = 3 sec for all applicable Tx and Rx test cases. The BEAM_SELECT_WAIT_TIME represents a default minimum wait time period required to complete beam selection process at a single position before start of measurement. For a particular EUT, if it is known/determined that a lower wait time than default value is enough to complete beam selection process, then such a lower value may be used by the Test system to achieve test time optimization.
- NOTE 2: This is used for beam correspondence.

K.1.2 RX beam peak direction search

The RX beam peak direction is found with a 3D EIS scan (separately for each orthogonal downlink polarization). The RX beam peak direction search grid points for this single grid approach are defined in Annex M.2.1. Alternatively, a coarse and fine grid approach could be used according to the definition in Annex M.2.4. The measurement procedure includes the following steps:

- 1) Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2) Position the DUT in DUT Orientation 1 from Tables J.2-1 through J.2-3 [3].
- 3) Connect the SS (System Simulator) with the DUT through the measurement antenna with Pol_{Link}=θ polarization to form the RX beam towards the measurement antenna. Allow at least BEAM_SELECT_WAIT_TIME NOTE 1) for the UE RX beam selection to complete.

- 4) Determine EIS($Pol_{Meas}=\theta$, $Pol_{Link}=\theta$) for θ -polarization, i.e., by sweeping the power level for the θ -polarization, at which the throughput exceeds the requirements for the specified reference measurement channel. The downlink power step size shall be no more than 0.2 dB when the RF power level is near the sensitivity level.
- 5) Connect the SS (System Simulator) with the DUT through the measurement antenna with Pol_{Link}=φ polarization to form the RX beam towards the measurement antenna. Allow at least BEAM_SELECT_WAIT_TIME for the UE RX beam selection to complete.
- 6) Determine EIS(Pol_{Meas}= ϕ , Pol_{Link}= ϕ) for ϕ -polarization, i.e., by sweeping the power level for the ϕ -polarization, at which the throughput exceeds the requirements for the specified reference measurement channel. The downlink power step size shall be no more than 0.2 dB when the RF power level is near the sensitivity level.
- 7) Advance to the next grid point and repeat steps 3 through 6 until measurements within zenith range 0°≤θ≤90° have been completed
- 8) After the measurements within zenith range $0^{\circ} \le \theta \le 90^{\circ}$ have been completed and
 - a) if the re-positioning concept is applied to the RX test cases, position the device in DUT Orientation 2 (either Options 1 or 2) from Tables J.2-1 through J.2-3 [3] for the Alignment Option selected in Step 1. For the RX beam peak search in the second hemisphere, perform steps 3 through 6 for the range of zenith angles $90^{\circ} < \theta \le 0^{\circ}$.
 - b) If the re-positioning concept is not applied to the RX test cases, continue steps 3 through 6 for the range of zenith angles $90^{\circ} < \theta \le 180^{\circ}$
- 9) Calculate the resulting "averaged EIS" as:

averaged EIS =
$$2*[1/EIS(Pol_{Meas}=\theta, Pol_{Link}=\theta) + 1/EIS(Pol_{Meas}=\phi, Pol_{Link}=\phi)]^{-1}$$

The RX beam peak direction is where the minimum "averaged EIS" is found.

K.1.3 Peak EIRP measurement procedure

This section describes EIRP measurement procedure for a chosen $Pol_{\text{\tiny Link}}$ of θ or φ

The TX beam peak direction is where the maximum total component of EIRP is found, including the respective polarization of the measurement antenna used to form the TX beam, according to K.1.1.

The measurement procedure includes the following steps:

- 1) Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2) If the re-positioning concept is not applied to the TX test cases, position the device in DUT Orientation 1. If the re-positioning concept is applied to the TX test cases,
 - a) position the device in DUT Orientation 1 from Tables J.2-1 through J.2-3 [3] if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1
 - b) position the device in DUT Orientation 2 (either Options 1 or 2) from Tables J.2-1 through J.2-3 [3] if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1.
- 3) Connect the SS (System Simulator) with the DUT through the measurement antenna with polarization reference Pol_{Link} to form the TX beam towards the TX beam peak direction and respective polarization. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE TX beam selection to complete.
- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in TS 38.508-1 [10] clause 4.9.2 using condition Tx only.
- 5) Measure the mean power $P_{meas}(Pol_{Meas}=\theta, Pol_{Link})$ of the modulated signal arriving at the power measurement equipment (such as a spectrum analyser, power meter, or gNB emulator).

- 6) Calculate EIRP(Pol_{Meas}= θ , Pol_{Link}) by adding the composite loss of the entire transmission path for utilized signal path, L_{EIRP, θ}, and frequency to the measured power P_{meas}(Pol_{Meas}= θ , Pol_{Link}).
- 7) Measure the mean power P_{meas} ($Pol_{Meas} = \phi$, Pol_{Link}) of the modulated signal arriving at the power measurement equipment.
- 8) Calculate EIRP(Pol_{Meas}= ϕ , Pol_{Link}) by adding the composite losses of the entire transmission path for utilized signal path, $L_{EIRP,\omega}$ and frequency to the measured power P_{meas} (Pol_{Meas}= ϕ , Pol_{Link})
- 9) Calculate the resulting "total EIRP(Pol_{Link})", for the chosen Pol_{Link} of θ or ϕ as follows:

```
total EIRP (Pol_{Link}) = EIRP(Pol_{Meas} = \theta, Pol_{Link}) + EIRP(Pol_{Meas} = \phi, Pol_{Link})
```

K.1.4 Peak EIS measurement procedure

This section describes EIS measurement procedure. The RX beam peak direction is where the minimum EIS is found according to K.1.2.

The measurement procedure includes the following steps:

- 1) Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2) If the re-positioning concept is not applied to the RX test cases, position the device in DUT Orientation 1. If the re-positioning concept is applied to the RX test cases
 - a) position the device in DUT Orientation 1 from Tables J.2-1 through J.2-3 [3] if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1
 - b) position the device in DUT Orientation 2 (either Options 1 or 2) from Tables J.2-1 through J.2-3 [3] if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1.
- 3) Connect the SS (System Simulator) with the DUT through the measurement antenna with Pol_{Link}=θ polarization to form the RX beam towards the RX beam peak direction. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE RX beam selection to complete.
- 4) Determine EIS($Pol_{Meas}=\theta$, $Pol_{Link}=\theta$) for θ -polarization, i.e., the power level for the θ -polarization at which the throughput exceeds the requirements for the specified reference measurement channel
- 5) Connect the SS (System Simulator) with the DUT through the measurement antenna with Pol_{Link}=φ polarization to form the RX beam towards the RX beam peak direction. Allow at least BEAM_SELECT_WAIT_TIME for the UE RX beam selection to complete.
- 6) Determine EIS(Pol_{Meas}= ϕ , Pol_{Link}= ϕ) for ϕ -polarization, i.e., the power level for the ϕ -polarization at which the throughput exceeds the requirements for the specified reference measurement channel
- 7) Calculate the resulting averaged EIS as:

$$EIS = 2*[1/EIS(Pol_{Mes}=\theta,\ Pol_{Link}=\theta)\ + 1/EIS(Pol_{Meas}=\phi,\ Pol_{Link}=\phi)]^{-1}$$

K.1.5 EIRP spherical coverage

The EIRP results from the TX beam peak search procedures of K.1.1, using the minimum number of grid points as described in Annex M.2.1 can be re-used for EIRP spherical coverage.

In case a coarse beam peak grid is used for TX beam peak search, using the minimum number of grid points defined in Annex M.3.1.1, the EIRP results can be re-used for EIRP spherical coverage.

In case a separate test is performed for EIRP spherical coverage, the procedure as per K.1.3 should be followed using the minimum number of grid points defined in Annex M.3.1.1 for spherical coverage.

The EIRP_{target-CDF} is then obtained from the Cumulative Distribution Function (CDF) computed using maximum(EIRP(Pol_{Link}= ϕ), EIRP(Pol_{Link}= ϕ)) for all grid points. When using constant step size measurement grids, a theta-dependent correction shall be applied, i.e., the PDF probability contribution for each measurement point is scaled by $\sin(\theta)$.

K.1.6 EIS spherical coverage

The EIS results from the RX beam peak search procedures of K.1.2, using the minimum number of grid points as described in Annex M.2.2 can be re-used for EIS spherical coverage.

In case a coarse beam peak grid is used for RX beam peak search with an EIS metric, using the minimum number of grid points defined in Annex M.3.2.1, the EIS results can be re-used for EIS spherical coverage.

In case a separate test is performed for spherical coverage, the procedure K.1.4 should be followed using the minimum number of grid points defined in Annex M.3.2.1 for spherical coverage.

The EIS_{target-CDF} is then obtained from the Cumulative Distribution Function (CDF) computed using averaged EIS for all grid points. When using constant step size measurement grids, a theta-dependent correction shall be applied, i.e., the PDF probability contribution for each measurement point is scaled by $sin(\theta)$.

K.1.7 TRP measurement procedure

The minimum number of measurement points for TRP measurement grid is outlined in Annex M.4.

The measurement procedure includes the following steps:

- 1) Select any of the three Alignment Options (1, 2, or 3) from Tables J.2-1 through J.2-3 [3] to mount the DUT inside the QZ.
- 2) If the re-positioning concept is not applied to the TX test cases, position the device in DUT Orientation 1. If the re-positioning concept is applied to the TX test cases
 - a) position the device in DUT Orientation 1 from Tables J.2-1 through J.2-3 [3] if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1
 - b) Position de device in DUT Orientation 2 (either Options 1 or 2) from Tables J.2-1 through J.2-3 [3] if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1.
- 3) Connect the SS with the DUT through the downlink antenna with desired polarization reference Pol_{Link} to form the TX beam towards the desired TX beam direction and respective polarization.
- 4) Lock the beam toward that direction and polarization for the entire duration of the test. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE.
- 5) For each measurement point, measure $P_{meas}(Pol_{Meas}=\theta,\ Pol_{Link})$ and $P_{meas}(Pol_{Meas}=\phi,\ Pol_{Link})$. The angle between the measurement antenna and the DUT (θ_{Meas} , ϕ_{Meas}) is achieved by rotating the measurement antenna and the DUT (based on system architecture).
- 6) Calculate EIRP(Pol_{Meas}= θ , Pol_{Link}) and EIRP(Pol_{Meas}= ϕ , Pol_{Link}) by adding the composite loss of the entire transmission path for utilized signal paths, $L_{EIRP,\phi}$, $L_{EIRP,\phi}$ and frequency to the respective measured powers P_{meas} .
- 7) The TRP value for the uniform measurement grid is calculated using the TRP integration approaches outlined in Annex M.4.2. The TRP value for the constant density grid is calculated using the TRP integration formula in Annex M.4.3.

K.1.8 Blocking measurement procedure

The RX beam peak direction is where the minimum EIS is found according to K.1.2.

The measurement procedure includes the following steps:

- 1) Select any of the three Alignment Options (1, 2, or 3) from Tables C.2-1 through C.2-3 to mount the DUT inside the QZ.
- 2) If the re-positioning concept is not applied to the RX test cases, position the device in DUT Orientation 1. If the re-positioning concept is applied to the RX test cases
 - a) position the device in DUT Orientation 1 from Tables J.2-1 through J.2-3 [3] if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1
 - b) position the device in DUT Orientation 2 (either Options 1 or 2) from Tables J.2-1 through J.2-3 [3] if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1.
- 3) Establish a connection between the DUT and the SS with the downlink signal applied to the θ -polarization of the measurement antenna
- 4) Position the UE so that the beam is formed towards the measurement antenna in the RX beam peak direction.
- 5) Apply a signal with the specified reference measurement channel on the θ -polarization, setting the power level of the signal 3dB below the EIS level stated in the requirement.
- 6) Apply the blocking signal with the same polarization and coming from the same direction as the downlink signal. Set the power level of the blocking signal 3dB below the level stated in the requirement.
- 7) Measure the throughput of the downlink signal on the θ -polarization.
- 8) Switch the downlink and blocking signal to the ϕ -polarization of the measurement antenna.
- 9) Repeat steps 3 to 7 on the φ -polarization.
- 10) Compare the results for both the θ -polarization and ϕ -polarization against the requirement. If both results meet the requirements, pass the UE.

K.1.9 Beam Correspondence tolerance procedure

Editor's Note: The side conditions for downlink reference signals SSB and CSI-RS in beam correspondence tolerance test are FFS.

This beam correspondence tolerance procedure applies to the DUT that has beam correspondence capability as [bit-0] (which shall match OEM declaration), such that DUT relies on uplink beam sweeping to fulfil the minimum peak EIRP and spherical coverage requirements.

The measurement procedure includes the following steps for each of the points in the grid:

- 1) Follow the test procedures specified in subclause K.1.5 with uplink beam sweeping disabled, obtain total $EIRP_1(Pol_{Link}=\theta)$ and total $EIRP_1(Pol_{Link}=\phi)$. $EIRP_1$ is calculated by $EIRP_1$ = maximum($EIRP_1(Pol_{Link}=\theta)$), $EIRP_1(Pol_{Link}=\phi)$).
- 2) Follow the test procedures specified in subclause K.1.5, with uplink beam sweeping enabled (SS does not configure the *spatialRelationInfo* to DUT) during DUT TX beam refinement, obtain total EIRP₂(Pol_{Link}= θ) and total EIRP₂(Pol_{Link}= θ). EIRP₂ is calculated by EIRP₂ = maximum(EIRP₂(Pol_{Link}= θ), EIRP₂(Pol_{Link}= θ)).
- 3) Calculate the $\Delta EIRP_{BC} = EIRP_2 EIRP_1$.

The $\Delta EIRP_{target-CDF}$ is then obtained from the Cumulative Distribution Function (CDF) computed using $\Delta EIRP_{BC}$ for each of all top N^{th} percentile of the $EIRP_2$ measurement points in the grid. When using constant step size measurement grids, a theta-dependent correction shall be applied, i.e., the PDF probability contribution for each measurement point is scaled by $sin(\theta)$.

NOTE:

 $\Delta EIRP_{BC}$ is introduced for beam correspondence tolerance based on two EIRP measurements (EIRP₁ and EIRP₂). EIRP₁ is the measured total EIRP based on the beam which DUT chooses autonomously (corresponding beam) to transmit in the direction of the incoming DL signal, which is based on beam correspondence without relying on UL beam sweeping. EIRP₂ is the measured total EIRP based on the beam yielding highest EIRP in a given direction, which is based on beam correspondence with relying on UL beam sweeping. $\Delta EIRP_{BC}$ shall be calculated over the link angles spanning a subset of the spherical coverage grid points which are corresponding to the top Nth percentile of the EIRP₂ measurement points in the grid, where the value of N is according to EIRP spherical coverage requirement of DUT's power class defined in TS 38.101-2 [3] clause 6.2.1, e.g., N=50 for power class 3 DUT.

K.2 Direct far field (DFF) simplification

K.2.1 TX beam peak direction search

Same measurement procedure as in clause K.1.1.

K.2.2 RX beam peak direction search

Same measurement procedure as in clause K.1.2.

K.2.3 Peak EIRP measurement procedure

Same measurement procedure as in clause K.1.3.

K.2.4 Peak EIS measurement procedure

Same measurement procedure as in clause K.1.4.

K.2.5 EIRP spherical coverage

Same measurement procedure as in clause K.1.5.

K.2.6 EIS spherical coverage

Same measurement procedure as in clause K.1.6.

K.2.7 TRP measurement procedure

Same measurement procedure as in clause K.1.7.

