3GPP TS 38.212 v16.4.0 (2020-12)

$3 G P$

AGLOBALINITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP ${ }^{\mathrm{TM}}$) and may be further elaborated for the purposes of 3GPP.. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP ${ }^{\text {TM }}$ system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords
3GPP, New Radio, Layer 1

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 492944200 Fax: +33 493654716

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
© 2020, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.
UMTS $^{\text {TM }}$ is a Trade Mark of ETSI registered for the benefit of its members
3GPP ${ }^{\text {TM }}$ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE $^{\text {TM }}$ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association

Contents

Foreword 6
1 Scope 7
2 References 7
3 Definitions, symbols and abbreviations 7
3.1 Definitions 7
3.2 Symbols.7
3.3 Abbreviations 8
4 Mapping to physical channels 9
4.1 Uplink. 9
4.2 Downlink 9
4.3 Sidelink 9
5 General procedures 10
5.1 CRC calculation. 10
5.2 Code block segmentation and code block CRC attachment 10
5.2.1 Polar coding. 10
5.2.2 Low density parity check coding. 11
5.3 Channel coding 13
5.3.1 Polar coding 13
5.3.1.1 Interleaving 14
5.3.1.2 Polar encoding. 15
5.3.2 Low density parity check coding. 19
5.3.3 Channel coding of small block lengths 26
5.3.3.1 Encoding of 1-bit information. 26
5.3.3.2 Encoding of 2-bit information. 26
5.3.3.3 Encoding of other small block lengths. 26
5.4 Rate matching. 27
5.4.1 Rate matching for Polar code. 27
5.4.1.1 Sub-block interleaving. 27
5.4.1.2 Bit selection. 28
5.4.1.3 Interleaving of coded bits 29
5.4.2 Rate matching for LDPC code 30
5.4.2.1 Bit selection 30
5.4.2.2 Bit interleaving. 32
5.4.3 Rate matching for channel coding of small block lengths. 33
5.5 Code block concatenation. 33
6 Uplink transport channels and control information. 33
6.1 Random access channel. 33
6.2 Uplink shared channel. 34
6.2.1 Transport block CRC attachment. 34
6.2.2 LDPC base graph selection. 34
6.2.3 Code block segmentation and code block CRC attachment. 34
6.2.4 Channel coding of UL-SCH. 34
6.2.5 Rate matching. 34
6.2.6 Code block concatenation. 35
6.2.7 Data and control multiplexing. 35
6.3 Uplink control information. 46
6.3.1 Uplink control information on PUCCH. 46
6.3.1.1 UCI bit sequence generation. 46
6.3.1.1.1 HARQ-ACK/SR only. 46
6.3.1.1.2 CSI only. 47
6.3.1.1.3 HARQ-ACK/SR and CSI. 54
6.3.1.2 Code block segmentation and CRC attachment. 55
6.3.1.2.1 UCI encoded by Polar code. 55
6.3.1.2.2 UCI encoded by channel coding of small block lengths. 55
6.3.1.3 Channel coding of UCI. 56
6.3.1.3.1 UCI encoded by Polar code. 56
6.3.1.3.2 UCI encoded by channel coding of small block lengths. 56
6.3.1.4 Rate matching. 56
6.3.1.4.1 UCI encoded by Polar code. 56
6.3.1.4.2 UCI encoded by channel coding of small block lengths. 57
6.3.1.5 Code block concatenation. 58
6.3.1.6 Multiplexing of coded UCI bits to PUCCH. 58
6.3.2 Uplink control information on PUSCH. 60
6.3.2.1 UCI bit sequence generation. 60
6.3.2.1.1 HARQ-ACK. 60
6.3.2.1.2 CSI. 61
6.3.2.1.3 CG-UCI 67
6.3.2.1.4 HARQ-ACK and CG-UCI. 68
6.3.2.2 Code block segmentation and CRC attachment. 68
6.3.2.2.1 UCI encoded by Polar code. 68
6.3.2.2.2 UCI encoded by channel coding of small block lengths. 68
6.3.2.3 Channel coding of UCI. 68
6.3.2.3.1 UCI encoded by Polar code. 68
6.3.2.3.2 UCI encoded by channel coding of small block lengths. 68
6.3.2.4 Rate matching. 69
6.3.2.4. UCI encoded by Polar code. 69
6.3.2.4.1.1 HARQ-ACK. 69
6.3.2.4.1.2 CSI part 1 71
6.3.2.4.1.3 CSI part 2. 74
6.3.2.4.1.4 CG-UCI. 77
6.3.2.4.1 HARQ-ACK and CG-UCI. 78
6.3.2.4.2 UCI encoded by channel coding of small block lengths. 78
6.3.2.4.2.1 HARQ-ACK. 78
6.3.2.4.2.2 CSI part 1. 79
6.3.2.4.2.3 CSI part 2 79
6.3.2.4.2.4 CG-UCI. 79
6.3.2.4.2.5 HARQ-ACK and CG-UCI. 79
6.3.2.5 Code block concatenation. 80
6.3.2.6 Multiplexing of coded UCI bits to PUSCH. 80
7 Downlink transport channels and control information. 80
7.1 Broadcast channel. 80
7.1.1 PBCH payload generation. 80
7.1.2 Scrambling 82
7.1.3 Transport block CRC attachment. 82
7.1.4 Channel coding. 83
7.1.5 Rate matching. 83
7.2 Downlink shared channel and paging channel. 83
7.2.1 Transport block CRC attachment. 83
7.2.2 LDPC base graph selection. 83
7.2.3 Code block segmentation and code block CRC attachment 83
7.2.4 Channel coding. 84
7.2.5 Rate matching. 84
7.2.6 Code block concatenation 84
7.3 Downlink control information. 84
7.3.1 DCI formats. 84
7.3.1.0 DCI size alignment. 85
7.3.1.0.1 DCI size alignment for DCI formats for scheduling of sidelink. 88
7.3.1.1 DCI formats for scheduling of PUSCH 88
7.3.1.1.1 Format 0_0 88
7.3.1.1.2 Format 0_1 91
7.3.1.1.3 Format 0_2 112
7.3.1.2 DCI formats for scheduling of PDSCH. 118
7.3.1.2.1 Format 1_0. 118
7.3.1.2.2 Format 1_1. 121
7.3.1.2.3 Format 1_2. 136
7.3.1.3 DCI formats for other purposes. 139
7.3.1.3.1 Format 2_0 139
7.3.1.3.2 Format 2_1 140
7.3.1.3.3 Format 2_2 140
7.3.1.3.4 Format 2_3. 140
7.3.1.3.5 Format 2_4. 141
7.3.1.3.7 Format 2_6. 141
7.3.1.4 DCI formats for scheduling of sidelink. 142
7.3.1.4.1 Format 3_0 142
7.3.1.4.2 Format 3_1 142
7.3.2 CRC attachment. 143
7.3.3 Channel coding 143
7.3.4 Rate matching. 143
8 Sidelink transport channels and control information. 144
8.1 Sidelink broadcast channel. 144
8.1.1 PSBCH payload generation. 144
8.2 Sidelink shared channel. 144
8.2.1 Data and control multiplexing. 144
8.3 Sidelink control information on PSCCH. 145
8.3.1 $\quad 1^{\text {st }}$-stage SCI formats. 145
8.3.1.1 SCI format 1-A 145
8.3.2 CRC attachment. 146
8.3.3 Channel coding. 147
8.3.4 Rate Matching. 147
8.4 Sidelink control information on PSSCH. 147
8.4.1 $\quad 2^{\text {nd }}-$ stage SCI formats. 147
8.4.1.1 SCI format 2-A. 147
8.4.1.2 SCI format 2-B 147
8.4.2 CRC attachment. 148
8.4.3 Channel coding. 148
8.4.4 Rate Matching. 148
8.4.5 Multiplexing of coded $2^{\text {nd }}$-stage SCI bits to PSSCH. 149
Annex A: Change history. 150

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.
y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z
the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies the coding, multiplexing and mapping to physical channels for 5G NR.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2] 3GPP TS 38.201: "NR; Physical Layer - General Description"
[3] 3GPP TS 38.202: "NR; Services provided by the physical layer"
[4] 3GPP TS 38.211: "NR; Physical channels and modulation"
[5] 3GPP TS 38.213: "NR; Physical layer procedures for control"
[6] 3GPP TS 38.214: "NR; Physical layer procedures for data"
[7] 3GPP TS 38.215: "NR; Physical layer measurements"
[8] 3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification"
[9] 3GPP TS 38.331: "NR; Radio Resource Control (RRC) protocol specification"
[10] 3GPP TS 38.473: "NG-RAN; F1 Application Protocol (F1AP)"
[11] 3GPP TS 36.212: "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding"
[12] 3GPP TS 23.287: "Architecture enhancements for 5G System (5GS) to support Vehicle-toEverything (V2X) services"

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

3.2 Symbols

For the purposes of the present document, the following symbols apply:

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

BCH	Broadcast channel
CBG	Code block group
CBGTI	Code block group transmission information
CG	Configured grant
CG-DFI	CG downlink feedback information
CG-UCI	CG uplink control information
CORESET	Control resource set
COT	Channel occupancy time
CQI	Channel quality indicator
CRC	Cyclic redundancy check
CRI	CSI-RS resource indicator
CSI	Channel state information
CSI-RS	CSI reference signal
DAI	Downlink assignment index
DCI	Downlink control information
DL	Downlink
DL-SCH	Downlink shared channel
DMRS	Dedicated demodulation reference signal
HARQ	Hybrid automatic repeat request
HARQ-ACK	Hybrid automatic repeat request acknowledgement
LDPC	Low density parity check
LI	Layer indicator
MCS	Modulation and coding scheme
OFDM	Orthogonal frequency division multiplex
PBCH	Physical broadcast channel
PCH	Paging channel
PDCCH	Physical downlink control channel
PDSCH	Physical downlink shared channel
PMI	Precoding matrix indicator
PRB	Physical resource block
PRACH	Physical random access channel
PSBCH	Physical sidelink broadcast channel
PSCCH	Physical sidelink control channel
PSFCH	Physical sidelink feedback channel
PSSCH	Physical sidelink shared channel
PTRS	Phase-tracking reference signal
PUCCH	Physical uplink control channel
PUSCH	Physical uplink shared channel
RACH	Random access channel
RI	Rank indicator
RSRP	Reference signal received power
SCI	Sidelink control information
SFCI	Sidelink feedback control information
SFN	System frame number
SL	Sidelink
SL-BCH	Sidelink broadcast channel
SL-SCH	Sidelink shared channel
SR	Scheduling request
SRS	Sounding reference signal
SS	Synchronisation signal
SUL	Supplementary uplink
TPC	Transmit power control
TrCH	Transport channel
UCI	Uplink control information
UE	User equipment

UL Uplink
UL-SCH Uplink shared channel
VRB Virtual resource block
ZP CSI-RS
Zero power CSI-RS

4 Mapping to physical channels

4.1 Uplink

Table 4.1-1 specifies the mapping of the uplink transport channels to their corresponding physical channels. Table 4.1-2 specifies the mapping of the uplink control channel information to its corresponding physical channel.

Table 4.1-1

TrCH	Physical Channel
UL-SCH	PUSCH
RACH	PRACH

Table 4.1-2

Control information	Physical Channel
UCI	PUCCH, PUSCH

4.2 Downlink

Table 4.2-1 specifies the mapping of the downlink transport channels to their corresponding physical channels. Table 4.2-2 specifies the mapping of the downlink control channel information to its corresponding physical channel.

Table 4.2-1

TrCH	Physical Channel
DL-SCH	PDSCH
BCH	PBCH
PCH	PDSCH

Table 4.2-2

Control information	Physical Channel
DCl	PDCCH

4.3 Sidelink

Table 4.3-1 specifies the mapping of the sidelink transport channels to their corresponding physical channels. Table 4.32 specifies the mapping of the sidelink control information and sidelink feedback control information to their corresponding physical channels.

Table 4.3-1

TrCH	Physical Channel
SL-SCH	PSSCH
SL-BCH	PSBCH

Table 4.3-2

Control information	Physical Channel
$1^{\text {st }}$-stage SCl	PSCCH
$2^{\text {nd }}$-stage SCl	PSSCH
SFCl	PSFCH

5 General procedures

Data and control streams from/to MAC layer are encoded /decoded to offer transport and control services over the radio transmission link. Channel coding scheme is a combination of error detection, error correcting, rate matching, interleaving and transport channel or control information mapping onto/splitting from physical channels.

5.1 CRC calculation

Denote the input bits to the CRC computation by $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$, and the parity bits by
$p_{0}, p_{1}, p_{2}, p_{3}, \ldots, p_{L-1}$, where A is the size of the input sequence and L is the number of parity bits. The parity bits are generated by one of the following cyclic generator polynomials:

$$
\begin{array}{ll}
- & g_{\mathrm{CRC} 24 \mathrm{~A}}(D)=\left[D^{24}+D^{23}+D^{18}+D^{17}+D^{14}+D^{11}+D^{10}+D^{7}+D^{6}+D^{5}+D^{4}+D^{3}+D+1\right] \quad \text { for a CRC length } \\
L=24 ; \\
- & g_{\mathrm{CRC} 24 \mathrm{~B}}(D)=\left[D^{24}+D^{23}+D^{6}+D^{5}+D+1\right] \text { for a CRC length } L=24 ; \\
- & g_{\mathrm{CRC} 24 \mathrm{C}}(D)=\left[D^{24}+D^{23}+D^{21}+D^{20}+D^{17}+D^{15}+D^{13}+D^{12}+D^{8}+D^{4}+D^{2}+D+1\right] \text { for a CRC length } \\
L=24 ; \\
- & g_{\mathrm{CRC} 16}(D)=\left[D^{16}+D^{12}+D^{5}+1\right] \quad \text { for a CRC length } L=16 ; \\
- & g_{\mathrm{CRC} 11}(D)=\left[D^{11}+D^{10}+D^{9}+D^{5}+1\right] \text { for a CRC length } L=11 ; \\
- & g_{\mathrm{CRC} 6}(D)=\left[D^{6}+D^{5}+1\right] \quad \text { for a CRC length } L=6 .
\end{array}
$$

The encoding is performed in a systematic form, which means that in GF(2), the polynomial:

$$
a_{0} D^{A+L-1}+a_{1} D^{A+L-2}+\ldots+a_{A-1} D^{L}+p_{0} D^{L-1}+p_{1} D^{L-2}+\ldots+p_{L-2} D^{1}+p_{L-1}
$$

yields a remainder equal to 0 when divided by the corresponding CRC generator polynomial ${ }^{\text { }}$
The bits after CRC attachment are denoted by $b_{0}, b_{1}, b_{2}, b_{3}, \ldots, b_{B-1}$, where $B=A+L$. The relation between a_{k} and b_{k} is:

$$
\begin{array}{ll}
b_{k}=a_{k} \quad \text { for } \quad k=0,1,2, \ldots, A-1 \\
b_{k}=p_{k-A} \quad \text { for } \quad k=A, A+1, A+2, \ldots, A+L-1 .
\end{array}
$$

5.2 Code block segmentation and code block CRC attachment

5.2.1 Polar coding

The input bit sequence to the code block segmentation is denoted by $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$, where $A>0$.
if $\quad I_{s e g}=1$

```
    Number of code blocks: C=2 ;
else
    Number of code blocks: C=1
end if
```

$$
\begin{aligned}
& A^{\prime}=[A / C] \cdot C ; \\
& \text { for } \quad i=0 \quad \text { to } \quad A^{\prime}-A-1 \\
& a_{i}^{\prime}=0
\end{aligned}
$$

end for

$$
\begin{aligned}
& \text { for } \quad i=A^{\prime}-A \text { to } A^{\prime}-1 \\
& a_{i}^{\prime}=a_{i-\left|A^{\prime}-A\right|} ;
\end{aligned}
$$

end for

$$
s=0 \text {; }
$$

$$
\begin{aligned}
& \text { for } \begin{aligned}
& r=0 \text { to } C-1 \\
& \text { for } k=0 \text { to } A^{\prime} / C-1 \\
& c_{r k}=a_{s}^{\prime} ; \\
& s=s+1
\end{aligned}
\end{aligned}
$$

end for
The sequence $C_{r 0}, C_{r 1}, C_{r 2}, C_{r 3}, \ldots, C_{\left.r \mid A^{\prime} / C-1\right)}$ is used to calculate the CRC parity bits $p_{r 0}, p_{r 1}, p_{r 2}, \ldots, p_{r(L-1)}$ according to Clause 5.1 with a generator polynomial of length L.
for $k=A^{\prime} / C$ to $A^{\prime} / C+L-1$

$$
c_{r k}=p_{r\left|k-A^{\prime} / C\right|}
$$

end for
end for
The value of A is no larger than 1706.