K.2.8 Blocking measurement procedure

Same measurement procedure as in clause K.1.8.

K.3 Indirect far field (IFF)

K.3.1 TX beam peak direction search

Same measurement procedure as in clause K.1.1.

K.3.2 RX beam peak direction search

Same measurement procedure as in clause K.1.2.

K.3.3 Peak EIRP measurement procedure

Same measurement procedure as in clause K.1.3.

K.3.4 Peak EIS measurement procedure

Same measurement procedure as in clause K.1.4.

K.3.5 EIRP spherical coverage

Same measurement procedure as in clause K.1.5.

K.3.6 EIS spherical coverage

Same measurement procedure as in clause K.1.6.

K.3.7 TRP measurement procedure

Same measurement procedure as in clause K.1.7.

K.3.8 Blocking measurement procedure

Same measurement procedure as in clause K.1.8.

K.4 Near field to far field transform (NFTF)

K.4.1 TX beam peak direction search

The TX beam peak direction is found with a 3D EIRP scan (separately for each orthogonal polarization) with a grid that is TBD. The TX beam peak direction is where the maximum total component of EIRP is found.

FFS

K.4.2 RX beam peak direction search

Not applicable for NFTF method.

K.4.3 Peak EIRP measurement procedure

- 1) Connect the SS (System Simulator) to the DUT through the measurement antenna with polarization reference Pol_{Meas} to form the TX beam towards the previously determined TX beam peak direction and respective polarization.
- 2) Lock the beam toward that direction for the entire duration of the test.
- 3) Perform a 3D pattern measurement (amplitude and phase) with the DUT sending a modulated signal.

- 4) Determine the EIRP for both polarization towards the TX beam peak direction by using a Near Field to Far Field transform.
- 5) Calculate total EIRP = EIRP $_{\theta}$ + EIRP $_{\phi}$

K.4.4 Peak EIS measurement procedure

Not applicable for NFTF method.

K.4.5 EIRP spherical coverage

Same measurement procedure as in clause K.1.5.

K.4.6 EIS spherical coverage

Not applicable for NFTF method.

K.4.7 TRP measurement procedure

The minimum number of measurement points for TRP measurement grid is outlined in Annex M.4.

The measurement procedure includes the following steps:

- 1) Connect the SS to the DUT through the measurement antenna with polarization reference Pol_{Meas} to form the TX beam towards the previously determined TX beam peak direction and respective polarization.
- 2) Lock the beam toward that direction for the entire duration of the test.
- 3) Perform a 3D pattern measurement (amplitude and phase) with the DUT sending a modulated signal.
- 4) For each measurement point on the grid, determine the EIRP for both polarization by using a Near Field to Far Field transform.
- 5) The TRP value for the constant step size measurement grids are calculated using the TRP integration approaches outlined in Annex M.4.2. The TRP value for the constant density grid is calculated using the TRP integration formula in Annex M.4.3.

K.4.8 Blocking measurement procedure

Not applicable for NFTF method.

Annex L (normative): Void

Annex M:(normative) Measurement grids

This appendix describes the assumptions and definition of the minimum number of measurement grid points for various grid types. Further details can be found in [5].

A total of three measurement grids are considered:

- Beam Peak Search Grid: using this grid, the TX and RX beam peak direction will be determined. 3D EIRP scans are used to determine the TX beam peak direction and 3D Throughput/RSRP/EIS scans for RX beam peak directions.
- Spherical Coverage Grid: using this grid, the CDF of the EIRP/EIS distribution in 3D is calculated to determine the spherical coverage performance.
- TRP Measurement Grid: using this grid, the total power radiated by the DUT in the TX beam peak direction is determined by integrating the EIRP measurements taken on the sampling grid.

M.1 Grid Types

Two different measurement grid types are considered:

- The constant step size grid type has the azimuth and elevation angles uniformly distributed as in the examples illustrated in Figures M.1-1 in 2D and M.1-2 in 3D.

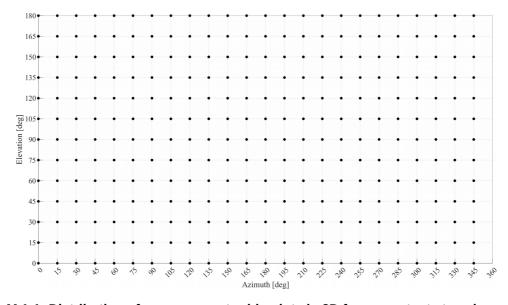


Figure M.1-1: Distribution of measurement grid points in 2D for a constant step size grid with $\Delta\theta = \Delta\phi = 15^{\circ}$ (266 unique measurement points)

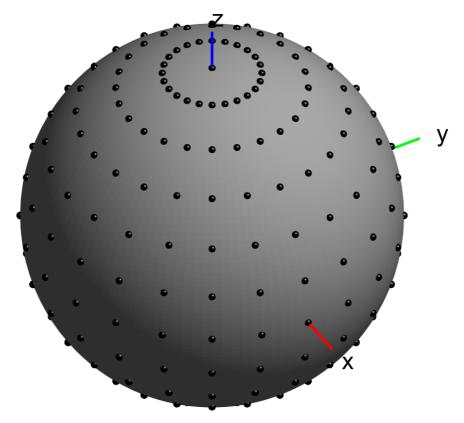


Figure M.1-2: Distribution of measurement grid points in 3D for a constant step size grid with $\Delta\theta = \Delta\phi = 15^{\circ}$ (266 unique measurement points)

- Constant density grid types have measurement points that are evenly distributed on the surface of the sphere with a constant density as in the example illustrated in Figures M.1-3 in 2D and M.1-4 in 3D.

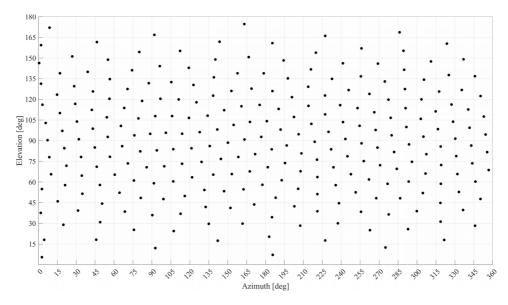


Figure M.1-3: Distribution of measurement grid points in 2D for a constant density grid with 266 unique measurement points

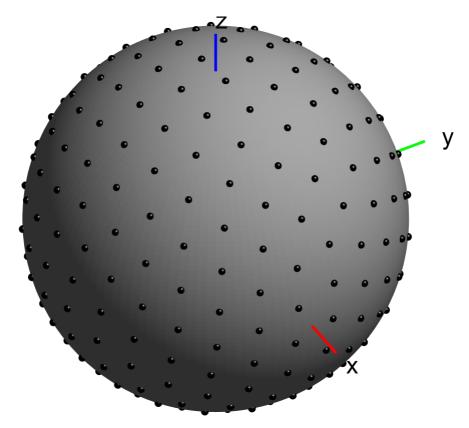


Figure M.1-4: Distribution of measurement grid points in 3D for a constant density grid type with 266 unique measurement points

M.2 Beam Peak Search Grid

Editor's note:

- Other implementations are not precluded as far as the respective analysis are presented and included in this TS

M.2.1 UE Power classes

M.2.1.1 Power class 1 devices

In order to make a reasonable trade-off with measurement uncertainties, it is recommended to use for beam peak search the following measurement grids leading to a systematic error of "Beam Peak Search" of 0.7 dB:

- Constant density grid (using the charged particle implementation) with at least 3000 grid points.
- Constant step size grid with at least 4902 grid points, corresponding to an angular step size of 3.6° .

For better measurement uncertainties, finer measurement grids as shown in Table M.2.1.1-1 may be used. Choice of grids among these 2 types of grids is up to test system implementation.

Table M.2.1.1-1: Minimum number of unique grid points for sample systematic errors

Systematic Error of 'Beam Peak Search': Offset from Beam Peak at which CDF is 5%	Minimum Number of Unique Grid Points for Constant Step Size Grid	Minimum Number of Unique Grid Points for Constant Density Grid
0.3dB	10226 (2.5° step size)	7000
0.4dB	N/A	5000
0.5dB	7082 (3°step size)	4500
0.6dB	N/A	3500
0.7dB	4902 (3.6° step size)	3000

M.2.1.2 Power class 2 devices

TBD

M.2.1.3 Power class 3 devices

In order to make a reasonable trade-off between measurement uncertainties, at least 800(constant density grid with charged particle implementation) or 1106 (constant step size grid) measurement grid points shall be used for beam peak search procedures. For better measurement uncertainties, finer measurement grids as shown below may be used. Choice of grids among these 2 types of grids is up to test system implementation.

Table M.2.1.3-1: Minimum number of unique grid points for sample systematic errors (non-sparse antenna arrays)

Systematic Error of 'Beam Peak Search': Offset from Beam Peak at which CDF is 5%	Minimum Number of Unique Grid Points for Constant Step Size Grid	Minimum Number of Unique Grid Points for Constant Density Grid (charged particle implementation)
0.2dB	2522 (5° step size)	2000
0.3dB	1742 (6° step size)	1500
0.4dB	N/A	1000
0.5dB	1106 (7.5°step size)	800

M.2.1.4 Power class 4 devices

TBD

M.2.2 Coarse and fine measurement grids

The baseline beam peak search is based on a single and fine beam peak search grid to determine the TX/RX beam peak of the DUT in any given direction. This means that even in sectors where poor EIRP/EIS performance is observed, a very fine grid is used to search for the TX/RX beam peak.

An optimized approach, based on an initial coarse search followed by a subsequent fine search could reduce the number of beam peak search grid points significantly. The basis for this approach is to use a coarse grid with fewer number of points than the ones described in section M.2.1 in the first stage to identify candidate regions that contain the global beam peak and search for the global beam peak with the fine grid in the second stage with a minimum number of points described in section M.2.1.

As an example, Figure M.2.2-1 illustrates the coarse and fine measurement grid approach applied to TX beam search; while this illustration is for EIRP, it can easily be extended to RX beam peak search using EIS or throughput metrics For simplification purposes, 2D coarse and fine searches are illustrated but the concept can be extended to 3D easily. The UE is assumed to form a total of six beams in the 2D plane as illustrated on the left of Figure M.2.2-1. In the centre of Figure M.2.2-1, the 36 coarse beam peak search grid points in the 2D plane are illustrated. On the right, the grey circles on the respective antenna patterns illustrate the measured EIRP values towards each coarse grid point direction based on the respective beam steering directions. This illustration shows that the EIRP beam peak of the coarse search,

 $EIRP_{CSBP}$, is found to be the peak of the orange beam while the global TX beam peak (red beam) was not identified due to the coarse sampling of the grid points.

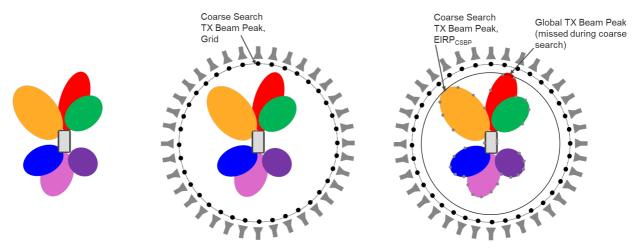


Figure M.2.2-1: Illustration of the Coarse Search Approach for TX Beam Peak Search. Left: Antenna Pattern assumptions in 2D, Centre: Coarse beam peak search grid points/discrete antenna measurement positions, Right: TX beam EIRP measurements per grid point

The proposed fine search approach is illustrated further in Figure M.2.2-2. A fine search region starting from the beam peak identified in the coarse search, EIRP_{CSBP}, over a range of Δ_{FS} is used to identify the regions that need to be investigated more closely with the fine search algorithm. The fine search range Δ_{FS} is a function of the angular spacing of the coarse beam peak search grid as well as the beam width of the reference antenna pattern considered for smartphone UEs.

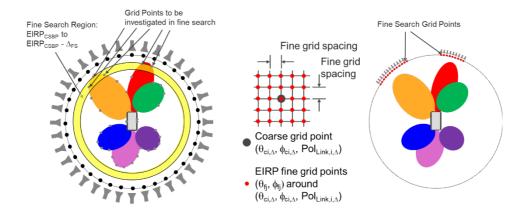


Figure M.2.2-2: Illustration of the fine beam peak search grid. Left: identify the measurement grid points that yielded EIRP values within the fine search region, right: placement of fine beam peak search grid points

Figure M.2.2-3 illustrates coarse and fine grids for constant step size measurement grids while Figure M.2.2-4 illustrates the same for constant density grid.

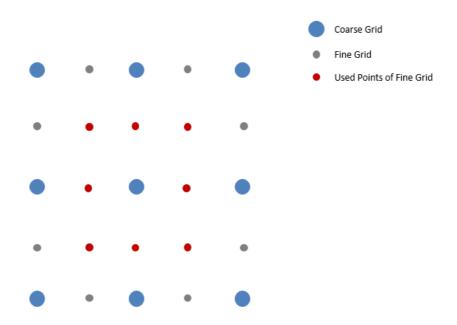


Figure M.2.2-3: Illustration: Coarse & Fine Constant Step Size Grids

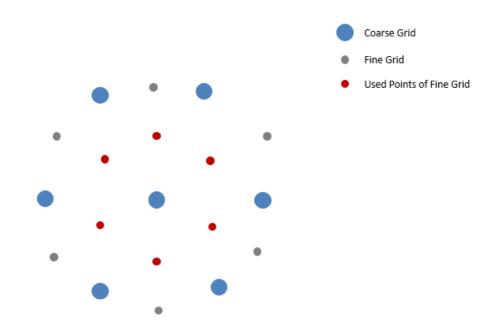


Figure M.2.2-4: Illustration: Coarse & Fine Constant Density Grids

The metric using a coarse & fine grid approach for the TX beam peak search is EIRP for both grids. For RX beam peak search either EIS or Throughput could be used for coarse grids while only EIS for fine grid,

M.3 Spherical Coverage Grid

Editor's note: Other implementations are not precluded as far as the respective analysis are presented and included in this TS

M.3.1 EIRP spherical coverage

M.3.1.1 UE Power classes

M.3.1.1.1 Power class 1 devices

In order to make a reasonable trade-off with measurement uncertainties, it is recommended to use the following recommendation in terms of min. number of grid points, standard deviation, and mean error for spherical coverage grids:

- constant density grid (using the charged particle implementation) with at least 200 grid points: standard deviation (MU element 'Influence of spherical coverage grid') of 0.05dB and 0.01dB Mean Error
- constant step size grid with at least 266 grid points: standard deviation (MU element 'Influence of spherical coverage grid') of 0.05dB and 0.01dB Mean Error

For better measurement uncertainties, finer measurement grids as shown in Tables M.3.1.1.1-1 and M.3.1.1.1-2 may be used. Choice of grids among these 2 types of grids is up to test system implementation.

There is no need to have the Tx beam peak placed on a measurement grid point.

For constant step size measurement grids, the CDF analyses require the PDFs to be scaled by sin(theta).

Table M.3.1.1.1-1: Statistical results of EIRP_{85%CDF} for the 12x12 antenna array for constant step size measurement grids and the beam peak oriented in completely random orientations.

Step Size [°]	Number of unique grid points	Std. Dev [dB]	Mean Error [dB]
4.5	3122	0.02	0.00
10	614	0.03	0.00
12	422	0.04	0.01
15	266	0.05	0.01
20	146	0.07	0.02
22.5	114	0.09	0.04
30	62	0.11	0.06
36	42	0.15	0.12
45	26	0.19	0.19

Table M.3.1.1.1-2: Statistical results of EIRP_{50%CDF} for the 12x12 antenna array for constant density measurement grids and the beam peak oriented in completely random orientations.

Number of unique grid points	Std. Dev [dB]	Mean Error [dB]
200	0.05	0.01
175	0.06	0.01
150	0.06	0.02
125	0.07	0.02
100	0.08	0.02
50	0.11	0.05
25	0.17	0.12
15	0.27	0.27

M.3.1.1.2 Power class 2 devices

TBD

M.3.1.1.3 Power class 3 devices

In order to make a reasonable trade-off between measurement uncertainties, at least 200 (constant density grid with charged particle implementation) or 266 (constant step size grid) measurement grid points shall be used for EIRP spherical coverage procedure. For better measurement uncertainties, finer measurement grids as shown below may be used. Choice of grids among these 2 types of grids is up to test system implementation.

There is no need to have the Tx beam peak placed on a measurement grid point.

For constant step size measurement grids, the CDF analyses require the PDFs to be scaled by sin(theta).

Table M.3.1.1.3-1: Statistical results of EIRP50%CDF for the 8x2 antenna array for constant density measurement grids (with charged particle implementation) and the beam peak oriented in completely random orientations errors (non-sparse antenna arrays)

Number of unique grid points	STD [dB]	Mean Error [dB]
200	0.11	0.02
300	0.08	0.01
400	0.07	0.01
500	0.06	0.01

Table M.3.1.1.3-2: Statistical results of EIRP50%CDF for the 8x2 antenna array for constant step size measurement grids and the beam peak oriented in completely random orientations errors (non-sparse antenna arrays)

Step Size [°]	Number of unique grid points	STD [dB]	Mean Error [dB]
9	762	0.05	0.00
10	614	0.06	0.00
12	422	0.07	0.01
15	266	0.12	0.01

M.3.1.1.4 Power class 4 devices

TBD

M.3.2 EIS spherical coverage

M.3.2.1 UE Power classes

M.3.2.1.1 Power class 1 devices

In order to make a reasonable trade-off with measurement uncertainties, it is recommended to use the following recommendation in terms of min. number of grid points, standard deviation, and mean error for spherical coverage grids:

- constant density grid (using the charged particle implementation) with at least 200 grid points: standard deviation (MU element 'Influence of spherical coverage grid') of 0.05dB and 0.01dB Mean Error
- constant step size grid with at least 266 grid points: standard deviation (MU element 'Influence of spherical coverage grid') of 0.05dB and 0.01dB Mean Error

- the MU element 'Systematic error related to EIS spherical coverage' is the DL step size, i.e., 0.2dB.

Choice of grids among these 2 types of grids is up to test system implementation.

There is no need to have the Rx beam peak placed on a measurement grid point.

For constant step size measurement grids, the CCDF analyses require the PDFs to be scaled by sin(theta).

M.3.2.1.2 Power class 2 devices

TBD

M.3.2.1.3 Power class 3 devices

In order to make a reasonable trade-off between measurement uncertainties, at least 200 (constant density grid with charged particle implementation) or 266 (constant step size grid) measurement grid points shall be used for EIS spherical coverage procedure. For better measurement uncertainties, finer measurement grids as shown below may be used. Choice of grid(s) among these 2 types of grids is up to test system implementation.

There is no need to have the Rx beam peak placed on a measurement grid point.

For constant step size measurement grids, the CCDF analyses require the PDFs to be scaled by sin(theta).

Table M.3.2.1.3-1: Statistical results of EIS50%CDF for the 8x2 antenna array for constant step size measurement grids and the beam peak oriented in completely random orientations errors (non-sparse antenna arrays)

		Ste	Power Size: tesimal	Ste	Power Size: 1dB	Ste	Power o Size: 5dB	Ste	Power o Size: LdB
Step Size [°]	Number of unique grid points	STD [dB]	Mean Error [dB]	STD [dB]	Mean Error [dB]	STD [dB]	Mean Error [dB]	STD [dB]	Mean Error [dB]
6.0	1742	0.03	0.00	0.03	0.10	0.03	0.50	0.02	1.02
9.0	762	0.05	0.00	0.05	0.10	0.05	0.50	0.04	1.02
10.0	614	0.06	0.00	0.06	0.10	0.06	0.50	0.05	1.02
12.0	422	0.08	0.01	0.07	0.10	0.07	0.50	0.07	1.02
15.0	266	0.12	0.02	0.12	0.10	0.11	0.50	0.10	1.02

Table M.3.2.1.3-2: Statistical results of EIS50%CDF for the 8x2 antenna array for constant density measurement grids (with charged particle implementation) and the beam peak oriented in completely random orientations errors (non-sparse antenna arrays)

		ver Step Size: nitesimal		ower Step e: 0.1dB		ower Step e: 0.5dB	DL Pow	er Step Size: 1dB
Number of unique grid points	STD [dB]	Mean Error [dB]	STD [dB]	Mean Error [dB]	STD [dB]	Mean Error [dB]	STD [dB]	Mean Error [dB]
200	0.10	0.02	0.10	0.10	0.10	0.50	0.09	1.01
300	0.08	0.01	0.08	0.10	0.08	0.50	0.07	1.01
400	0.06	0.01	0.06	0.10	0.06	0.50	0.05	1.01
500	0.06	0.01	0.06	0.10	0.06	0.50	0.05	1.01

M.3.2.1.4 Power class 4 devices

TBD

M.4 TRP Measurement Grid

Editor's note: Other implementations are not precluded as far as the respective analysis are presented and included in this TS

M.4.1 UE Power Classes

M.4.1.1 Power class 1 devices

In order to make a reasonable trade-off between measurement uncertainties, at least the following number of points shall be included in the measurement grid for TRP measurements PC1 UEs based on the assumption that the standard deviation does not exceed 0.25dB. If the re-positioning concept is not applied to TRP test cases:

- 480 measurement grid points for constant density grid Charged Particle implementation, with standard deviation of 0.23 dB
- 25 latitudes and 48 longitudes (1106 unique grid points) for constant step size grid sin (theta) weights integration approach, with standard deviation of 0.07dB with the allowance to skip and interpolate measurements at the pole at θ =180°, see Annex M.4.4
- 21 latitudes and 40 longitudes (762 unique grid points) for constant step size grid Clenshaw Curtis weights integration approach, with standard deviation of 0.24 dB with the allowance to skip and interpolate measurements at the pole at θ =180°, see Annex M.4.4

If the re-positioning concept is applied to TRP test cases:

- 500 measurement grid points for constant density grid Charged Particle implementation, with standard deviation of 0.24 dB with the allowance to skip and interpolate measurements beyond 165° in θ , see Annex M.4.4
- 25 latitudes and 48 longitudes (1106 unique grid points) for constant step size grid sin (theta) weights integration approach, with standard deviation of 0.14dB with the allowance to skip and interpolate measurements beyond 165° in θ , see Annex M.4.4
- 21 latitudes and 40 longitudes (762 unique grid points) for constant step size grid Clenshaw Curtis weights integration approach, with standard deviation of 0.25 dB with the allowance to skip and interpolate measurements beyond 162° in θ , see Annex M.4.4
- 25 latitudes and 48 longitudes (1106 unique grid points) for constant step size grid Clenshaw Curtis weights integration approach, with standard deviation of 0.15 dB with the allowance to skip and interpolate measurements beyond 150 $^{\circ}$ in θ , see Annex M.4.4

M.4.1.2 Power class 2 devices

TBD

M.4.1.3 Power class 3 devices

In order to make a reasonable trade-off between measurement uncertainties, at least the following number of points should be included in the measurement grid for TRP measurements for non-sparse antenna arrays case. If the repositioning concept is not applied to TRP test cases:

- 135 measurement grid points for constant density grid Charged Particle implementation, with standard deviation of 0.23 dB with the allowance to skip and interpolate measurements at the pole at θ =180°
- 12 latitudes and 19 longitudes for constant step size grid \sin (theta) weights integration approach, with standard deviation of 0.25dB with the allowance to skip and interpolate measurements at the pole at θ =180°.

- 12 latitudes and 19 longitudes for constant step size grid – Clenshaw Curtis weights integration approach, with standard deviation of 0.20 dB with the allowance to skip and interpolate measurements at the pole at θ =180°.

If the re-positioning concept is applied to TRP test cases:

- 135 measurement grid points for constant density grid Charged Particle implementation, with standard deviation of 0.23 dB with the allowance to skip and interpolate measurements beyond 165° in θ, see Annex M.4.4
- 150 measurement grid points for constant density grid Charged Particle implementation, with standard deviation of 0.25 dB with the allowance to skip and interpolate measurements beyond 150° in θ , see Annex M.4.4
- 12 latitudes and 19 longitudes for constant step size grid sin (theta) weights integration approach, with standard deviation of 0.25dB with the allowance to skip and interpolate measurements the at pole at θ =180°, see Annex M.4.4
- 12 latitudes and 19 longitudes for constant step size grid Clenshaw Curtis weights integration approach, with standard deviation of 0.20 dB with the allowance to skip and interpolate measurements the at pole at θ =180°, see Annex M.4.4
- 13 latitudes and 24 longitudes for constant step size grid \sin (theta) weights integration approach, with standard deviation of 0.21dB with the allowance to skip and interpolate measurements beyond 150° in θ , see Annex M.4.4
- 13 latitudes and 24 longitudes for constant step size grid Clenshaw Curtis weights integration approach, with standard deviation of 0.15 dB with the allowance to skip and interpolate measurements beyond 150° in θ , see Annex M.4.4.

Choice of grid(s) among above 3 types of grids is up to test system implementation.

M.4.1.4 Power class 1 devices

TBD

M.4.2 TRP Integration for Constant Step Size Grid Type

Different approaches to perform the TRP integration from the respective EIRP measurements are outlined in the next sub clauses for the constant step size grid type.

M.4.2.1 TRP Integration using Weights

In many engineering disciplines, the integral of a function needs to be solved using numerical integration techniques, commonly referred to as "quadrature". Here, the approximation of the integral of a function is usually stated as a weighted sum of function values at specified points within the domain of integration. The derivation from the closed surface TRP integral

$$TRP = \prod_{S} \frac{EIRP(\theta, \phi)}{4\pi} \bullet \sin\theta \cdot d\theta \, d\phi$$

to the classical discretized summation equation used for OTA

$$TRP pprox rac{\pi}{2NM} \prod_{i=1}^{N-1} \prod_{j=0}^{M-1} \mathbb{E}IRP_{\theta}(\theta_i, \phi_j) + EIRP_{\phi}(\theta_i, \phi_j)$$
្រន់ពេក θ_i ក

The weights for this integral are based on the $\sin\!\theta$ - $\Delta\theta$ weights. More accurate implementations are based on the Clenshaw-Curtis quadrature integral approximation based on an expansion of the integrand in terms of Chebyshev polynomials. This implementation does not ignore the measurement points at the poles (θ =0° and 180°) where $\sin\!\theta$ = 0. The discretized TRP can be expressed as

$$TRP pprox rac{1}{2M} \prod_{i=0}^{N} \prod_{j=0}^{M-1} \operatorname{EIRP}_{\theta}(\theta_i, \phi_j) + \operatorname{EIRP}_{\phi}(\theta_i, \phi_j)$$
 _dWกั θ_i กั

which the $\sin\theta \cdot \Delta\theta$ weights replaced by a weight function $W(\theta)$ and extends the sum over I to include the poles. There is no simple closed-form expression for the Clenshaw-Curtis weights; however, a numerical straightforward approach is available, i.e.,

$$W(\theta_i) = \frac{c_i \overset{\mathcal{G}}{\underset{\dot{a}}{\text{int}}} - \prod_{j=1}^{(\frac{N}{2})} \frac{b_j}{4j^2 - 1} \cos(2j\theta_i) \overset{\mathcal{G}}{\underset{\dot{a}}{\text{int}}}$$

with

$$b_j = \begin{bmatrix} 1, & j = n/2 \\ 2, & j < n/2 \end{bmatrix}$$

and

$$c_i = \begin{bmatrix} 1, & i = 0 \mod N \\ 2, & otherwise \end{bmatrix}$$

The Clenshaw-Curtis weights are compared to the classical $\sin\theta\Delta\theta$ weights in Tables M.4.2.1-1 and M.4.2.1-2 for two different numbers of latitudes. The TRP measurement grid consists of N+1 latitudes and M longitudes with

$$heta_i = i\Delta heta$$
 where $\Delta heta = rac{\pi}{N}$

and

$$\phi_j = j\Delta\phi$$
 where $\Delta\phi = \frac{2\pi}{M}$

Table M.4.2.1-1: Samples and weights for the classical $\sin \theta \cdot \Delta \theta$ weighting and Clenshaw-Curtis quadratures with 12 latitudes ($\Delta \theta$ =16.4°)

Classica	Classical sinθ·Δθ		w-Curtis
θ [deg]	Weights	θ [deg]	Weights
0	0	0	0.008
16.4	0.08	16.4	0.079
32.7	0.154	32.7	0.155
49.1	0.216	49.1	0.216
65.5	0.26	65.5	0.26
81.8	0.283	81.8	0.283
98.2	0.283	98.2	0.283
114.6	0.26	114.6	0.26
130.9	0.216	130.9	0.216
147.3	0.154	147.3	0.155
163.6	0.08	163.6	0.079
180	0	180	0.008

Table M.4.2.1-2: Samples and weights for the classical $\sin \theta \cdot \Delta \theta$ weighting and Clenshaw-Curtis quadratures with 13 latitudes ($\Delta \theta = 15^{\circ}$)

Classica	Classical $sin\theta \cdot \Delta\theta$		w-Curtis
θ [deg]	Weights	θ [deg]	Weights
0	0	0	0.007
15	0.0678	15	0.0661
30	0.1309	30	0.1315
45	0.1851	45	0.1848
60	0.2267	60	0.227
75	0.2529	75	0.2527
90	0.2618	90	0.262
105	0.2529	105	0.2527
120	0.2267	120	0.227
135	0.1851	135	0.1848
150	0.1309	150	0.1315
165	0.0678	165	0.0661
180	0	180	0.007

M.4.3 TRP Integration for Constant Density Grid Types

For constant density grid types, the TRP integration should ideally take into account the area of the Voronoi region surrounding each grid point. Assuming an ideal constant density configuration of the grid points, the TRP can be approximated using

$$TRP \approx \frac{1}{N} \prod_{i=0}^{N-1} (FIRP_{\theta}(\theta_i, \phi_i) + EIRP_{\phi}(\theta_i, \phi_i))$$
 و

where N is the number of grid points of the constant density grid type.

M.4.4 Interpolation at or near the Pole

As illustrated in Figure M.4.4-1, for systems that either do not allow measurements at the pole (θ =180°), e.g., using distributed-axes positioners, or systems that have the positioners/support structures block the radiation towards the pole (θ =180°), e.g., combined-axes positioners, measurements beyond 150° in θ can be skipped and interpolated instead for measurement grids defined in Annex M.4.1.

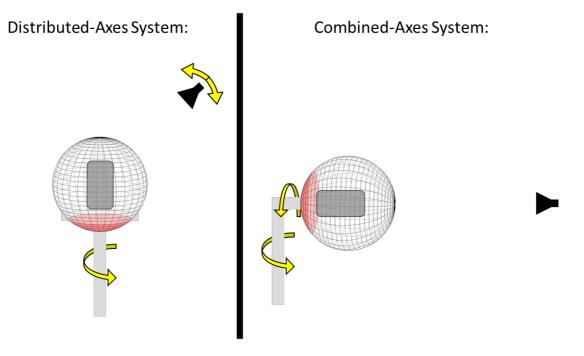


Figure M.4.4-1: Illustration of areas around the pole that either cannot be reached by the measurement antenna or are blocked by the positioner

M.4.5 TRP Grids for Spurious Emissions

The worst antenna array assumptions for the MU simulations are outlined in Tables M.4.5-1 and M.4.5-2.