5.2.2 Low density parity check coding

The input bit sequence to the code block segmentation is denoted by $b_{0}, b_{1}, b_{2}, b_{3}, \ldots, b_{B-1}$, where $B>0 \quad$. If $\quad B$ is larger than the maximum code block size $K_{c b}$, segmentation of the input bit sequence is performed and an additional CRC sequence of $L=24$ bits is attached to each code block.

For LDPC base graph 1, the maximum code block size is:

- $\quad K_{c b}=8448$

For LDPC base graph 2, the maximum code block size is:

$$
-\quad K_{\mathrm{cb}}=3840
$$

Total number of code blocks C is determined by:
if $B \leq K_{\text {cb }}$

$$
L=0
$$

Number of code blocks: $\quad C=1$

$$
B^{\prime}=B
$$

else

$$
L=24
$$

Number of code blocks: $C=\left\lceil B /\left(K_{c b}-L\right)\right\rceil$.

$$
B^{\prime}=B+C \cdot L
$$

end if
The bits output from code block segmentation are denoted by $c_{r 0}, c_{r 1}, c_{r 2}, c_{r 3}, \ldots, c_{r\left|K_{r}-1\right|}$, where $\quad 0 \leq r<C \quad$ is the code block number, and $K_{r}=K \quad$ is the number of bits for the code block number r.

The number of bits K in each code block is calculated as:

$$
K^{\prime}=B^{\prime} / C \text {; }
$$

For LDPC base graph 1,

$$
K_{b}=22
$$

For LDPC base graph 2,
if $B>640$

$$
K_{b}=10 ;
$$

elseif $B>560$

$$
K_{b}=9 \text {; }
$$

elseif $B>192$

$$
K_{b}=8
$$

else

$$
K_{b}=6 \text {; }
$$

end if
find the minimum value of $Z \quad$ in all sets of lifting sizes in Table 5.3.2-1, denoted as Z_{c}, such that $K_{b} \cdot Z_{c} \geq K^{\prime}$, and set $K=22 Z_{c} \quad$ for LDPC base graph 1 and $\quad K=10 Z_{c} \quad$ for LDPC base graph 2;

The bit sequence ${ }^{c_{r k}}$ is calculated as:

```
    \(s=0\);
    for \(r=0\) to \(C-1\)
    for \(k=0\) to \(K^{\prime}-L-1\)
        \(c_{r k}=b_{s}\);
        \(s=s+1\);
    end for
    if \(C>1\)
```

 The sequence \({ }^{C_{r 0}}, C_{r 1}, C_{r 2}, C_{r 3}, \ldots, C_{\left.r \mid K^{\prime}-L-1\right)}\) is used to calculate the CRC parity bits \(p_{r 0}, p_{r 1}, p_{r 2}, \ldots, p_{r(L-1)}\)
 according to Clause 5.1 with the generator polynomial \(g_{\text {CRC24B }}(D)\).
 for \(k=K^{\prime}-L\) to \(K^{\prime}-1\)
 \(c_{r k}=p_{r\left(k+L-K^{\prime}\right)} ;\)
 end for
 end if
 for \(k=K^{\prime}\) to \(K-1 \quad--\) Insertion of filler bits
 \(c_{r k}=<\underset{i}{N U L L>i}\).
 end for
 end for

5.3 Channel coding

Usage of coding scheme for the different types of TrCH is shown in table 5.3-1. Usage of coding scheme for the different control information types is shown in table 5.3-2.

Table 5.3-1: Usage of channel coding scheme for TrCHs

TrCH	Coding scheme
UL-SCH	LDPC
DL-SCH	
PCH	Polar code
BCH	
y	

Table 5.3-2: Usage of channel coding scheme for control information

Control Information	Coding scheme
DCl	Polar code
UCI	Block code
	Polar code

5.3.1 Polar coding

The bit sequence input for a given code block to channel coding is denoted by $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$, where K is the number of bits to encode. After encoding the bits are denoted by $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$, where $N=2^{n}$ and the value of n is determined by the following:

Denote by E the rate matching output sequence length as given in Clause 5.4.1;

$$
\begin{aligned}
\text { If } & E \leq(9 / 8) \cdot 2^{\left(\left[\log _{2} E\right]-1\right)} \text { and } K / E<9 / 16 \\
& n_{1}=\left\lceil\log _{2} E\right]-1 ;
\end{aligned}
$$

else

$$
n_{1}=\left\lceil\log _{2} E\right\rceil
$$

end if

$$
\begin{aligned}
& R_{\min }=1 / 8 ; \\
& n_{2}=\left\lceil\log _{2}\left(K / R_{\min }\right)\right\rceil ; \\
& n=\max \left\{\min \left\{n_{1}, n_{2}, n_{\max }\right\}, n_{\min }\right\} \\
& \text { where } \quad n_{\min }=5 .
\end{aligned}
$$

UE is not expected to be configured with $K+n_{P C}>E$, where $\quad n_{P C} \quad$ is the number of parity check bits defined in Clause 5.3.1.2.

5.3.1.1 Interleaving

The bit sequence $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$ is interleaved into bit sequence $c^{\prime}{ }_{0}, c^{\prime}{ }_{1}, c^{\prime}{ }_{2}, c^{\prime}{ }_{3}, \ldots, c^{\prime}{ }_{K-1}$ as follows:

$$
c_{k}^{\prime}=c_{\Pi|k|}, \quad k=0,1, \ldots, K-1
$$

where the interleaving pattern $\Pi|k|$ is given by the following:

$$
\text { if } \quad I_{I L}=0
$$

$$
\Pi(k)=k \quad, \quad k=0,1, \ldots, K-1
$$

else

$$
k=0 \quad ;
$$

$$
\text { for } m=0 \quad \text { to } \quad K_{I L}^{\max }-1
$$

$$
\text { if } \quad \Pi_{I L}^{\max }(m) \geq K_{I L}^{\max }-K
$$

$$
\Pi(k)=\Pi_{I L}^{\max }(m)-\left(K_{I L}^{\max }-K\right)
$$

$$
k=k+1
$$

end if
end for
end if
where $\quad \Pi_{I L}^{\max }(m) \quad$ is given by Table 5.3.1.1-1 and $\quad K_{I L}^{\max }=164$.