Table M.4.5-1: Single Antenna Element Radiation Pattern for spurious emission measurements

Antenna element horizontal radiation pattern	$A_{E,H}(\varphi) = -\min_{\parallel 1} \frac{\varphi}{\varphi_{3dB}} \left\ \frac{\varphi}{\varphi_{3dB}} \right\ ^2, A_m \left\ dB \right\ _{1}^2, A_m = 30 \text{ dB}$
Horizontal half-power beam width of single element	260°
Antenna element vertical radiation pattern	$A_{E,V}(\theta) = -\min_{\parallel 1}^{\parallel 1} 2 \left\ \frac{\theta - 90}{\theta_{3dB}} \right\ ^{2}, SLA_{v} \right\ _{1}^{1}, SLA_{v} = 30 \text{ dB}$
Vertical half-power beam width of single array element	130°
Array element radiation pattern	$A_{E}\left(\varphi,\theta\right) = G_{E,\max} - \min\left\{-\bigotimes_{E,H}\left(\varphi\right) + A_{E,V}\left(\theta\right) \bigotimes_{m}A_{m}\right\}$
Element gain without antenna losses	G _{E,max} = 1.5 dBi

Table M.4.5-2: Composite Antenna Array Radiation Pattern for spurious emission measurements

Composite array radiation pattern in dB $A_A(heta,arphi)$	$\begin{split} & A_{A,Beami}(\theta,\varphi) = A_E(\theta,\varphi) + 10\log_{10} \left\ \sum_{m=1}^{N_H} \sum_{n=1}^{N_V} w_{i,n,m} \cdot v_{n,m} \right\ ^2 \right\ \\ & \text{the super position vector is given by:} \\ & v_{n,m} = \exp \left\ i \cdot 2\pi \left\ (n-1) \cdot \frac{d_V}{\lambda} \cdot \cos(\theta) + (m-1) \cdot \frac{d_H}{\lambda} \cdot \sin(\theta) \cdot \sin(\varphi) \right\ \right\ , \\ & n = 1,2,\dots N_V; m = 1,2,\dots N_H; \\ & \text{the weighting is given by:} \\ & w_{i,n,m} = \frac{1}{\sqrt{N_H N_V}} \exp \left\ i \cdot 2\pi \left\ (n-1) \cdot \frac{d_V}{\lambda} \cdot \sin(\theta_{i,etilt}) - (m-1) \cdot \frac{d_H}{\lambda} \cdot \cos(\theta_{i,etilt}) \right\ \end{split}$
Antenna array configuration	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(Row×Column)	
Horizontal radiating element	1
spacing, d _h /λ	
Vertical radiating element	1
spacing, d _ν /λ	-

The TRP measurement grid selection for spurious emissions is up to test system implementation but shall meet the criteria shown in Table M.4.5-3.

Table M.4.5-3: TRP measurement grid requirement for spurious emission measurements

Level of Grid	Grid Type	Standard Deviation of MU Element 'Influence of TRP Measurement'	Systematic error due to TRP calculation/quadrature	Number of unique grid points		
Coorco	Constant Density	N/A	N/A	35		
Coarse	Constant- Step Size	N/A	N/A	62 (Δθ=Δφ=30°)		
Fine	Constant Density	0.32dB	0dB	135		
Fine	Constant- Step Size	0.31dB	0dB	266 Δθ=Δφ=15°)		

For spurious emissions, TRP measurements with measurement antennas displaced up to 10° from the focal point (based on electrical switching) in an IFF (based on CATR) test system, alternate TRP approaches for constant-step size grids are allowed for the coarse and fine grids:

interpolation to the non-offset system coordinate system that allows the use of Clenshaw-Curtis or classical $sin(\theta)$ quadratures

use of the advanced Jacobian matrix quadrature approach that uses triangulations of the sphere

Annex N (normative): UE coordinate system

N.1 Reference coordinate system

This annex defines the measurement coordinate system for the NR UE. The reference coordinate system as defined in IEEE Std 149 [27] is provided in Figure N.1-1 below while Figure N.1.-2 shows the DUT in the default alignment, i.e., the DUT and the reference coordinate systems are aligned with $\alpha = 0^{\circ}$ and $\beta = 0^{\circ}$ and $\gamma = 0^{\circ}$ where α , β , and γ describe the relative angles between the two coordinate systems.

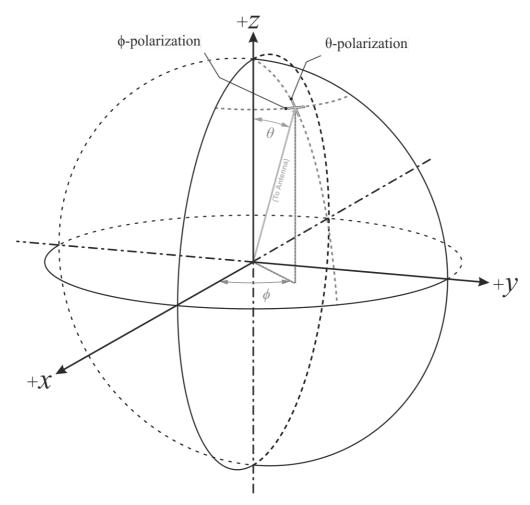


Figure N.1-1: Reference coordinate system

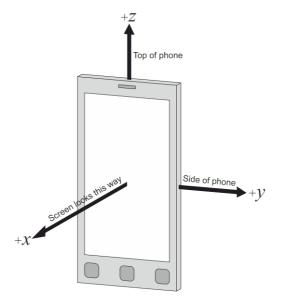


Figure N.1-2: DUT default alignment to coordinate system

The following aspects are necessary:

- A basic understanding of the top and bottom of the device is needed in order to define unambiguous DUT positioning requirements for the test, e.g., in the drawings used in this annex, the three buttons are on the bottom of the device (front) and the camera is on the top of the device (back).
- An understanding of the origin and alignment the coordinate system inside the test system i.e. the directions in which the x, y, z -axes points inside the test chamber is needed in order to define unambiguous DUT orientation, DUT beam, signal, interference, and measurement angles

N.2 Test conditions and angle definitions

Tables N.2-1 through N.2-3 below provides the test conditions and angle definitions for three permitted device alignment for the default test condition, DUT orientation 1, and two different options for each permitted device alignment to re-position the device for DUT Orientation 2 as outlined in Figures N.2-1 and N.2-3.

Table N.2-1: Test conditions and angle definitions for Alignment Option 1

Test condition	DUT orientation	Link angle	Measurement angle	Diagram
Free space DUT Orientation 1 (default)	$\alpha = 0^{\circ};$ $\beta = 0^{\circ};$ $\gamma = 0^{\circ}$	θ _{Link;} φ _{Link} with polarization reference Pol _{Link} = θ or φ	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	Rotation Matrix $R_z(\gamma)$ Rotation Matrix $R_x(\alpha)$ $+\chi$ Rotation Matrix $R_y(\beta)$
Free space DUT Orientation 2 – Option 1 (based on re- positioning approach)	$\alpha = 180^{\circ};$ $\beta = 0^{\circ};$ $\gamma = 0^{\circ}$	θ _{Link;} φ _{Link} with polarization reference Pol _{Link} = θ or φ	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	Rotation Matrix $R_x(\alpha)$ $+\chi$ Rotation Matrix $R_x(\beta)$
Free space DUT Orientation 2 Option 2 (based on repositioning approach)	α = 0°; β = 180°; γ = 0°	θ _{Link;} φ _{Link} with polarization reference Pol _{Link} = θ or φ	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	Rotation Matrix $R_x(\alpha)$ Rotation Matrix $R_y(\beta)$

NOTE 1: A polarization reference, as defined in relation to the reference coordinate system in N.1-1, is maintained for each signal angle, link or interferer angle, and measurement angle.
 NOTE 2: The combination of rotations is captured by matrix M=R_z(γ)•R_y(β)•R_x(α)

Table N.2-2: Test conditions and angle definitions for Alignment Option 2

Test condition	DUT orientation	Link angle	Measurement angle	Diagram
Free space DUT Orientation 1 (default)	$\alpha = 0^{\circ};$ $\beta = -90^{\circ};$ $\gamma = 0^{\circ}$	θ _{Link;} φ _{Link} with polarization reference Pol _{Link} = θ or φ	$\begin{array}{c} \theta_{\text{Meas};} \\ \phi_{\text{Meas}} \\ \text{with} \\ \text{polarization} \\ \text{reference} \\ \text{Pol}_{\text{Meas}} = \theta \text{ or} \\ \phi \end{array}$	Rotation $\text{Matrix } R_z(\gamma)$ Rotation $\text{Matrix } R_y(\beta)$ Rotation $\text{Matrix } R_y(\beta)$
Free space DUT Orientation 2 – Option 1 (based on repositioning approach)	$\alpha = 180^{\circ};$ $\beta = 90^{\circ};$ $\gamma = 0^{\circ}$	θ _{Link;} φ _{Link} with polarization reference Pol _{Link} = θ or φ	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	Rotation Matrix $R_z(\gamma)$ Rotation Matrix $R_y(\beta)$
Free space DUT Orientation 2 – Option 2 (based on re- positioning approach)	$\alpha = 0^{\circ};$ $\beta = 90^{\circ};$ $\gamma = 0^{\circ}$	θ _{Link;} φ _{Link} with polarization reference Pol _{Link} = θ or φ	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	Rotation Matrix $R_z(\gamma)$ Rotation Matrix $R_y(\beta)$

NOTE 1: A polarization reference, as defined in relation to the reference coordinate system in N.1-1, is maintained for each signal angle, link or interferer angle, and measurement angle. NOTE 2: The combination of rotations is captured by matrix $M=R_z(\gamma) \cdot R_y(\beta) \cdot R_x(\alpha)$

Table N.2-3: Test conditions and angle definitions for Alignment Option 3

Test condition	DUT orientation	Link angle	Measurement angle	Diagram
Free space DUT Orientation 1 (default)	$\alpha = 90^{\circ};$ $\beta = 0^{\circ};$ $\gamma = 0^{\circ}$	θ _{Link;} φ _{Link} with polarization reference Pol _{Link} = θ or φ	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	Rotation Matrix $R_z(y)$ Rotation Matrix $R_x(a)$ Rotation Matrix $R_y(\beta)$
Free space DUT Orientation 2 – Option 1 (based on repositioning approach)	$\alpha = -90^{\circ};$ $\beta = 0^{\circ};$ $\gamma = 0^{\circ}$	θ _{Link;} φ _{Link} with polarization reference Pol _{Link} = θ or φ	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	Rotation Matrix $R_x(y)$ Rotation Matrix $R_x(\alpha)$ Rotation Matrix $R_y(\beta)$
Free space DUT Orientation 2 – Option 2 (based on re- positioning approach)	$\alpha = 90^{\circ};$ $\beta = 180^{\circ};$ $\gamma = 0^{\circ}$	$\begin{array}{c} \theta_{\text{Link;}} \\ \phi_{\text{Link}} \\ \text{with} \\ \text{polarization} \\ \text{reference} \\ \text{Pol}_{\text{Link}} = \theta \text{ or} \\ \phi \end{array}$	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	Rotation Matrix $R_z(\gamma)$ Rotation Matrix $R_x(\alpha)$ Rotation Matrix $R_y(\beta)$

NOTE 1: A polarization reference, as defined in relation to the reference coordinate system in N.1-1, is maintained for each signal angle, link or interferer angle, and measurement angle.

NOTE 2: The combination of rotations is captured by matrix $M=R_z(\gamma) \cdot R_y(\beta) \cdot R_x(\alpha)$

For each UE requirement and test case, each of the parameters in Table N.2-1 through N.2-3 need to be recorded, such that DUT positioning, DUT beam direction, and angles of the signal, link/interferer, and measurement are specified in terms of the fixed coordinate system.

Due to the non-commutative nature of rotations, the order of rotations is important and needs to be defined when multiple DUT orientations are tested.

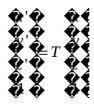
The rotations around the x, y, and z axes can be defined with the following rotation matrices

$$R_{x}(\alpha) = \begin{cases} 0 & 0 & 0 \\ \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{cases}$$

$$R_{y}(\beta) = \begin{cases} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ \sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{cases}$$

and

$$R_{z}(\gamma) = \begin{cases} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$$


with the respective angles of rotation, α , β , γ , and

Additionally, any translation of the DUT can be defined with the translation matrix

$$T(t_x, t_y, t_z) = \begin{cases} 0 & 0 & t_x \\ 1 & 0 & t_y \\ 0 & 1 & t_z \\ 0 & 0 & 1 \end{cases}$$

with offsets t_x , t_y , t_z in x, y, and z, respectively and with

The combination of rotations and translation is captured by the multiplication of rotation and translation matrices.

For instance, the matrix M

$$M = T(t_x, t_y, t_z) \cdot R_z(\gamma) \cdot R_y(\beta) \cdot R_x(\alpha)$$

describes an initial rotation of the DUT around the x axis with angle α , a subsequent rotation around the y axis with angle β , and a final rotation around the z axis with angle γ . After those rotations, the DUT is translated by t_x , t_y , t_z in x, y, and z, respectively.

N.3 DUT positioning guidelines

The centre of the reference coordinate system shall be aligned with the geometric centre of the DUT in order to minimize the offset between antenna arrays integrated at any position of the UE and the centre of the quiet zone.

Near-field coupling effects between the antenna and the pedestals/positioners/fixtures generally cause increased signal ripples. Re-positioning the DUT by directing the beam peak away from those areas can reduce the effect of signal ripple

on EIRP/EIS measurements. Figure N.3-1 and N.3-2 illustrate how to reposition the DUT in distributed axes and combined axes system, when the beam peak is directed to the DUTs upper hemisphere (DUT orientation 1) or the DUTs lower hemisphere (DUT orientation 2). While these figures are examples of different positioning systems and other implementations are not precluded, the relative orientation of the coordinate system with respect to the antennas/reflectors and the axes of rotation shall apply to any measurement setup.

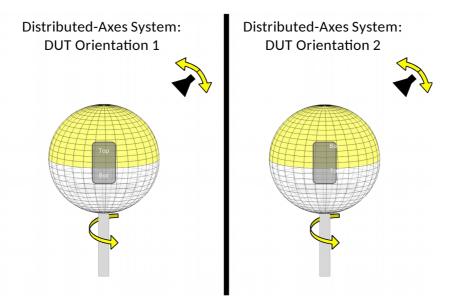


Figure N.3-1: DUT re-positioning for an example of distributed-axes system

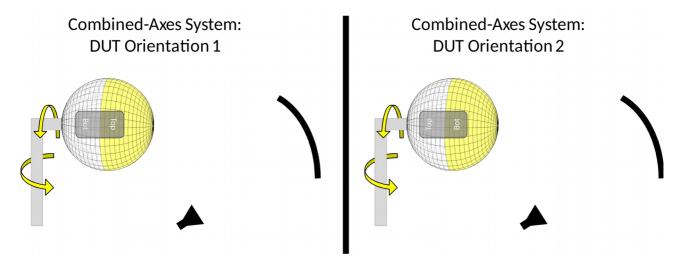


Figure N.3-2: DUT re-positioning for an example of combined-axes system

For EIRP/EIS measurements, re-positioning the DUT makes sure the pedestal is not obstructing the beam path and that the pedestal is not in closer proximity to the measurement antenna/reflector than the DUT. For TRP measurements, repositioning the DUT makes sure that the beam peak direction is not obstructed by the pedestal and the pedestal is in the measurement path only when measuring the back-hemisphere. No re-positioning during the TRP measurement is required.