Table 5.3.1.1-1: Interleaving pattern $\quad \Pi_{I L}^{\max }|m|$

m	$\Pi_{I L}^{\max }(\mathrm{m})$	m	$\Pi_{I L}^{\max }(m)$	m	$\Pi_{I L}^{\max }(\mathrm{m})$	m	$\Pi_{I L}^{\max }(m)$	m	$\Pi_{I L}^{\max }\|m\|$	m	$\Pi_{I L}^{\max }(m)$
0	0	28	67	56	122	84	68	$\begin{gathered} 11 \\ 2 \\ \hline \end{gathered}$	33	14 0	38
1	2	29	69	57	123	85	73	$\begin{gathered} 11 \\ 3 \\ \hline \end{gathered}$	36	14 1	144
2	4	30	70	58	126	86	78	11 4	44	14 2	39
3	7	31	71	59	127	87	84	$\begin{gathered} 11 \\ 5 \\ \hline \end{gathered}$	47	$\begin{gathered} 14 \\ 3 \end{gathered}$	145
4	9	32	72	60	129	88	90	11 6	64	14 4	40
5	14	33	76	61	132	89	92	$\begin{gathered} 11 \\ 7 \end{gathered}$	74	$\begin{gathered} 14 \\ 5 \end{gathered}$	146
6	19	34	77	62	134	90	94	$\begin{gathered} 11 \\ 8 \\ \hline \end{gathered}$	79	14 6	41
7	20	35	81	63	138	91	96	$\begin{gathered} 11 \\ 9 \\ \hline \end{gathered}$	85	$\begin{gathered} 14 \\ 7 \end{gathered}$	147
8	24	36	82	64	139	92	99	12 0	97	$\begin{gathered} 14 \\ 8 \\ \hline \end{gathered}$	148
9	25	37	83	65	140	93	102	$\begin{gathered} 12 \\ 1 \end{gathered}$	100	$\begin{gathered} 14 \\ 9 \end{gathered}$	149
10	26	38	87	66	1	94	105	$\begin{gathered} 12 \\ 2 \\ \hline \end{gathered}$	103	15 0	150
11	28	39	88	67	3	95	107	$\begin{gathered} 12 \\ 3 \\ \hline \end{gathered}$	117	$\begin{gathered} 15 \\ 1 \end{gathered}$	151
12	31	40	89	68	5	96	109	12 4	125	$\begin{gathered} 15 \\ 2 \\ \hline \end{gathered}$	152
13	34	41	91	69	8	97	112	$\begin{gathered} 12 \\ 5 \\ \hline \end{gathered}$	131	$\begin{gathered} 15 \\ 3 \end{gathered}$	153
14	42	42	93	70	10	98	114	$\begin{gathered} 12 \\ 6 \\ \hline \end{gathered}$	136	15 4	154
15	45	43	95	71	15	99	116	$\begin{gathered} 12 \\ 7 \\ \hline \end{gathered}$	142	$\begin{gathered} 15 \\ 5 \\ \hline \end{gathered}$	155
16	49	44	98	72	21	$\begin{gathered} 10 \\ 0 \\ \hline \end{gathered}$	121	$\begin{gathered} 12 \\ 8 \\ \hline \end{gathered}$	12	$\begin{gathered} 15 \\ 6 \end{gathered}$	156
17	50	45	101	73	27	$\begin{gathered} 10 \\ 1 \end{gathered}$	124	$\begin{gathered} 12 \\ 9 \\ \hline \end{gathered}$	17	$\begin{gathered} 15 \\ 7 \\ \hline \end{gathered}$	157
18	51	46	104	74	29	$\begin{gathered} 10 \\ 2 \end{gathered}$	128	$\begin{gathered} 13 \\ 0 \\ \hline \end{gathered}$	23	$\begin{gathered} 15 \\ 8 \end{gathered}$	158
19	53	47	106	75	32	$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	130	$\begin{gathered} 13 \\ 1 \end{gathered}$	37	$\begin{gathered} 15 \\ 9 \\ \hline \end{gathered}$	159
20	54	48	108	76	35	$\begin{gathered} 10 \\ 4 \end{gathered}$	133	$\begin{gathered} 13 \\ 2 \\ \hline \end{gathered}$	48	16 0	160
21	56	49	110	77	43	$\begin{gathered} 10 \\ 5 \end{gathered}$	135	$\begin{gathered} 13 \\ 3 \\ \hline \end{gathered}$	75	$\begin{gathered} 16 \\ 1 \\ \hline \end{gathered}$	161
22	58	50	111	78	46	$\begin{gathered} 10 \\ 6 \end{gathered}$	141	$\begin{gathered} 13 \\ 4 \end{gathered}$	80	$\begin{gathered} 16 \\ 2 \end{gathered}$	162
23	59	51	113	79	52	$\begin{gathered} 10 \\ 7 \\ \hline \end{gathered}$	6	$\begin{gathered} 13 \\ 5 \end{gathered}$	86	$\begin{gathered} 16 \\ 3 \end{gathered}$	163
24	61	52	115	80	55	$\begin{gathered} 10 \\ 8 \\ \hline \end{gathered}$	11	$\begin{gathered} 13 \\ 6 \\ \hline \end{gathered}$	137		
25	62	53	118	81	57	$\begin{gathered} 10 \\ 9 \\ \hline \end{gathered}$	16	13 7	143		
26	65	54	119	82	60	$\begin{gathered} 11 \\ 0 \\ \hline \end{gathered}$	22	13 8	13		
27	66	55	120	83	63	$\begin{gathered} 11 \\ 1 \end{gathered}$	30	13 9	18		

5.3.1.2 Polar encoding

The Polar sequence $Q_{0}^{N_{\max }-1}=\left\{Q_{0}^{N_{\text {max }}}, Q_{1}^{N_{\max }}, \ldots, Q_{N_{\max }-1}^{N_{\max }}\right\} \quad$ is given by Table 5.3.1.2-1, where $0 \leq Q_{i}^{N_{\max }} \leq N_{\max }-1$ denotes a bit index before Polar encoding for $i=0,1, \ldots, N_{\max }-1$ and $N_{\max }=1024$. The Polar sequence $Q_{0}^{N_{\max }-1}$ is in ascending order of reliability $\quad W\left(Q_{0}^{N_{\max }}\right)<W\left(Q_{1}^{N_{\max }}\right) \quad b_{1}<W\left(Q_{N_{\max }-1}^{N_{\max }}\right)$, where $W\left(Q_{i}^{N_{\max }}\right)$ denotes the reliability of bit index $Q_{i}^{N_{\text {max }}}$.

For any code block encoded to $\quad N \quad$ bits, a same Polar sequence $\quad Q_{0}^{N-1}=\left(Q_{0}^{N}, Q_{1}^{N}, Q_{2}^{N}, \ldots, Q_{N-1}^{N}\right) \quad$ is used. The Polar sequence Q_{0}^{N-1} is a subset of Polar sequence $Q_{0}^{N_{\max }-1}$ with all elements $Q_{i}^{N_{\max }}$ of values less than N, ordered in ascending order of reliability $W\left(Q_{0}^{N}\right)<W\left(Q_{1}^{N}\right)<W\left(Q_{2}^{N}\right)<\ldots<W\left(Q_{N-1}^{N}\right)$.

Denote $\bar{Q}_{I}^{N} \quad$ as a set of bit indices in Polar sequence $\quad Q_{0}^{N-1}$, and $\bar{Q}_{F}^{N} \quad$ as the set of other bit indices in Polar sequence Q_{0}^{N-1}, where \bar{Q}_{I}^{N} and \bar{Q}_{F}^{N} are given in Clause 5.4.1.1, $\left|\bar{Q}_{I}^{N}\right|=K+n_{P C}, \quad\left|\bar{Q}_{F}^{N}\right|=N-\left|\bar{Q}_{I}^{N}\right|$, and $n_{P C}$ is the number of parity check bits.
Denote $G_{N}=\left(G_{2}\right)^{\otimes n}$ as the n-th Kronecker power of matrix $\quad G_{2}$, where $G_{2}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$.
For a bit index j with $j=0,1, \ldots, N-1$, denote g_{j} as the j-th row of G_{N} and $w\left(g_{j}\right)$ as the row weight of g_{j}, where $w\left(g_{j}\right)$ is the number of ones in g_{j}. Denote the set of bit indices for parity check bits as $Q_{P C}^{N}$, where $\left|Q_{P C}^{N}\right|=n_{P C}$. A number of $\left(n_{P C}-n_{P C}^{w m}\right)$ parity check bits are placed in the $\left(n_{P C}-n_{P C}^{w m}\right)$ least reliable bit indices in \bar{Q}_{I}^{N}.A number of $n_{P C}^{w m}$ other parity check bits are placed in the bit indices of minimum row weight in \widetilde{Q}_{I}^{N}, where \widetilde{Q}_{I}^{N} denotes the $\left.\quad\left|\bar{Q}_{I}^{N}\right|-n_{P C}\right)$ most reliable bit indices in \bar{Q}_{I}^{N}; if there are more than $n_{P C}^{w m} \quad$ bit indices of the same minimum row weight in \widetilde{Q}_{I}^{N}, the $n_{P C}^{w m} \quad$ other parity check bits are placed in the $n_{P C}^{w m}$ bit indices of the highest reliability and the minimum row weight in \widetilde{Q}_{I}^{N}.