Annex O: Quality of the quiet zone validation

O.1 General

This annex describes the procedures for validating the quality of the quiet zone for the permitted far-field methods outlined in Annex B.2.2 (DFF), B.2.3 (simplified DFF), and in B.2.4 (IFF based on CATR) in [10]. Annex O.2 focuses on the procedure for in-band and OOB test cases while Annex O.3 focuses on the procedure for spurious emissions test cases.

O.2 Procedure to characterize the quality of the quiet zone for inband/OOB for the permitted far field methods

This procedure is mandatory before the test system is commissioned for certification tests and characterizes the quiet zone performance of the anechoic chamber, specifically the effect of reflections within the anechoic chamber including any positioners and support structures. Additionally, it includes the effect of offsetting the directive antenna array inside a DUT from the centre of the quiet zone, i.e., the centre of rotation of the DUT and measurement antenna positioning systems as well as the directivity MU, i.e., the variation of antenna gains in the different direct line-of-sight links.

The quiet zone is illustrated in Figure O.2-1 which includes the definitions of centre of quiet zone range, i.e., the geometric centre of the positioning systems, and the range length, i.e., the distance between the centre of the quiet zone and the aperture of the measurement antenna.

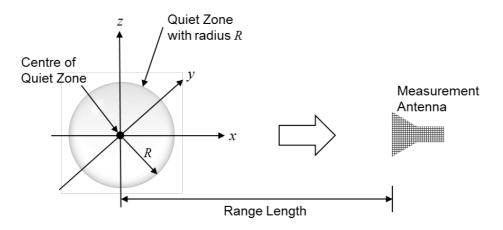


Figure O.2-1: Quiet Zone Illustration

The outcome of the procedures can be used to predict the

- variation of the TRP measurements, spherical surface integrals of EIRP/EIS, when the DUT is placed anywhere within the quiet zone and with the beam formed in any arbitrary direction inside the chamber
- variation of the EIRP/EIS measurements when the DUT is placed anywhere within the quiet zone and with the beam formed in any arbitrary direction inside the chamber

The reference coordinate system defined in Annex N applies to this procedure.

O.2.1 Equipment used

The reference antenna under test (AUT) that is placed at various locations within the quiet zone shall be a directive antenna with similar properties of typical antenna arrays integrated in DUTs. The characteristics in terms of Directivity and Half Power Beamwidth (HPBW) of the reference AUT are shown in Figure O.2.1-1, O.2.1-2, and O.2.1-3.

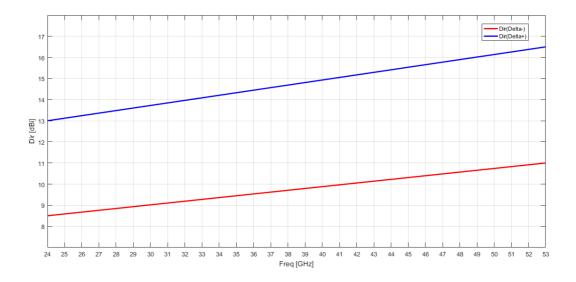


Figure O.2.1-1: Directivity mask

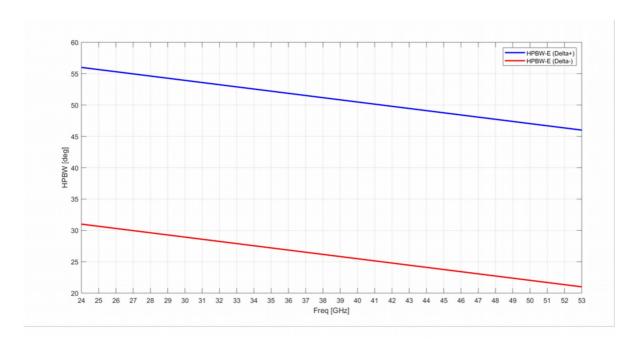


Figure O.2.1-2: 2xHPBW-E mask

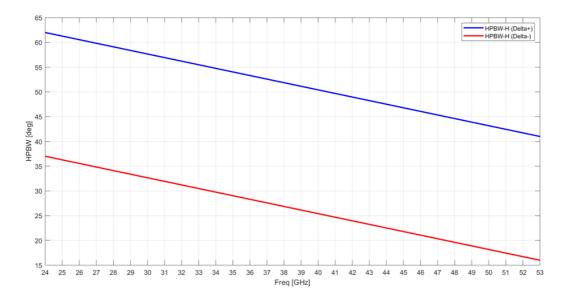


Figure O.2.1-3: 2xHPBW-H mask

AUT shall be symmetric on E and H planes.

The above masks for the reference antenna are met based on antenna vendors' calibration report.

For the measurement, a combination of signal generator and spectrum analyser or a network analyser can be used. The multi-port (with three ports) network analyser is most suitable to reduce test time as both polarizations of the measurement antenna can be measured simultaneously, and multiple frequencies can be measured in a sweep.

O.2.2 Test frequencies

The frequencies to be used to characterize the quality of the quiet zone are 23.45 GHz, 32.125 GHz, and 40.8 GHz. The quiet zone validation analysis is performed for each frequency individually.

O.2.3 Reference measurements

The quality of the quiet measurements for integrated RF parameters such as TRP shall use 3D pattern measurements of the reference antenna patterns as they most closely resemble the 3D/spherical surface measurements/integrals of EIRP or EIS. Therefore, the quality of the quiet zone measurements for TRP metrics shall be based on efficiency measurements. On the other hand, the quality of the quiet zone measurements for single-directional EIRP and EIS metrics shall be based on gain measurements of the direct line-of-sight link between the reference AUT and the measurement antenna.

The grid types for the TRP measurements shall match those outlined in M.1 and the minimum number of grid points (including quadratures for constant step size grids and implementation of constant density grids) shall meet the 0.25 dB maximum standard uncertainty summarized in M.4.

O.2.4 Size of the quiet zone

The size of the quiet zone within which the variations of measurements are evaluated depends on the size of the DUT. For smartphones, the quiet zone shall be considered a sphere with radius of R=10cm. For larger smartphones and tablet type devices, the quiet zone shall be considered a sphere with radius of R=15cm. Alternate quiet zone sizes can be defined for even larger DUTs.

The quality of quiet zone procedure for systems supporting larger quiet zone sizes can be performed for the largest quiet zone radius only and the results can be applied to the smaller quiet zone radius. Performing separate sets of quality of quiet zone measurements for different radii is not precluded.

O.2.5 Reference AUT positions

The reference AUT shall be positioned in a total of 7 different reference positions, shown in Figure O.2.5.1-1 and O.2.5.2-1

While position 1, P1, is the centre of the quiet zone, the remaining positions, 2 through 7, are off-centre positions each displaced by the radius of the quiet zone, R. The coordinates of the respective test points are shown in Table O.2.5-1.

Position	X	y	Z
P1	0	0	0
P2	R	0	0
P3	-R	0	0
P4	0	R	0
P5	0	-R	0
P6	0	0	R
P7	0	0	-R

Table O.2.5-1: Reference AUT Measurement Coordinates

O.2.5.1 Distributed-axes system

The reference AUT shall be positioned in a total of 7 different reference positions, shown in Figure O.2.5.1-1.

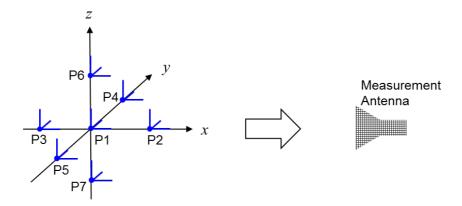


Figure O.2.5.1-1: Reference AUT Measurement Positions for distributed-axes system

The reference AUT positions inside a typical distributed-axes system are shown in Figure O.2.5.1-2.

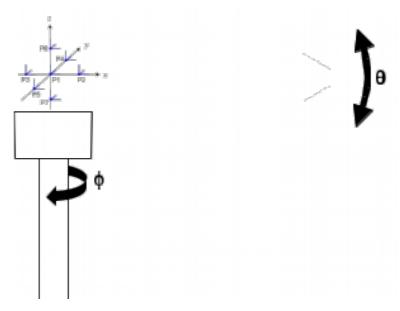


Figure O.2.5.1-2: Reference AUT Measurement Positions for distributed-axes system

O.2.5.2 Combined-axes system

The reference AUT shall be positioned in a total of 7 different reference positions, shown in Figure O.2.5.2-1.

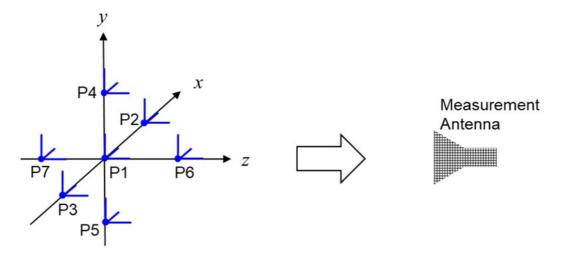


Figure O.2.5.2-1: Reference AUT Measurement Positions for combined-axes system

The reference AUT positions inside a typical combined-axes system are shown in Figure O.2.5.2-2.

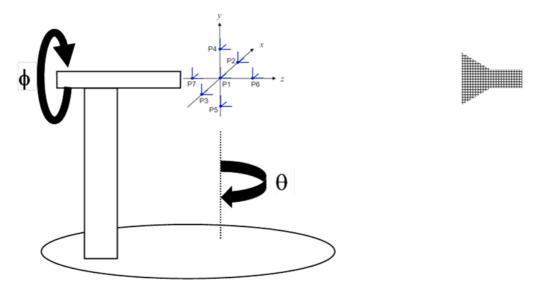


Figure O.2.5.2-2: Reference AUT Measurement Positions for combined-axes system

O.2.6 Reference AUT orientations

As different areas within the chamber could yield variations in the field uniformity inside the quiet zone caused by reflections, it is important to characterize the electromagnetic fields with the reference antennas uniformly illuminating the anechoic chamber.

O.2.6.1 Distributed-axes system

In order to keep the quality of the quiet zone characterization manageable in terms of test times, it is suggested to perform the reference measurements for the reference AUT placed at the 7 antenna positions with the antenna rotated around the y axis with 5 different angles β , i.e., $\beta = 0^{\circ}$, 45° , 90° , 135° , and 180° , and rotated around the z axis with 8 different $\gamma = 0^{\circ}$, 45° , 90° , 135° , 180° , 225° , 270° , and 315° . A graphical illustration of the some sample reference AUT orientations is shown in Figure O.2.6.1-1 with a reference AUT placed at position 6, P6, for reference antenna polarization $\gamma_{\text{pol}} = 0^{\circ}$; Figure O.2.6.1-2 illustrates the reference AUT orientations for the reference polarization $\gamma_{\text{pol}} = 90^{\circ}$.

The matrix operation for the rotations and translation is defined as

$$M = T(t_x, t_y, t_z) \hat{\mathbf{Q}}_z(\gamma) \hat{\mathbf{Q}}_y(\beta) \hat{\mathbf{Q}}_{z,pol}(\gamma_{pol})$$

for the distributed-axes system.

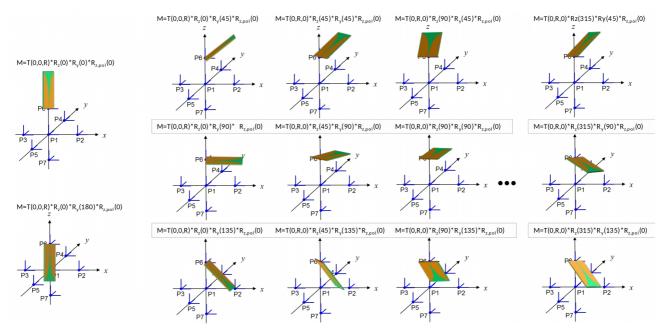


Figure O.2.6.1-1: Sample reference AUT orientations for position 6, P6 for reference antenna polarization γ_{pol} = 0°

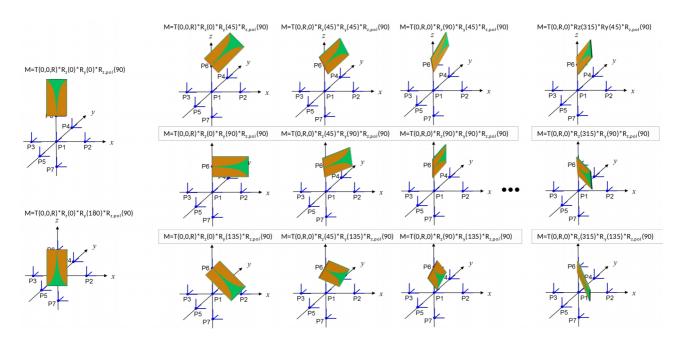


Figure O.2.6.1-2: Sample reference AUT orientations for position 6, P6, for reference antenna polarization γ_{pol} = 90°

When facing the z-axis, β = 0° and β = 180°, the antenna does not need to be evaluated for the 8 different rotations around the z axis. A single orientation is sufficient since those orientations are unique. Due to the pedestal, distributed-axes systems are not able to measure towards the β =180° direction; for those systems, the reference measurements at this reference AUT orientation can be skipped.

If the device re-positioning approach outlined in Annex N is adopted for the EIRP/EIS/TRP based conformance test cases, the quality of quiet zone analysis is sufficient only for $\beta = 0^{\circ}$, 45°, 90°.

O.2.6.2 Combined-axes system

In order to keep the quality of the quiet zone characterization manageable in terms of test times, it is suggested to perform the reference measurements for the reference AUT placed at the 7 antenna positions with the antenna rotated around the x axis with 5 different angles α , i.e., $\alpha = -90^{\circ}$, -45° , 0° , 45° , and 90° and rotated around the y axis with 8 different angles $\beta = 0^{\circ}$, 45° , 90° , 135° , 180° , 225° , 270° , and 315° . A graphical illustration of some sample reference AUT orientations is shown in Figure O.2.6.2-1 with a reference AUT placed at position 4, P4, for reference antenna polarization $\gamma_{\rm pol} = 0^{\circ}$; Figure O.2.6.2-2 illustrates the reference AUT orientations for the reference polarization $\gamma_{\rm pol} = 90^{\circ}$.

The matrix operation for the rotations and translation is defined as

$$M = T(t_x, t_y, t_z) \, \mathbf{\hat{Q}}_{v}(\beta) \, \mathbf{\hat{Q}}_{x}(\alpha) \, \mathbf{\hat{Q}}_{z, pol}(\gamma_{pol})$$

for the combined-axes system.