Generate $u=\left[u_{0} u_{1} u_{2} \ldots u_{N-1}\right] \quad$ according to the following:

$$
k=0 \text {; }
$$

$$
\text { if } \quad n_{P C}>0
$$

$$
y_{0}=0 \quad ; \quad y_{1}=0 ; y_{2}=0 ; y_{3}=0 ; y_{4}=0 \text {; }
$$

$$
\text { for } n=0 \quad \text { to } N-1
$$

$$
y_{t}=y_{0} ; y_{0}=y_{1} ; y_{1}=y_{2} ; y_{2}=y_{3} ; y_{3}=y_{4} ; y_{4}=y_{t}
$$

$$
\text { if } n \in \bar{Q}_{I}^{N}
$$

$$
\text { if } \quad n \in Q_{P C}^{N}
$$

$$
u_{n}=y_{0}
$$

else

$$
\begin{aligned}
& u_{n}=c_{k}^{\prime} ; \\
& k=k+1 ; \\
& y_{0}=y_{0} \oplus u_{n} ;
\end{aligned}
$$

end if
else

$$
u_{n}=0 ;
$$

end if
end for
else

$$
\begin{aligned}
& \text { for } \begin{array}{l}
n=0 \quad \text { to } \quad N-1 \\
\text { if } \quad n \in \bar{Q}_{I}^{N} \\
u_{n}=c_{k}^{\prime} ; \\
k=k+1 ; \\
\text { else } \\
\quad u_{n}=0 ;
\end{array}
\end{aligned}
$$

end if
end for
end if
The output after encoding $d=\left[d_{0} d_{1} d_{2} \ldots d_{N-1}\right]$ is obtained by $d=\mathbf{u G}{ }_{N}$. The encoding is performed in GF(2).

Table 5.3.1.2-1: Polar sequence $Q_{0}^{N_{\max }-1}$ and its corresponding reliability $W\left(Q_{i}^{N_{\text {max }}}\right)$

$W\left\|Q_{i}^{N}\right\|$	Q_{i}^{N}	$\left.W \mid Q_{i}^{N}\right]$	Q_{i}^{N}												
0	0	128	518	256	94	384	214	512	364	640	414	768	819	896	966
1	1	129	54	257	204	385	309	513	654	641	223	769	814	897	755
2	2	130	83	258	298	386	188	514	659	642	663	770	439	898	859
3	4	131	57	259	400	387	449	515	335	643	692	771	929	899	940
4	8	132	521	260	608	388	217	516	480	644	835	772	490	900	830
5	16	133	112	261	352	389	408	517	315	645	619	773	623	901	911
6	32	134	135	262	325	390	609	518	221	646	472	774	671	902	871
7	3	135	78	263	533	391	596	519	370	647	455	775	739	903	639
8	5	136	289	264	155	392	551	520	613	648	796	776	916	904	888
9	64	137	194	265	210	393	650	521	422	649	809	777	463	905	479
10	9	138	85	266	305	394	229	522	425	650	714	778	843	906	946
11	6	139	276	267	547	395	159	523	451	651	721	779	381	907	750
12	17	140	522	268	300	396	420	524	614	652	837	780	497	908	969
13	10	141	58	269	109	397	310	525	543	653	716	781	930	909	508
14	18	142	168	270	184	398	541	526	235	654	864	782	821	910	861
15	128	143	139	271	534	399	773	527	412	655	810	783	726	911	757
16	12	144	99	272	537	400	610	528	343	656	606	784	961	912	970
17	33	145	86	273	115	401	657	529	372	657	912	785	872	913	919
18	65	146	60	274	167	402	333	530	775	658	722	786	492	914	875
19	20	147	280	275	225	403	119	531	317	659	696	787	631	915	862
20	256	148	89	276	326	404	600	532	222	660	377	788	729	916	758
21	34	149	290	277	306	405	339	533	426	661	435	789	700	917	948
22	24	150	529	278	772	406	218	534	453	662	817	790	443	918	977
23	36	151	524	279	157	407	368	535	237	663	319	791	741	919	923
24	7	152	196	280	656	408	652	536	559	664	621	792	845	920	972
25	129	153	141	281	329	409	230	537	833	665	812	793	920	921	761
26	66	154	101	282	110	410	391	538	804	666	484	794	382	922	877
27	512	155	147	283	117	411	313	539	712	667	430	795	822	923	952
28	11	156	176	284	212	412	450	540	834	668	838	796	851	924	495
29	40	157	142	285	171	413	542	541	661	669	667	797	730	925	703
30	68	158	530	286	776	414	334	542	808	670	488	798	498	926	935
31	130	159	321	287	330	415	233	543	779	671	239	799	880	927	978
32	19	160	31	288	226	416	555	544	617	672	378	800	742	928	883
33	13	161	200	289	549	417	774	545	604	673	459	801	445	929	762
34	48	162	90	290	538	418	175	546	433	674	622	802	471	930	503
35	14	163	545	291	387	419	123	547	720	675	627	803	635	931	925
36	72	164	292	292	308	420	658	548	816	676	437	804	932	932	878
37	257	165	322	293	216	421	612	549	836	677	380	805	687	933	735
38	21	166	532	294	416	422	341	550	347	678	818	806	903	934	993
39	132	167	263	295	271	423	777	551	897	679	461	807	825	935	885
40	35	168	149	296	279	424	220	552	243	680	496	808	500	936	939
41	258	169	102	297	158	425	314	553	662	681	669	809	846	937	994
42	26	170	105	298	337	426	424	554	454	682	679	810	745	938	980
43	513	171	304	299	550	427	395	555	318	683	724	811	826	939	926
44	80	172	296	300	672	428	673	556	675	684	841	812	732	940	764
45	37	173	163	301	118	429	583	557	618	685	629	813	446	941	941
46	25	174	92	302	332	430	355	558	898	686	351	814	962	942	967
47	22	175	47	303	579	431	287	559	781	687	467	815	936	943	886
48	136	176	267	304	540	432	183	560	376	688	438	816	475	944	831
49	260	177	385	305	389	433	234	561	428	689	737	817	853	945	947
50	264	178	546	306	173	434	125	562	665	690	251	818	867	946	507
51	38	179	324	307	121	435	557	563	736	691	462	819	637	947	889
52	514	180	208	308	553	436	660	564	567	692	442	820	907	948	984
53	96	181	386	309	199	437	616	565	840	693	441	821	487	949	751
54	67	182	150	310	784	438	342	566	625	694	469	822	695	950	942
55	41	183	153	311	179	439	316	567	238	695	247	823	746	951	996
56	144	184	165	312	228	440	241	568	359	696	683	824	828	952	971
57	28	185	106	313	338	441	778	569	457	697	842	825	753	953	890
58	69	186	55	314	312	442	563	570	399	698	738	826	854	954	509
59	42	187	328	315	704	443	345	571	787	699	899	827	857	955	949
60	516	188	536	316	390	444	452	572	591	700	670	828	504	956	973
61	49	189	577	317	174	445	397	573	678	701	783	829	799	957	$\begin{gathered} 100 \\ 0 \\ \hline \end{gathered}$
62	74	190	548	318	554	446	403	574	434	702	849	830	255	958	892
63	272	191	113	319	581	447	207	575	677	703	820	831	964	959	950
64	160	192	154	320	393	448	674	576	349	704	728	832	909	960	863
65	520	193	79	321	283	449	558	577	245	705	928	833	719	961	759
66	288	194	269	322	122	450	785	578	458	706	791	834	477	962	$\begin{gathered} 100 \\ 8 \\ \hline \end{gathered}$
67	528	195	108	323	448	451	432	579	666	707	367	835	915	963	510
68	192	196	578	324	353	452	357	580	620	708	901	836	638	964	979
69	544	197	224	325	561	453	187	581	363	709	630	837	748	965	953
70	70	198	166	326	203	454	236	582	127	710	685	838	944	966	763
71	44	199	519	327	63	455	664	583	191	711	844	839	869	967	974
72	131	200	552	328	340	456	624	584	782	712	633	840	491	968	954
73	81	201	195	329	394	457	587	585	407	713	711	841	699	969	879
74	50	202	270	330	527	458	780	586	436	714	253	842	754	970	981
75	73	203	641	331	582	459	705	587	626	715	691	843	858	971	982
76	15	204	523	332	556	460	126	588	571	716	824	844	478	972	927
77	320	205	275	333	181	461	242	589	465	717	902	845	968	973	995
78	133	206	580	334	295	462	565	590	681	718	686	846	383	974	765
79	52	207	291	335	285	463	398	591	246	719	740	847	910	975	956
80	23	208	59	336	232	464	346	592	707	720	850	848	815	976	887
81	134	209	169	337	124	465	456	593	350	721	375	849	976	977	985

82	384	210	560	338	205	466	358	594	599	722	444	850	870	978	997
83	76	211	114	339	182	467	405	595	668	723	470	851	917	979	986
84	137	212	277	340	643	468	303	596	790	724	483	852	727	980	943
85	82	213	156	341	562	469	569	597	460	725	415	853	493	981	891
86	56	214	87	342	286	470	244	598	249	726	485	854	873	982	998
87	27	215	197	343	585	471	595	599	682	727	905	855	701	983	766
88	97	216	116	344	299	472	189	60	573	728	795	856	931	984	511
89	39	217	170	345	354	473	566	601	411	729	473	857	756	985	988
90	259	218	61	346	211	474	676	602	803	730	634	858	860	986	100
1															

5.3.2 Low density parity check coding

The bit sequence input for a given code block to channel coding is denoted by $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$, where K is the number of bits to encode as defined in Clause 5.2.2. After encoding the bits are denoted by $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$, where $\quad N=66 Z_{c} \quad$ for LDPC base graph 1 and $\quad N=50 Z_{c} \quad$ for LDPC base graph 2, and the value of Z_{c} is given in Clause 5.2.2.

For a code block encoded by LDPC, the following encoding procedure applies:

1) Find the set with index $i_{L S}$ in Table 5.3.2-1 which contains Z_{c}.
2) for $k=2 Z_{c}$ to $K-1$
if

$$
c_{k} \neq i \underset{i}{N U L L>i}
$$

$$
d_{k-2 z_{c}}=c_{k} \text {; }
$$

else

$$
\begin{aligned}
& c_{k}=0 ; \\
& d_{k-2 z_{e}=<N U L L>i}^{i} ;
\end{aligned}
$$

end if
end for
3) Generate $N+2 Z_{c}-K$ parity bits $w=\left[w_{0}, w_{1}, w_{2}, \ldots, w_{N+2 Z_{c}-K-1}\right]^{T}$ such that $H \times\left[\begin{array}{l}c \\ w\end{array}\right]=0$, where $c=\left[c_{0}, c_{1}, c_{2}, \ldots, c_{K-1}\right]^{T} ; 0$ is a column vector of all elements equal to 0 . The encoding is performed in GF(2).

For LDPC base graph 1, a matrix of $H_{\text {BG }}$ has 46 rows with row indices $i=0,1,2, \ldots, 45$ and 68 columns with column indices $j=0,1,2, \ldots, 67$. For LDPC base graph 2, a matrix of $H_{B G}$ has 42 rows with row indices $i=0,1,2, \ldots, 41$ and 52 columns with column indices $j=0,1,2, \ldots, 51$. The elements in $H_{B G}$ with row and column indices given in Table 5.3.2-2 (for LDPC base graph 1) and Table 5.3.2-3 (for LDPC base graph 2) are of value 1 , and all other elements in $\quad H_{B G}$ are of value 0 .
The matrix $\quad H$ is obtained by replacing each element of $H_{B G}$ with a $Z_{c} \times Z_{c}$ matrix, according to the following:

- Each element of value 0 in $H_{B G}$ is replaced by an all zero matrix 0 of size $Z_{c} \times Z_{c}$;
- Each element of value 1 in $\quad H_{B G}$ is replaced by a circular permutation matrix $I\left(P_{i, j}\right)$ of size $Z_{c} \times Z_{c}$, where $i \quad$ and j are the row and column indices of the element, and $I\left(P_{i, j}\right) \quad$ is obtained by circularly shifting the identity matrix I of size $Z_{c} \times Z_{c}$ to the right $P_{i, j}$ times. The value of $P_{i, j}$ is given by $P_{i, j}=\bmod \left(V_{i, j}, Z_{c}\right)$. The value of $V_{i, j}$ is given by Tables 5.3.2-2 and 5.3.2-3 according to the set index $i_{L S}$ and LDPC base graph.

4) for $k=K$ to $N+2 Z_{c}-1$

$$
d_{k-2 z_{c}}=w_{k-K} ;
$$

end for

Table 5.3.2-1: Sets of LDPC lifting size Z

Set index ($i_{L S}$)	Set of lifting sizes (Z)
0	$\{2,4,8,16,32,64,128,256\}$
1	$\{3,6,12,24,48,96,192$,
$384\}$	
2	$\{5,10,20,40,80,160,320\}$
3	$\{7,14,28,56,112,224\}$
4	$\{9,18,36,72,144,288\}$
5	$\{11,22,44,88,176,352\}$
6	$\{13,26,52,104,208\}$
7	$\{15,30,60,120,240\}$

Table 5.3.2-2: LDPC base graph 1 ($H_{B G}$) and its parity check matrices ($V_{i, j}$)