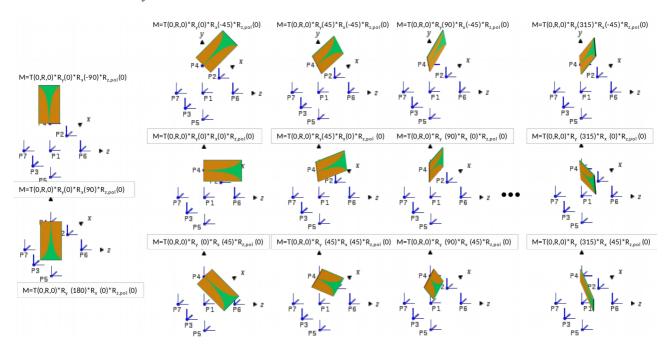


Figure O.2.6.2-1: Sample reference AUT orientations for position 4, P4, for reference antenna polarization γ_{pol} = 0°

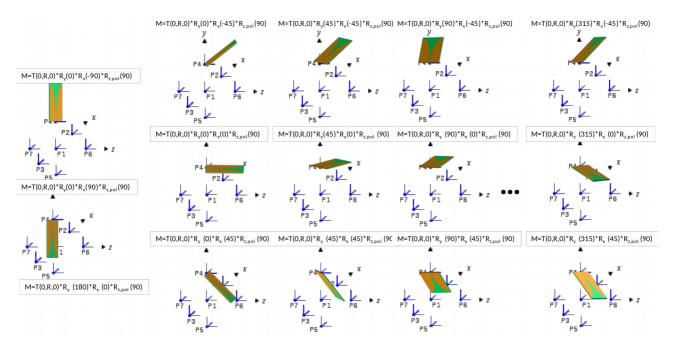


Figure O.2.6.2-2: Sample reference AUT orientations for position 4, P4, for reference antenna polarization γ_{pol} = 90°

When facing the y axis, $\alpha = 90^{\circ}$ and $\alpha = -90^{\circ}$, the antenna does not need to be evaluated for the 8 different rotations around the y axis. A single rotation is sufficient since those orientations are unique. Due to the pedestal of the 2-axis positioner, combined-axes systems are not able to measure towards the $\beta = 180^{\circ}$ direction; for those systems, the reference measurements at this reference AUT orientation can be skipped.

If the device re-positioning approach outlined in Annex N is adopted for all EIRP/EIS/TRP based conformance test cases, the quality of quiet zone analysis is sufficient only for $\beta = 0^{\circ}$, 45°, 90°, 270°, and 315°.

O.2.7 Quality of quiet zone measurement uncertainty calculations for TRP

The combined MU element related to the quality of the quiet zone for TRP and offset between UE antenna array and centre of quiet zone is the standard deviation of the various efficiency measurement results that are based on the 7 different reference AUT positions, the respective reference AUT orientations, and the two reference AUT polarization orientations.

O.2.8 Quality of quiet zone measurement uncertainty for EIRP/EIS

The MU for the quality of the quiet zone for EIRP/EIS includes the additional MU element of the directivity of the DUT and measurement antennas as shown in Figure O.2.9-1. The EIRP/EIS measurements are taking the peak gains of the respective antennas into account with the reference AUT placed in the centre of the quiet zone. Once the antenna is displaced in directions other than the measurement antenna, the direct line-of-sight link is taking reduced antenna gains into account. The type of reference AUT should therefore have similar pattern properties as typical UE antennas. For systems with very large range lengths, the directivity MU will be insignificant.

The combined MU element related to the quality of the quiet zone for EIRP/EIS, offset between UE antenna array and centre of quiet zone, and directivity is the standard deviation of the single-point gain measurement results that are based on the 7 different reference AUT positions, the respective reference AUT orientations, and the two reference AUT polarization orientations.

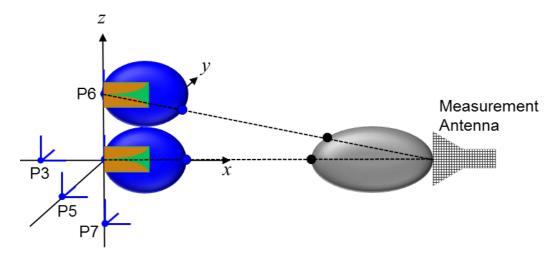


Figure O.2.9-1: Illustration of the Directivity MU Element

O.3 Procedure to characterize the spurious emissions quality of the quiet zone for the permitted far field methods

This procedure is mandatory before the spurious emissions test system is commissioned for certification tests and characterizes the quiet zone performance of the anechoic chamber, specifically the effect of reflections within the anechoic chamber including any positioners and support structures. Additionally, it includes the effect of offsetting the directive antenna array inside a DUT from the centre of the quiet zone, i.e., the centre of rotation of the DUT and measurement antenna positioning systems.

The quiet zone is illustrated in Figure O.2-1 which includes the definitions of centre of quiet zone range, i.e., the geometric centre of the positioning systems, and the range length, i.e., the distance between the centre of the quiet zone and the aperture of the measurement antenna.

The outcome of the procedures can be used to predict the variation of the TRP measurements, spherical surface integrals of EIRP, when the DUT is placed anywhere within the quiet zone and with the beam formed in any arbitrary direction inside the chamber

The reference coordinate system defined in Annex N applies to this procedure.

O.3.1 Equipment used

The reference antenna under test (AUT) that is placed at various locations within the quiet zone shall be a directive antenna with a half-power beam width (HPBW) of $\geq 20^{\circ}$ in E-Plane and H-Plane. The HPBWs met based on antenna vendors' calibration report or datasheet.

For the measurement, a combination of signal generator and spectrum analyser or a network analyser can be used. The multi-port (with three ports) network analyser is most suitable to reduce test time as both polarizations of the measurement antenna can be measured simultaneously, and multiple frequencies can be measured in a sweep.

O.3.2 Test frequencies

Editor Note: Another test frequency of [TBD] GHz will be added as soon as FR2 bands >40GHz are introduced.

The frequencies to characterize the quality of the quiet zone shall be [6], [12.75], 23.45, 40.8, 66, and 80GHz. The quiet zone validation analysis is performed for each frequency individually.

The measurements from the 23.45 and 40.8GHz in-band QoQZ validation can be re-used provided that the reference antenna position and orientation as well as the measurement frequency and measurement antenna are identical in both cases.

O.3.3 Reference measurements

The spurious emissions quality of the quiet zone measurements shall use 3D pattern measurements of the reference antenna patterns as they most closely resemble the 3D/spherical surface measurements/integrals of EIRP. Therefore, the quality of the quiet zone measurements for TRP metrics shall be based on efficiency measurements.

The grid types for the TRP measurements shall meet the 0.25 dB maximum standard uncertainty. The min number of grid points for the two grid types are:

- 192 grid points for the constant step-size measurement grids
- 100 grid points for the constant density measurement grids (charged particle implementation)

O.3.4 Size of the guiet zone

The size of the quiet zone within which the variations of measurements are evaluated depends on the size of the DUT. For smartphones, the quiet zone shall be considered a sphere with radius of R=10cm. For larger smartphones and tablet type devices, the quiet zone shall be considered a sphere with radius of R=15cm. Alternate quiet zone sizes can be defined for even larger DUTs.

The quality of quiet zone procedure for systems supporting larger quiet zone sizes can be performed for the largest quiet zone radius only and the results can be applied to the smaller quiet zone radius. Performing separate sets of quality of quiet zone measurements for different radii is not precluded.

O.3.5 Reference AUT positions

The reference AUT shall be positioned in a total of 7 different reference positions, shown in Figure O.2.5.1-1 and O.2.5.2-1

While position 1, P1, is the centre of the quiet zone, the remaining positions, 2 through 7, are off-centre positions each displaced by the radius of the quiet zone, *R*. The coordinates of the respective test points are shown in Table O.2.5-1.

O.3.5.1 Distributed-axes system

The reference AUT shall be positioned in a total of 7 different reference positions, shown in Figure O.2.5.1-1 for distributed-axes systems.

The reference AUT positions inside a typical distributed-axes system are shown in Figure O.2.5.1-2.

O.3.5.2 Combined-axes system

The reference AUT shall be positioned in a total of 7 different reference positions, shown in Figure O.2.5.2-1 for combined-axes systems.

The reference AUT positions inside a typical combined-axes system are shown in Figure O.2.5.2-2.

O.3.6 Reference AUT orientations

As different areas within the chamber could yield variations in the field uniformity inside the quiet zone caused by reflections, it is important to characterize the electromagnetic fields with the reference antennas uniformly illuminating the anechoic chamber. However, in order to keep the spurious emissions quality of the quiet zone characterization manageable in terms of test time, the number of orientations for the spurious emissions quality of quiet zone validation is limited when compared to the number of orientations for the in-band quality of quiet zone validation.

O.3.6.1 Distributed-axes system

The reference measurements for the reference AUT placed at the 7 antenna positions shall be rotated around the y axis with 2 different angles β , i.e., $\beta = 0^{\circ}$ and 180° and fixed $\gamma = 0^{\circ}$. A graphical illustration of the reference AUT orientations is shown in Figure O.3.6.1-1 with a reference AUT placed at position 6, P6, for reference antenna polarization $\gamma_{pol} = 0^{\circ}$; Figure O.3.6.1-2 illustrates the reference AUT orientations for the reference polarization $\gamma_{pol} = 90^{\circ}$.

The matrix operation for the rotations and translation is defined as

$$M = T(t_x, t_y, t_z) \hat{\mathbf{R}}_z(\gamma) \hat{\mathbf{R}}_y(\beta) \hat{\mathbf{R}}_{z,pol}(\gamma_{pol})$$

for the distributed-axes system. The matrices are defined in Annex J.2 of TS 38.101-2.

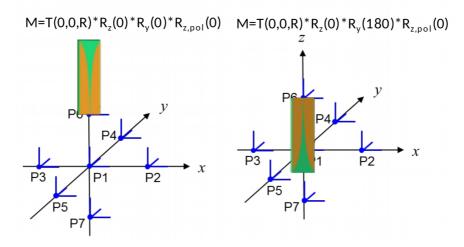


Figure O.3.6.1-1: Reference AUT orientations for position 6, P6 for reference antenna polarization γ_{pol} = 0°

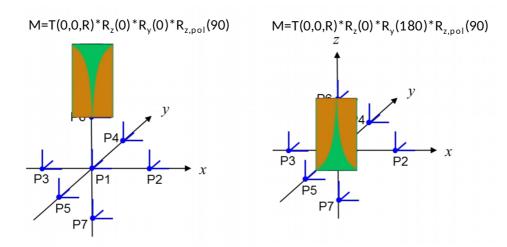


Figure O.3.6.1-2: Reference AUT orientations for position 6, P6, for reference antenna polarization γ_{pol} = 90°

If the device re-positioning approach is adopted for the spurious emissions test cases, i.e., two hemispheres are measured separately which involves the DUT, while connected to the gNB emulator, to be rotated by 180° around its axis halfway through the test, the quality of quiet zone analysis is sufficient only for $\beta=0^{\circ}$.

O.3.6.2 Combined-axes system

The reference measurements for the reference AUT placed at the 7 antenna positions shall be rotated around the x axis with 2 different angles β , i.e., $\beta = 0^{\circ}$ and 180° and fixed $\alpha = 0^{\circ}$. A graphical illustration of the sample reference AUT orientations is shown in Figure O.3.6.2-1 with a reference AUT placed at position 4, P4, for reference antenna polarization $\gamma_{pol} = 0^{\circ}$; Figure O.3.6.2-2 illustrates the reference AUT orientations for the reference polarization $\gamma_{pol} = 90^{\circ}$.

The matrix operation for the rotations and translation is defined as

$$M = T(t_x, t_y, t_z) \, \hat{\mathbf{Q}}_{y}(\beta) \, \hat{\mathbf{Q}}_{x}(\alpha) \, \hat{\mathbf{Q}}_{z,pol}(\gamma_{pol})$$

for the combined-axes system. The matrices are defined in Annex J.2 of TS 38.101-2.

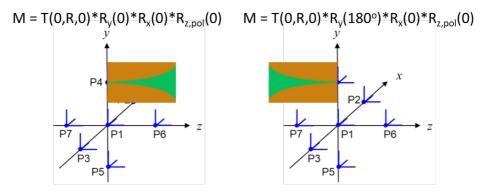


Figure O.3.6.2-1: Reference AUT orientations for position 4, P4, for reference antenna polarization $\gamma_{pol} = 0^{\circ}$.

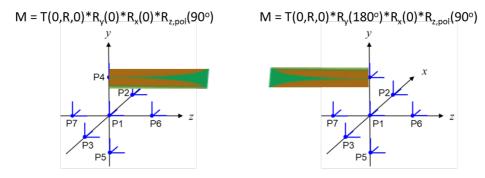


Figure O.3.6.2-2: Reference AUT orientations for position 4, P4, for reference antenna polarization γ_{pol} = 90°

If the device re-positioning approach is adopted for the spurious emissions test cases, i.e., two hemispheres are measured separately which involves the DUT, while connected to the gNB emulator, to be rotated by 180° around its axis halfway through the test, the quality of quiet zone analysis is sufficient only for $\beta = 0^{\circ}$.

O.3.7 Quality of quiet zone measurement uncertainty calculations for TRP

The combined MU element related to the spurious emissions quality of the quiet zone for TRP and offset between UE antenna array and centre of quiet zone is the standard deviation of the various efficiency measurement results that are based on the 7 different reference AUT positions, the respective reference AUT orientations, and the two reference AUT polarization orientations.

Annex P (informative): Change history

						Change history	
Date	Meeting	TDoc	CR	R ev	Cat	Subject/Comment	New version
2017-08	RAN5 #76	R5-174709	1-	-	-	Draft skeleton	0.0.1
2018-01	RAN5#1- 5G-NR Adhoc	R5-180002	-	-	-	Add references	0.1.0
2018-01	RAN5#1- 5G-NR Adhoc	R5-180103	-	-	-	Add definitions, symbols and abbreviations	0.1.0
2018-01	RAN5#1- 5G-NR Adhoc	R5-180104	-	-	-	Introduction of Operating bands and Channel arrangement	0.1.0
2018-01	RAN5#1- 5G-NR Adhoc	R5-180094	-	-	-	Introduction of new test case 6.3.2 Transmit OFF power	0.1.0
2018-01	RAN5#1- 5G-NR Adhoc	R5-180095	-	-	-	TP to add skeleton of 6.5.1 Occupied bandwidth to 38.521-2	0.1.0
2018-01	RAN5#1- 5G-NR Adhoc	R5-180096	-	-	-	TP to add skeleton of 6.5.2.1 SEM to 38.521-2	0.1.0
2018-01	RAN5#1- 5G-NR Adhoc	R5-180097	-	-	-	TP to add skeleton of 6.5.2.3 ACLR to 38.521-2	0.1.0
2018-03	RAN5 #78	R5-181508	-	-	-	Updated 38.521-2 to extend Annex with additional testing information	0.2.0
2018-03	RAN5 #78	R5-181680	-	-	-	TP to skeleton of 7.6.1 Inband blocking to 38.521-2	0.2.0
2018-03	RAN5 #78	R5-181681	-	-	-	5G-NR: Text Proposal to add spurious emissions test case to 38.521-2	0.2.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-181978	-	-	-	Update TS 38.521-2 further to align with the latest TS 38.101-2 spec structure.	0.3.1
2018-04	RAN5#2- 5G-NR Adhoc	R5-182027	-	-	-	5G-NR Text Proposal to update spurious emissions test case to 38.521-2	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182041	-	-	-	5G-NR Text Proposal to add REFSENS test case to 38.521-2	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182009	-	-	-	General section updated to 38.521-2	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182048	-	-	-	Addition of FR2 test case 6.3.1 Minimum Output Power	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182049	-	-	-	Addition of FR2 test case 6.3.3.2 General ON/OFF time mask	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-181839	-	-	-	Definitions and abbreviations updated to 38.521-2	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-181840	-	-	-	Operating bands and Channel arrangement updated to 38.521-2	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182008	-	-	-	Introduction of new test case 7.4 Maximum input level	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182010	-	-	-	Common uplink configuration table for Tx test cases for TS 38.521-2 non-CA	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182011	-	-	-	TP for 6.5.1 Occupied Bandwidth in TS 38.521-2	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182029	-	-	-	TP for 6.5.2.1 Spectrum Emission Mask in TS 38.521-2	0.4.0