H_{BG}		$V_{i, j}$								H_{BG}		$V_{i, j}$							
Row inde	$\begin{gathered} \text { Colum } \\ \mathrm{n} \end{gathered}$	Set index $i_{\text {LS }}$								Row inde x i	Colum n index j	$\text { Set index } \quad i_{L S}$							
i	j	0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7
0	0	$\begin{gathered} \hline 25 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ 7 \\ \hline \end{gathered}$	73	$\begin{gathered} \hline 22 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 4 \end{gathered}$	0	$\begin{gathered} \hline 13 \\ 5 \\ \hline \end{gathered}$	15	1	96	2	29 0	$\begin{gathered} 12 \\ 0 \\ \hline \end{gathered}$	0	34 8	6	13 8
	1	69	19	15	16	$\begin{gathered} 19 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \\ 8 \\ \hline \end{gathered}$	0	22 7		10	65	$\begin{gathered} 21 \\ 0 \\ \hline \end{gathered}$	60	$\begin{gathered} 13 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 3 \\ \hline \end{gathered}$	15	81	22 0
	2	$\begin{gathered} 22 \\ 6 \\ \hline \end{gathered}$	50	$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	94	$\begin{gathered} 18 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 7 \\ \hline \end{gathered}$	0	$\begin{gathered} \hline 12 \\ 6 \\ \hline \end{gathered}$		13	63	$\begin{gathered} \hline 31 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ 8 \\ \hline \end{gathered}$	81	$\begin{gathered} 18 \\ 2 \\ \hline \end{gathered}$	17 3
	3	$\begin{gathered} 15 \\ 9 \end{gathered}$	$\begin{gathered} 36 \\ 9 \end{gathered}$	49	91	$\begin{gathered} 18 \\ 6 \end{gathered}$	$\begin{gathered} 33 \\ 0 \end{gathered}$	0	$\begin{gathered} 13 \\ 4 \end{gathered}$		18	75	55	18 4	$\begin{gathered} 20 \\ 9 \end{gathered}$	68	$\begin{gathered} 17 \\ 6 \end{gathered}$	53	14 2
	5	$\begin{gathered} 10 \\ 0 \end{gathered}$	$\begin{gathered} 18 \\ 1 \end{gathered}$	$\begin{gathered} 24 \\ 0 \end{gathered}$	74	$\begin{gathered} 21 \\ 9 \end{gathered}$	$\begin{gathered} 20 \\ 7 \end{gathered}$	0	84		25	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 26 \\ 9 \end{gathered}$	51	81	64	11 3	46	49
	6	10	21 6	39	10	4	$\begin{gathered} 16 \\ 5 \end{gathered}$	0	83		37	0	0	0	0	0	0	0	0
	9	59	31 7	15	0	29	24 3	0	53	16	1	64	13	69	$\begin{gathered} 15 \\ 4 \end{gathered}$	$\begin{gathered} 27 \\ 0 \end{gathered}$	19 0	88	78
	10	$\begin{gathered} 22 \\ 9 \end{gathered}$	$\begin{gathered} 28 \\ 8 \end{gathered}$	16 2	$\begin{gathered} 20 \\ 5 \end{gathered}$	14 4	25 0	0	22 5		3	49	$\begin{gathered} 33 \\ 8 \end{gathered}$	$\begin{gathered} 14 \\ 0 \end{gathered}$	$\begin{gathered} 16 \\ 4 \end{gathered}$	13	29 3	$\begin{gathered} 19 \\ 8 \end{gathered}$	15 2
	11	$\begin{gathered} 11 \\ 0 \end{gathered}$	$\begin{gathered} 10 \\ 9 \end{gathered}$	$\begin{gathered} 21 \\ 5 \end{gathered}$	$\begin{gathered} 21 \\ 6 \end{gathered}$	$\begin{gathered} 11 \\ 6 \end{gathered}$	1	0	$\begin{gathered} 20 \\ 5 \end{gathered}$		11	49	57	45	43	99	33 2	16 0	84
	12	$\begin{gathered} 19 \\ 1 \end{gathered}$	17	$\begin{gathered} 16 \\ 4 \end{gathered}$	21	$\begin{gathered} 21 \\ 6 \end{gathered}$	$\begin{gathered} 33 \\ 9 \end{gathered}$	0	$\begin{gathered} 12 \\ 8 \end{gathered}$		20	51	$\begin{gathered} 28 \\ 9 \end{gathered}$	$\begin{gathered} 11 \\ 5 \end{gathered}$	$\begin{gathered} 18 \\ 9 \end{gathered}$	54	33 1	12 2	5
	13	9	$\begin{gathered} 35 \\ 7 \end{gathered}$	13 3	$\begin{gathered} 21 \\ 5 \end{gathered}$	11 5	20 1	0	75		22	$\begin{gathered} 15 \\ 4 \end{gathered}$	57	$\begin{gathered} \hline 30 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	0	11 4	$\begin{gathered} 18 \\ 2 \end{gathered}$	20 5
	15	$\begin{gathered} 19 \\ 5 \end{gathered}$	$\begin{gathered} \hline 21 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 \\ 8 \\ \hline \end{gathered}$	14	$\begin{gathered} 23 \\ 3 \end{gathered}$	53	0	$\begin{gathered} 13 \\ 5 \end{gathered}$		38	0	0	0	0	0	0	0	0
	16	23	$\begin{gathered} \hline 10 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \\ 0 \\ \hline \end{gathered}$	70	$\begin{gathered} 14 \\ 4 \end{gathered}$	$\begin{gathered} 34 \\ 7 \\ \hline \end{gathered}$	0	21 7	17	0	7	$\begin{gathered} \hline 26 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 7 \end{gathered}$	56	15 3	11 0	91	18 3
	18	$\begin{gathered} \hline 19 \\ 0 \\ \hline \end{gathered}$	24 2	11 3	$\begin{gathered} 14 \\ 1 \\ \hline \end{gathered}$	95	30 4	0	22 0		14	$\begin{gathered} 16 \\ 4 \end{gathered}$	$\begin{gathered} \hline 30 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 0 \\ \hline \end{gathered}$	13 7	22 8	18 4	11 2
	19	35	18 0	16	$\begin{gathered} \hline 19 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 7 \\ \hline \end{gathered}$	0	90		16	59	81	$\begin{gathered} \hline 12 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 0 \\ \hline \end{gathered}$	0	24 7	30	10 6
	20	$\begin{gathered} 23 \\ 9 \\ \hline \end{gathered}$	33 0	18 9	$\begin{gathered} 10 \\ 4 \end{gathered}$	73	47	0	$\begin{gathered} \hline 10 \\ 5 \\ \hline \end{gathered}$		17	1	$\begin{gathered} \hline 35 \\ 8 \end{gathered}$	51	63	0	11 6	3	21 9
	21	31	$\begin{gathered} \hline 34 \\ 6 \\ \hline \end{gathered}$	32	81	$\begin{gathered} 26 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 8 \\ \hline \end{gathered}$	0	13 7		21	$\begin{gathered} 14 \\ 4 \end{gathered}$	$\begin{gathered} 37 \\ 5 \end{gathered}$	$\begin{gathered} 22 \\ 8 \\ \hline \end{gathered}$	4	16 2	19 0	15 5	12 9
	22	1	1	1	1	1	1	0	1		39	0	0	0	0	0	0	0	0
	23	0	0	0	0	0	0	0	0	18	1	42	$\begin{gathered} 13 \\ 0 \end{gathered}$	$\begin{gathered} 26 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 1 \end{gathered}$	47	1	18 3
1	0	2	76	$\begin{gathered} 30 \\ 3 \end{gathered}$	$\begin{gathered} 14 \\ 1 \end{gathered}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	77	22	96		12	$\begin{gathered} 23 \\ 3 \end{gathered}$	$\begin{gathered} 16 \\ 3 \end{gathered}$	$\begin{gathered} 29 \\ 4 \end{gathered}$	$\begin{gathered} 11 \\ 0 \end{gathered}$	$\begin{gathered} 15 \\ 1 \end{gathered}$	$\begin{gathered} 28 \\ 6 \end{gathered}$	41	21 5
	2	$\begin{gathered} 23 \\ 9 \end{gathered}$	76	$\begin{gathered} 29 \\ 4 \end{gathered}$	45	$\begin{gathered} 16 \\ 2 \end{gathered}$	$\begin{gathered} 22 \\ 5 \end{gathered}$	11	$\begin{gathered} 23 \\ 6 \end{gathered}$		13	8	$\begin{gathered} 28 \\ 0 \end{gathered}$	$\begin{gathered} 29 \\ 1 \end{gathered}$	$\begin{gathered} 20 \\ 0 \end{gathered}$	0	24 6	$\begin{gathered} 16 \\ 7 \end{gathered}$	18 0
	3	$\begin{gathered} 11 \\ 7 \end{gathered}$	73	27	$\begin{gathered} 15 \\ 1 \end{gathered}$	$\begin{gathered} -22 \\ 3 \end{gathered}$	96	$\begin{gathered} 12 \\ 4 \end{gathered}$	$\begin{gathered} \\ \hline 13 \\ 6 \end{gathered}$		18	$\begin{gathered} 15 \\ 5 \end{gathered}$	$\begin{gathered} 13 \\ 2 \end{gathered}$	$\begin{gathered} 14 \\ 1 \end{gathered}$	$\begin{gathered} 14 \\ 3 \end{gathered}$	$\begin{gathered} 24 \\ 1 \end{gathered}$	$\begin{gathered} 18 \\ 1 \end{gathered}$	68	14 3
	4	$\begin{gathered} 12 \\ 4 \end{gathered}$	$\begin{gathered} 28 \\ 8 \end{gathered}$	$\begin{gathered} 26 \\ 1 \end{gathered}$	46	$\begin{gathered} 25 \\ 6 \end{gathered}$	$\begin{gathered} \hline 33 \\ 8 \end{gathered}$	0	$\begin{gathered} 22 \\ 1 \end{gathered}$		19	$\begin{gathered} 14 \\ 7 \end{gathered}$	4	$\begin{gathered} 29 \\ 5 \end{gathered}$	$\begin{gathered} 18 \\ 6 \end{gathered}$	$\begin{gathered} -14 \\ 4 \end{gathered}$	73	$\begin{gathered} \hline 14 \\ 8 \end{gathered}$	14
	5	71	$\begin{gathered} 14 \\ \hline 4 \end{gathered}$	$\begin{gathered} -16 \\ 1 \end{gathered}$	$\begin{gathered} 11 \\ 9 \end{gathered}$	$\begin{gathered} 16 \\ 0 \end{gathered}$	$\begin{gathered} 26 \\ 8 \end{gathered}$	10	$\begin{gathered} -12 \\ \hline 8 \end{gathered}$		40	0	0	0	0	0	0	0	0
	7	$\begin{gathered} 22 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 133 \\ 1 \end{gathered}$	$\begin{gathered} 13 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 7 \end{gathered}$	76	$\begin{gathered} 11 \\ 2 \\ \hline \end{gathered}$	0	92	19	0	60	$\begin{gathered} 14 \\ 5 \\ \hline \end{gathered}$	64	8	0	87	12	17 9
	8	$\begin{gathered} - \\ \hline 10 \\ 4 \end{gathered}$	$\begin{gathered} -23 \\ 1 \end{gathered}$	4	$\begin{gathered} 13 \\ 3 \end{gathered}$	$\begin{gathered} 20 \\ 2 \end{gathered}$	$\begin{gathered} -20 \\ 2 \end{gathered}$	0	$\begin{gathered} 17 \\ 2 \end{gathered}$		1	73	$\begin{gathered} 21 \\ 3 \end{gathered}$	$\begin{gathered} 18 \\ 1 \end{gathered}$	6	0	11 0	6	10 8
	9	$\begin{gathered} 17 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ \hline 17 \end{gathered}$	80	87	$\begin{gathered} -21 \\ \hline 7 \end{gathered}$	50	2	56		7	72	$\begin{gathered} 34 \\ 4 \end{gathered}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 8 \\ \hline \end{gathered}$	14 7	$\begin{gathered} \hline 16 \\ 6 \\ \hline \end{gathered}$	15 9
	11	$\begin{gathered} 22 \\ 0 \end{gathered}$	$\begin{gathered} 29 \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ 9 \end{gathered}$	$\begin{gathered} 20 \\ 6 \end{gathered}$	$\begin{gathered} 10 \\ 9 \end{gathered}$	$\begin{gathered} 16 \\ 7 \end{gathered}$	16	11		8	$\begin{gathered} 12 \\ 7 \end{gathered}$	$\begin{gathered} 24 \\ 2 \end{gathered}$	$\begin{gathered} 27 \\ 0 \end{gathered}$	$\begin{gathered} 19 \\ 8 \end{gathered}$	$\begin{gathered} 14 \\ 4 \end{gathered}$	25 8	$\begin{gathered} 18 \\ 4 \end{gathered}$	13 8
	12	$\begin{gathered} 10 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \\ \hline 34 \\ 2 \end{gathered}$	$\begin{gathered} 30 \\ 0 \\ \hline \end{gathered}$	93	15	$\begin{gathered} 25 \\ 3 \\ \hline \end{gathered}$	60	$\begin{gathered} 18 \\ 9 \\ \hline \end{gathered}$		10	$\begin{gathered} 22 \\ 4 \end{gathered}$	$\begin{gathered} -19 \\ 7 \end{gathered}$	41	8	0	$\begin{gathered} 20 \\ 4 \end{gathered}$	$\begin{gathered} 19 \\ 1 \end{gathered}$	19 6
	14	$\begin{gathered} \hline 10 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 7 \\ \hline \end{gathered}$	76	79	72	$\begin{gathered} 33 \\ 4 \end{gathered}$	0	95		41	0	0	0	0	0	0	0	0
	15	$\begin{gathered} 13 \\ 2 \\ \hline \end{gathered}$	99	$\begin{gathered} 26 \\ 6 \\ \hline \end{gathered}$	9	$\begin{gathered} 15 \\ 2 \end{gathered}$	$\begin{gathered} 24 \\ 2 \\ \hline \end{gathered}$	6	85	20	0	$\begin{gathered} 15 \\ 1 \end{gathered}$	$\begin{gathered} 18 \\ 7 \\ \hline \end{gathered}$	30 1 1	$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ 5 \\ \hline \end{gathered}$	89	6	77
	16	$\begin{gathered} 14 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ 4 \\ \hline \end{gathered}$	72	$\begin{gathered} \hline 11 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 8 \\ \hline \end{gathered}$	25 7	30	$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$		3	$\begin{gathered} 18 \\ 6 \end{gathered}$	$\begin{gathered} 20 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 2 \\ \hline \end{gathered}$	21 0	81	65	12	18 7
	17	$\begin{gathered} 15 \\ 5 \end{gathered}$	11 4	83	$\begin{gathered} 19 \\ 4 \end{gathered}$	$\begin{gathered} 14 \\ 7 \end{gathered}$	$\begin{gathered} 13 \\ 3 \end{gathered}$	0	87		9	21 7	$\begin{gathered} 26 \\ 4 \end{gathered}$	40	12 1	90	15 5	15	20 3
	19	$\begin{gathered} 25 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ 0 \\ \hline \end{gathered}$	31	$\begin{gathered} 15 \\ 6 \end{gathered}$	9	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 3 \\ \hline \end{gathered}$		11	47	$\begin{gathered} 34 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 4 \end{gathered}$	14 4	24 4	5	16 7
	21	28	11 2	30 1	$\begin{gathered} 18 \\ 7 \\ \hline \end{gathered}$	11 9	$\begin{gathered} 30 \\ 2 \\ \hline \end{gathered}$	31	21 6		22	16 0	59	10	$\begin{gathered} 18 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ 8 \\ \hline \end{gathered}$	30	30	13 0
	22	0	0	0	0	0	0	$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$	0		42	0	0	0	0	0	0	0	0
	23	0	0	0	0	0	0	0	0	21	1	$\begin{gathered} \hline 24 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ 5 \\ \hline \end{gathered}$	79	$\begin{gathered} 19 \\ 2 \\ \hline \end{gathered}$	64	16 2	6	19 7
	24	0	0	0	0	0	0	0	0		5	$\begin{gathered} 12 \\ 1 \end{gathered}$	$\begin{gathered} 10 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 1 \\ \hline \end{gathered}$	46	26 4	86	12 2
2	0	$\begin{gathered} \hline 10 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	68	$\begin{gathered} 20 \\ 7 \\ \hline \end{gathered}$	25 8	$\begin{gathered} 22 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 2 \\ \hline \end{gathered}$	18 9		16	$\begin{gathered} 10 \\ 9 \end{gathered}$	$\begin{gathered} \hline-22 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ 0 \end{gathered}$	$\begin{gathered} 26 \\ 6 \\ \hline \end{gathered}$	34 6	96	21 5
	1	11 1 1	25 0	7	$\begin{gathered} 20 \\ 3 \end{gathered}$	16 7	35	37	4		20	13 1 17	$\begin{gathered} 21 \\ 3 \end{gathered}$	28 3	50	9	14 3	42	65
	2	18 5	32 8	80	31	22 0	$\begin{gathered} 21 \\ 3 \\ \hline \end{gathered}$	21	22 5		21	17 1	97	10 3	$\begin{gathered} \hline 10 \\ 6 \\ \hline \end{gathered}$	18	10 9	19 9	21 6