2018-04	RAN5#2-	R5-182031	-	-	-	TP for 6.5.2.3 Adjacent Channel Leakage Ratio in TS 38.521-2	0.4.0
	5G-NR Adhoc						
2018-04	RAN5#2- 5G-NR Adhoc	R5-182043	-	-	-	TP for 7.6.2 InBand Blocking in TS 38.521-2	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182046	-	-	-	TP for 7.5 Adjacent channel selectivity in TS 38.521-2	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-181844	-	-	-	Add Annex G (normative): Measurement uncertainties and Test Tolerances	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-181844	-	-	-	Add clause 4.4 Test point analysis	0.4.0
2018-05	RAN5 #79	R5-183908	-	 -	-	Introduction of New FR2 test case 6.3.3.4 PRACH time mask	0.5.0
2018-05	RAN5 #79	R5-182769	-	-	-	General section updated to 38.521-2	0.5.0
2018-05	RAN5 #79	R5-183914	-	-	-	TP for FR2 spurious test procedure (38.521-2)	0.5.0
2018-05	RAN5 #79	R5-183925	-	<u> -</u>	-	Update of Refsens test procedure for FR2	0.5.0
2018-05	RAN5 #79	R5-182883	-	-	-	Definitions, symbols and abbreviations updated to 38.521-2	0.5.0
2018-05	RAN5 #79	R5-182884	-	-	-	Operating bands and Channel arrangement updated to 38.521-2	0.5.0
2018-05	RAN5 #79	R5-182890	-	-	-	Update minimum conformance requirements and test requirement for 6.3.2 Transmit OFF power	0.5.0
2018-05	RAN5 #79	R5-183926	-	-	-	Annex for test case applicability per permitted test method	0.5.0
2018-05	RAN5 #79	R5-183712	-	-	-	Corrections annexes for EIRP and TRP metric definition	0.5.0
2018-05	RAN5 #79	R5-183927	-	Ŀ		Clean up TBD from Occupied Bandwidth, SEM and ACLR test cases	0.5.0
2018-05	RAN5 #79	R5-183928	-	 - _	-	Clean up TBD from ACS and Inband Blocking test cases	0.5.0
2018-05	RAN5 #79	R5-183948	-	├-		Statistical Testing Annex for 38.521-2	0.5.0
2018-08	RAN5 #80	R5-185348	-	-	-	Correction to FR2 Spurious TC and introduction of TRP measurement grid requirement	1.0.0
2018-08	RAN5 #80	R5-185350	-	-	1-	Addition of Frequency Error test case to TS 38.521-2	1.0.0
2018-08	RAN5 #80	R5-185490	1-	-	-	FR2 TxSpurious TestConfig 38.521-2	1.0.0
2018-08	RAN5 #80	R5-185562	-	-	-	FR2_StoreTxRxBeamPeakCoordinates_38.521-2	1.0.0
2018-08	RAN5 #80	R5-184742	-	<u> -</u>		Update of FR2 test case 6.3.1	1.0.0
2018-08	RAN5 #80	R5-184743	-	-	-	Update of FR2 test case 6.3.3.2	1.0.0
2018-08	RAN5 #80	R5-184856	-	-	-	General sections updated to 38.521-2	1.0.0
2018-08	RAN5 #80	R5-185519	-	-	<u> </u>	Updates of FR2 TRx MU and TT in Annex	1.0.0
2018-08 2018-08	RAN5 #80 RAN5 #80	R5-185555 R5-185191	-	-	-	FR2_UE_BeamlockInvoke_38.521-2 Update to Occupied Bandwidth, SEM and ACLR test cases in TS	1.0.0
2018-08	RAN5 #80	R5-185192	-	┢	-	38.521-2 Update to ACS and inband blocking test cases in TS 38.521-2	1.0.0
2018-08	RAN5 #80	R5-185187	 -	 -	 -	FR2 RefSens TestConfig 38.521-2	1.0.0
2018-08	RAN5 #80	R5-185188	-	-	<u> </u>	DL and UL RMC updated for FR2 tests	1.0.0
2018-08	RAN5 #80	R5-185189	-	-	1-	Downlink physical channel updated for FR2 tests	1.0.0
2018-08	RAN5 #80	R5-185190	1-	-	-	OCNG Patterns updated for FR2 tests	1.0.0
2018-08	RAN5 #80	R5-185194	-	-	-	Update to Test frequencies for SEM in TS 38.521-2	1.0.0
2018-08	RAN5 #80	R5-185196	-	-	-	Addition of Carrier Leakage test case to TS 38.521-2	1.0.0
2018-08	RAN5 #80	R5-185193	-	-	-	Addition of Annex Global In-Channel TX-Test to 38.521-2	1.0.0
2018-08	RAN5 #80	R5-185197	-	<u> -</u>	-	Introduction of maximum output power test cases	1.0.0
2018-08	RAN5 #80	R5-185195	-	<u> </u>	-	Addition of EVM test case to TS 38.521-2	1.0.0
2018-09	RAN #81	- DE 100E04	-	-	-	raised to v15.0.0 with editorial changes only	15.0.0
2018-12 2018-12	RAN #82 RAN #82	R5-186504 R5-186505	0021	-	F	FR2 RefSens test case updates Update Text on Store Beam Peak Coordinate	15.1.0 15.1.0
2018-12	RAN #82	R5-186510	0022	 	F	Structure updates to Annex C and G	15.1.0
2018-12	RAN #82	R5-186675	0023	-	F	Updating test case 6.2.3 maximum output power with additional requirements	15.1.0
2018-12	RAN #82	R5-187151	0034	 	F	Updated to Annexes for FR2 tests	15.1.0
2018-12	RAN #82	R5-187152	0035	1-	F	General Information updated for TS38.521-2	15.1.0
2018-12	RAN #82	R5-187561	0042	<u> </u>	F	Update to Table 5.3.5-1 in TS 38.521-2	15.1.0
2018-12	RAN #82	R5-187619	0050	<u>l</u> -	F	Update of Section 6.3.3.1 General	15.1.0
2018-12	RAN #82	R5-187838	0045	1	F	Update of transmit signal quality test cases in 38.521-2	15.1.0
2018-12	RAN #82	R5-187839	0046	1	F	Addition of In-band Emissions test case to TS 38.521-2	15.1.0
2018-12	RAN #82	R5-187840	0047	1	F	Addition of EVM equalizer spectral flatness test cases 6.4.2.4 and 6.4.2.5 to TS 38.521-2	15.1.0
2018-12	RAN #82	R5-187841	0048	1	F	Update of Common Uplink Configuration for FR2	15.1.0
2018-12	RAN #82	R5-187842	0029	1	F	General sections updated to 38.521-2	15.1.0
2018-12	RAN #82	R5-187843	0044	1	F	Update of Global In-channel Tx Test Annex in 38.521-2	15.1.0
2018-12	RAN #82	R5-187886	0020	1	F	FR2 Spurious Emission test case updates	15.1.0
2018-12	RAN #82	R5-187912	0038	1	F	Addition of notes to clarify test point selection into general section of TS 38.521-2	15.1.0
2018-12	RAN #82	R5-188037	0032	1	F	Removing the Editor's notes of SA messages and procedures for all FR2 test cases	15.1.0
2018-12	RAN #82	R5-188038	0036	1	F	FR2 downlink signal level(38.521-2)	15.1.0

0040.40	I D A N . // 00	IDE 400000	10007	1	-		14540
2018-12	RAN #82	R5-188063	0027	1	F	Update of FR2 6.3.2 Transmit OFF power	15.1.0
2018-12	RAN #82	R5-188212 R5-188213	0040	2	F	Updates to maximum output power test cases	15.1.0
2018-12	RAN #82		0028	1	F	Update of FR2 test case 7.4	15.1.0
2018-12	RAN #82	R5-188214	0025 0031	1	F	Updates of TT in TS 38.521-2 Annex F during RAN5#81 TDD configuration for UE Tx test in FR2	15.1.0 15.1.0
	RAN #82	R5-188215			F		
2018-12 2018-12	RAN #82	R5-188216 R5-188217	0039	2	F		15.1.0 15.1.0
2018-12	RAN #82		0041	1	F	On measurement grids	15.1.0
2018-12	RAN #82 RAN #82	R5-188218	0043 0024	2	F	Update to Annex K	
		RP-182736				Updates of MU Annex F	15.1.0
2019-03	RAN #83	R5-191091	0083	-	F	Updates of TT in TS38.521-2 Annex F during RAN5#NR4	15.2.0
2019-03	RAN #83	R5-191092	0084	Ι-	F	Editorial correction of core alignment in TS 38.521-2	15.2.0
2019-03	RAN #83	R5-191093	0085	-	F	Editorial cleaning up of test configuration tables in TS 38.521-2	15.2.0
2019-03	RAN #83	R5-191246	0086	-	F	Update TRP measurement procedure Annex in TS38.521-2	15.2.0
2019-03	RAN #83	R5-191247	0087	-	F	Update Annex K and Annex M in TS38.521-2	15.2.0
2019-03	RAN #83	R5-191259	0088	-	F	Update to FR2 test case 6.3.3.4 PRACH time mask	15.2.0
2019-03	RAN #83	R5-191507	0090	-	F	Shared Risk clarification in TS 38.521-2	15.2.0
2019-03	RAN #83	R5-191609	0093	-	F	CR to TS 38.521-2 to add text proposal for Annex F.1	15.2.0
2019-03	RAN #83	R5-191676	0094	-	F	Addition of FR2 6.2.4 Configured transmitted power	15.2.0
2019-03	RAN #83	R5-191677	0095	<u> </u>	F	Update of FR2 6.3.1 Minimum Output Power	15.2.0
2019-03	RAN #83	R5-191679	0096	-	F	Addition of FR2 6.3.4.2 Absolute power tolerance	15.2.0
2019-03	RAN #83	R5-191680	0097	-	F	Update of FR2 6.3.3.2 General ON/OFF time mask	15.2.0
2019-03	RAN #83	R5-191793	0098	-	F	Introduction of Minimum output power for 2UL CA	15.2.0
2019-03	RAN #83	R5-191809	0099	-	F	OBW test procedure update for 38.521-2	15.2.0
2019-03	RAN #83	R5-191812	0100	-	F	FR2 Spurious Emission test case updates	15.2.0
2019-03	RAN #83	R5-191824	0102	-	F	Update to Annex K and Annex L	15.2.0
2019-03	RAN #83	R5-191986	0107	-	F		15.2.0
2019-03	RAN #83	R5-192092	0110	-	F		15.2.0
				<u> </u>	<u> </u>	TS 38.521-2	1-00
2019-03	RAN #83	R5-192095	0111	-	F	Test mode and test loop function activation in SA Rx RF test cases in	15.2.0
2010.00	D 4 N 1 1/00	DE 400400	0110	_	_	TS 38.521-2	45.0.0
2019-03	RAN #83	R5-192122	0112	-	F	Update of Global In-channel Tx Test Annex for FR2	15.2.0
2019-03	RAN #83	R5-192450	0089	1	F	Update of test case 6.3.4.3, Relative power tolerance in 38.521-2	15.2.0
2019-03	RAN #83	R5-192451	0082	1	F	Updates of test environment for frequency error	15.2.0
2019-03	RAN #83	R5-192452	0105	1	F	FR2 SA Spurious Emission Coexistence test case	15.2.0
2019-03	RAN #83	R5-192648	0106	1	F	Introduction of Aggregate power tolerance in NR SA FR2	15.2.0
2019-03	RAN #83	R5-192649	0117	1	F	CR to add UL RMC for 60kHz SCS in Annex A.2.3	15.2.0
2019-03	RAN #83	R5-192650	0113	1	F	Update of transmit signal quality test cases for FR2	15.2.0
2019-03	RAN #83	R5-192651	0114	1	F	Update OBW test case in TS 38.521-2	15.2.0
2019-03	RAN #83	R5-192652	0115	1	F	Update SEM test case in TS 38.521-2	15.2.0
2019-03	RAN #83	R5-192653	0116	1	F	Update ACLR test case in TS 38.521-2	15.2.0
2019-03	RAN #83	R5-192654	0101	1	F	FR2 Reference Sensitivity test case updates	15.2.0
2019-03	RAN #83	R5-192655	0104	1	F	FR2 Reference Sensitivity EIS spherical coverage	15.2.0
2019-03	RAN #83	R5-192667	0108	1	F	Update of Annex F.2	15.2.0
2019-03	RAN #83	R5-192849	0080	2	F	Updates of MU in TS38.521-2 Annex F during RAN5#82	15.2.0
2019-03	RAN #83	R5-192843	0081		F	Updates of TT in TS38.521-2 Annex F during RAN5#82	15.2.0
2019-03	RAN #83	R5-192680	0103	1	F	38.521-2 Editor's Note Updates	15.2.0
2019-03	RAN #83	RP-190746	0118	4	F	Updates to maximum output power test cases	15.2.0
2019-03	RAN#83	-	-	<u> -</u>	<u>-</u>	Editorial correction of references to TS 38.508-1 clause 4.6 tables	15.2.0
2019-06	RAN#84	R5-193541	0137	-	F	Alignment of scheduling of DL RMC with scheduling of UL RMC	15.3.0
2019-06	RAN#84	R5-193552	0138	-	F	Core alignment of RAN4 pending issues in TS 38.521-2	15.3.0
2019-06	RAN#84	R5-193575	0143	-	F	Correction of 38.521-2 7.4	15.3.0
2019-06	RAN#84	R5-193749	0151	-	F	Updates of ACLR test procedure	15.3.0
2019-06	RAN#84	R5-193820	0152	-	F	Correction of 38.521-2 clause 2 to 5	15.3.0
2019-06	RAN#84	R5-194009	0153	-	F	FR2 Reference Sensitivity test case updates	15.3.0
2019-06	RAN#84	R5-194243	0161	-	F	Addition FR2 blocking measurement procedure in Annex K	15.3.0
2019-06	RAN#84	R5-194264	0163	-	F	Correction to FR2 EIRP test configurations	15.3.0
2019-06	RAN#84	R5-194265	0164	-	F	Correction to FR2 EIS test configurations	15.3.0
2019-06	RAN#84	R5-194269	0165	-	F	Update FR2 ACS and Inband blocking test cases	15.3.0
2019-06	RAN#84	R5-194461	0170	-	F	Update to 6.2.3 A-MPR FR2	15.3.0
2019-06	RAN#84	R5-194618	0171	-	F	Update of Global In-channel Tx Test Annex for FR2	15.3.0
2019-06	RAN#84	R5-194958	0139	1	F	Updates of MU and TT in TS 38.521-2 Annex F during RAN5#NR5	15.3.0
2019-06	RAN#84	R5-194968	0167	1	F	Update of TC 6.3A.1.1 Minimum output power for 2UL CA	15.3.0
2019-06	RAN#84	R5-194969	0166	1	F	Clean up FR2 SA test cases	15.3.0
2019-06	RAN#84	R5-194970	0160	1	F	Introduction of beam correspondence	15.3.0
2019-06	RAN#84	R5-194971	0162	1	F	Introduction of beam correspondence for CA	15.3.0
12010 00	RAN#84	R5-194976	0173	1	F	Update of Frequency Error Test Case for FR2	15.3.0
2019-06					lF	I Editorial compations for COALIE requirement action to accomp	15.3.0
2019-06	RAN#84	R5-194977	0175	1		Editorial corrections for 6.2.1 UE maximum output power	
2019-06 2019-06	RAN#84 RAN#84	R5-194977 R5-195080	0176	-	F	Update of FR2 ON_ON time mask test cases	15.3.0
2019-06 2019-06 2019-06	RAN#84 RAN#84 RAN#84	R5-194977 R5-195080 R5-195147	0176 0141	- 1	F F	Update of FR2 ON_ON time mask test cases Addition of new SA FR2 RF test case 6.2.2	15.3.0 15.3.0
2019-06 2019-06	RAN#84 RAN#84	R5-194977 R5-195080	0176	-	F	Update of FR2 ON_ON time mask test cases	15.3.0

2019-06	RAN#84	R5-195152	0145	1	F	Introduction of OFF power (SA UL CA)	15.3.0
2019-06	RAN#84	R5-195153	0146	1	F	Introduction of Frequency error (SA UL CA)	15.3.0
2019-06	RAN#84	R5-195154	0148	1	F	Introduction of SEM (SA UL CA)	15.3.0
2019-06 2019-06	RAN#84	R5-195155	0149	1	F	Introduction of ACLR (SA UL CA)	15.3.0
2019-06	RAN#84 RAN#84	R5-195156 R5-195157	0150 0157	1	IF F	Introduction of General Spurious (SA UL CA) Introduction of New test case 6.5A.1.1 Occupied bandwidth for CA	15.3.0 15.3.0
2019-06	RAN#84	K2-195157	0157	1	-	(2UL CA)	15.3.0
2019-06	RAN#84	R5-195158	0156	1	F	Update Out of band emission test cases in TS 38.521-2	15.3.0
2019-06	RAN#84	R5-195160	0159	1	F	Introduction of SRS time mask for UL-MIMO	15.3.0
2019-06	RAN#84	R5-195404	0172	1	F	Update of transmit signal quality test cases for FR2	15.3.0
2019-06	RAN#84	R5-195417	0154	1	F	38.521-2 implementation of FR2 UL demod OTA tests using single	15.3.0
						pol Rx TE	
2019-06	RAN#84	R5-195432	0168	2	F	Update to 6.2.1.1 UE maximum output power - EIRP and TRP	15.3.0
2019-06	RAN#84	R5-195433	0169	2	F	Update to 6.2.1.2 UE maximum output power - Spherical coverage	15.3.0
2019-06	RAN#84	R5-195434	0140	1	F	Updates of MU and TT in TS 38.521-2	15.3.0
2019-06	RAN#84	R5-195435	0155	1	F	Core alignment with TS 38.101-2	15.3.0
2019-06	RAN#84	-	-	-	-	Administrative release upgrade to match the release of 3GPP TS	16.0.0
						38.508-1 and TS 38.521-1 which were upgraded at RAN#84 to Rel-	
0010.00	DANIJOE	DE 405005	0170	_	<u> </u>	16 due to Rel-16 relevant CR(s)	1010
2019-09	RAN#85	R5-195695	0178	-	F	Change of TS 38.521-2 UL CA MOP Minimum conformance	16.1.0
2019-09	RAN#85	R5-196069	0194	+	F	requirements Introduction of absolute power tolerance for CA test cases	16.1.0
2019-09	RAN#85 RAN#85	R5-196069 R5-196165	0194	-	F	Correction of wrong spec reference numbers for TS 38.508-1	16.1.0
2019-09	RAN#85	R5-196165 R5-196236	0202	1-	F	Correction of wrong spec reference numbers for 15 38.508-1 Correction to test procedure of TC 6.4.2.2 Carrier Leakage	16.1.0
2019-09	RAN#85	R5-190230	0202	l	F	Clarification on EVM test requirement for PUCCH and PRACH	16.1.0
2019-09	RAN#85	R5-196240 R5-196427	0208	t-	F	Update of FR2 6.2.4 Configured transmitted power	16.1.0
2019-09	RAN#85	R5-190427	0209	-	F	Update of FR2 6.3.3.2 General ON OFF time mask	16.1.0
2019-09	RAN#85	R5-196431	0211	-	F	Addition of FR2 6.2A.4 Configured transmitted power for 2UL CA	16.1.0
2019-09	RAN#85	R5-196433	0213	-	F	Addition of FR2 6.2D.4 Configured transmitted power for UL MIMO	16.1.0
2019-09	RAN#85	R5-196434	0214	-	F	Addition of FR2 6.3D.1 Minimum output power for UL MIMO	16.1.0
2019-09	RAN#85	R5-196594	0220	-	F	Addition of new test case 6.4A.2.1.2 Error vector magnitude for 3UL	16.1.0
						CA in FR2	
2019-09	RAN#85	R5-196595	0221	-	F	Addition of new test case 6.4A.2.1.3 Error vector magnitude for 4UL	16.1.0
						CA in FR2	
2019-09	RAN#85	R5-196650	0225	-	F	Update of Minimum conformance requirements and test	16.1.0
						configurations in TC 6.2.2	
2019-09	RAN#85	R5-196810	0229	-	F	Update to TRP measurement grid section in TS 38.521-2	16.1.0
2019-09	RAN#85	R5-196950	0239	-	F	Corrections on clause 2 and 3 in 38.521-2	16.1.0
2019-09	RAN#85	R5-197384	0197	1	F	Update UL-MIMO to UL MIMO to align with RAN4 terminology in	16.1.0
0010.00	D 4 1 1 1 0 5	DE 40700E	0000	_	<u> </u>	FR2	1010
2019-09	RAN#85	R5-197385	0238	1	F	Update OBW FR2 test case	16.1.0
2019-09	RAN#85 RAN#85	R5-197386 R5-197387	0200 0242	1	F	Alignment of clause 2 to 5 with the core spec	16.1.0 16.1.0
2019-09	RAN#85	R5-197387	0219	1	IF F	Integrating the QoQZ Procedures into 38.521-2 Addition of new test case 6.4A.2.1.1 Error vector magnitude for 2UL	16.1.0
2019-09	KAN#05	K3-197300	0219	1	-	CA in FR2	10.1.0
2019-09	RAN#85	R5-197389	0222	1	F	Update of TC 6.3A.1.1 Minimum output power for 2UL CA	16.1.0
2019-09	RAN#85	R5-197390	0223	1	F	Addition of new test case 6.3A.1.2 Minimum output power for 3UL	16.1.0
2010 00	10.00	110 201000	0220	-	ľ	CA in FR2	10.1.0
2019-09	RAN#85	R5-197391	0224	1	F	Addition of new test case 6.3A.1.3 Minimum output power for 4UL	16.1.0
				<u> </u>	L	CA in FR2	
2019-09	RAN#85	R5-197392	0227	1	F	Update of Common Uplink Configuration table for PC3	16.1.0
2019-09	RAN#85	R5-197393	0212	1	F	Addition of FR2 6.3A.3 ON_OFF time mask for 2 UL CA	16.1.0
2019-09	RAN#85	R5-197394	0215	1	F	Addition of FR2 6.3D.3 General ON_OFF power for UL MIMO	16.1.0
2019-09	RAN#85	R5-197395	0199	1	F	Addition of new Annex N (normative): UE coordinate system	16.1.0
2019-09	RAN#85	R5-197500	0231	1	F	Update of Spurious Emissions TRP test procedure	16.1.0
2019-09	RAN#85	R5-197501	0233	1	F	Update of FR2 MUs in TS 38.521-2	16.1.0
2019-09	RAN#85	R5-197503	0230	1	F	Update of TRP measurement grids for spurious emissions	16.1.0
2019-09	RAN#85	R5-197529	0180	1	F	New Introduction of TC 6.2A.1.2.1 UE Maximum output power	16.1.0
2012.00	DANIJOS	DE 407500	0101	1	 	Spherical coverage 2UL CA	1010
2019-09	RAN#85	R5-197530	0181	1	F	New Introduction of TC 6.2A.1.2.2 UE Maximum output power	16.1.0
2019-09	RAN#85	R5-197531	0182	1	F	Spherical coverage 3UL CA New Introduction of TC 6.2A.1.2.3 UE Maximum output power	16.1.0
7019-09	CO#NHOO	L/2-TA122T	0102	_	-	Spherical coverage 4UL CA	10.1.0
2019-09	RAN#85	R5-197532	0183	1	F	New Introduction of TC 6.4A.2.2.1 Carrier leakage 2UL CA	16.1.0
2019-09	RAN#85	R5-197533	0184	1	lF	New Introduction of TC 6.4A.2.2.1 Carrier leakage 20L CA	16.1.0
2019-09	RAN#85	R5-197534	0185	1	F	New Introduction of TC 6.4A.2.2.3 Carrier leakage 4UL CA	16.1.0
2019-09	RAN#85	R5-197534	0189	1	F	Rel-16 NR 38.521-2 Addition of new TC 6.2A.1.1.1	16.1.0
2019-09	RAN#85	R5-197536	0193	1	F	Additions to the SRS time mask for UL-MIMO test case	16.1.0
	RAN#85	R5-197537	0195	1	F	Additions to the beam correspondence test case	16.1.0
2019-09		. 10 101001		_	F		16.1.0
2019-09 2019-09		R5-197538	10203	11	11-	TCORRECTION TO RB allocation in 6.2.2 DE maximum official nower	I TO:T:U
2019-09 2019-09	RAN#85	R5-197538	0203	1	-	Correction to RB allocation in 6.2.2 UE maximum output power reduction	10.1.0

2019-09	RAN#85	R5-197540	0205	1	lF	Correction to UBF in transmit modulation quality test cases	16.1.0
2019-09	RAN#85	R5-197541	0226	1	F	Update of FR2 A-MPR test case	16.1.0
2019-09	RAN#85	R5-197541	0190	1	F	Refsens test case updates	16.1.0
2019-09	RAN#85	R5-197543	0196	1	F	Introduction of beam correspondence to direct far field (DFF)	16.1.0
2019-09	RAN#85	R5-197545	0216	1	F	Updated to Annex A for RF FR2 tests	16.1.0
2019-09		R5-197545	0232	1	F		_
	RAN#85	+		1	F	Integrating the Re-Positioning Concept into Annex K	16.1.0
2019-09	RAN#85	R5-197614	0191	1		Spurious test case updates	16.1.0
2019-09	RAN#85	R5-197642	0201		F	Correction to 6.5.2.1 SEM and 6.5.2.3 ACLR to consider MPR values	16.1.0
2019-09	RAN#85	R5-197643	0210	2	F	Addition of FR2 6.2A.2 MPR for 2 UL CA	16.1.0
2019-09	RAN#85	R5-197644	0177	2	F	Updates of MU and TT in TS 38.521-2	16.1.0
2019-09	RAN#85	R5-197645	0234	2	F	Addition of the connection setup in TS 38.521-2	16.1.0
2019-12	RAN#86	R5-198072	0247	-	F	Introduction of 4 New test cases 6.5A.1 Occupied bandwidth for CA	16.2.0
2019-12	RAN#86	R5-198073	0248	-	F	Introduction of 4 New test cases 6.5A.2.1 Spectrum Emission Mask for CA	16.2.0
2019-12	RAN#86	R5-198075	0249	-	F	Introduction of 4 New test cases 6.5A.2.2 Adjacent channel leakage ratio for CA	16.2.0
2019-12	RAN#86	R5-198078	0250	-	F	New Introduction of TC 6.2A.1.2.4 UE maximum output power - Spherical coverage 5UL CA	16.2.0
2019-12	RAN#86	R5-198079	0251	-	F	New Introduction of TC 6.2A.1.2.5 UE maximum output power -	16.2.0
2010 12	DANHOC	DE 100000	0252	┢	-	Spherical coverage 6UL CA New Introduction of TC 6.2A.1.2.6 UE maximum output power -	1620
2019-12	RAN#86	R5-198080	0252	_	F	Spherical coverage 7UL CA	16.2.0
2019-12	RAN#86	R5-198081	0253	-	F	New Introduction of TC 6.2A.1.2.7 UE maximum output power - Spherical coverage 8UL CA	16.2.0
2019-12	RAN#86	R5-198210	0260	-	F	Addition of Common Uplink Configuration for PC1 in SA FR2 6.1	16.2.0
2019-12	RAN#86	R5-198381	0267	-	F	Introduction of beam correspondence side conditions	16.2.0
2019-12	RAN#86	R5-198385	0269	-	F	Update of minimum conformance requirements for SA FR2 7.4	16.2.0
2019-12	RAN#86	R5-198636	0276	-	F	General clause updated for FR2 spec	16.2.0
2019-12	RAN#86	R5-198730	0278	-	F	Correction of test requirements	16.2.0
2019-12	RAN#86	R5-199086	0262	1	F	CR to 38.521-2 on Measurement Grids for PC1 UEs	16.2.0
2019-12	RAN#86	R5-199087	0243	2	F	Updates of MU and TT in TS 38.521-2	16.2.0
2019-12	RAN#86	R5-199356	0245	1	F	Update of FR2 6.3.3.2 ON-OFF time mask	16.2.0
2019-12	RAN#86	R5-199357	0244	1	F	Update of FR2 6.3.1 minimum output power	16.2.0
2019-12	RAN#86	R5-199358	0263	1	F	CR to 38.521-2 on optimized search procedure for REFSENS	16.2.0
2019-12	RAN#86	R5-199359	0264	1	F	CR to 38.521-2 on optimized search procedure for RX Beam Peak Search	16.2.0
2019-12	RAN#86	R5-199360	0254	1	F	Updating incorrect note in test procedure	16.2.0
2019-12	RAN#86	R5-199361	0256	1	F	Spurious UL MIMO test case updates	16.2.0
2019-12	RAN#86	R5-199373	0265	1	F	Introduction of New TC 6.4A.2.3.1 In-band emissions for 2UL CA	16.2.0
2019-12	RAN#86	R5-199374	0266	1	F	Update to test case 6.3.3.4 PRACH time mask in FR2	16.2.0
2019-12	RAN#86	R5-199374	0257	1	F	Ref Sens UL MIMO test case updates	16.2.0
2019-12	RAN#86	R5-199376	0258	1	F	Alignment of clause 3 to 5 with the core spec	16.2.0
2019-12	RAN#86	R5-199376	0271	2	F	Further updates to the SRS time mask for UL-MIMO test case	16.2.0
2019-12	RAN#86	R5-199401	0282	 -	F	Update to UE maximum output power - Spherical coverage	16.2.0
2019-12	RAN#86	R5-199473	0277	1	F	Update of applicability for Spherical coverage and Beam	16.2.0
						Correspondence test cases	
2019-12	RAN#86	R5-199494	0281	1	F	Add section 4.5 Applicability and test coverage rules	16.2.0
2019-12	RAN#86	R5-199495	0246	1	F	Update of FR2 6.3.4.2 absolute power tolerance	16.2.0
2019-12	RAN#86	R5-199496	0270	1	F	Further updates to the absolute power tolerance for CA test cases	16.2.0
2019-12	RAN#86	R5-199504	0259	1	F	Addition of test requirements and update of minimum conformance requirements and test configurations for SA FR2 6.2.2	16.2.0
2019-12	RAN#86	R5-199548	0268	1	F	Updates to the beam correspondence TC	16.2.0
2019-12	RAN#86	R5-199579	0279	1	F	Update of quality of quiet zone validation procedure	16.2.0
2019-12	RAN#86	R5-199586	0275	1	F	Update on FR2 Spurious Test in 38.521-2	16.2.0
						1	-