	4	63	$\begin{gathered} 33 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 0 \\ \hline \end{gathered}$	17 6	$\begin{gathered} 13 \\ 3 \\ \hline \end{gathered}$	30 2	18 0	15 1		43	0	0	0	0	0	0	0	0
	5	$\begin{gathered} 11 \\ 7 \end{gathered}$	$\begin{gathered} -25 \\ 6 \end{gathered}$	38	18 0	$\begin{gathered} 24 \\ 3 \end{gathered}$	11 1	4	23 6	22	0	64	30	$\begin{gathered} 17 \\ 7 \end{gathered}$	53	72	28 0	44	25
	6	93	$\begin{gathered} 16 \\ 1 \end{gathered}$	$\begin{gathered} 22 \\ 7 \end{gathered}$	18 6	20 2	26 5	14 9	11 7		12	$\begin{gathered} 14 \\ 2 \end{gathered}$	11	20	0	18 9	15 7	58	47
	7	$\begin{gathered} 22 \\ 9 \end{gathered}$	26 7	20	95	$\begin{gathered} 21 \\ 8 \end{gathered}$	12 8	48	$\begin{gathered} 17 \\ 9 \end{gathered}$		13	$\begin{gathered} 18 \\ 8 \end{gathered}$	23 3	55	3	72	23 6	13 0	12 6
	8	$\begin{gathered} 17 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 0 \\ \hline \end{gathered}$	15 3	63	$\begin{gathered} 23 \\ 7 \\ \hline \end{gathered}$	38	92		17	$\begin{gathered} 15 \\ 8 \\ \hline \end{gathered}$	22	$\begin{gathered} \hline 31 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 14 \\ 8 \\ \hline \end{gathered}$	25 7	11 3	13 1	17 8
	9	95	63	71	$\begin{gathered} 17 \\ 7 \\ \hline \end{gathered}$	0	$\begin{gathered} 29 \\ 4 \end{gathered}$	$\begin{gathered} 12 \\ 2 \\ \hline \end{gathered}$	24		44	0	0	0	0	0	0	0	0
	10	39	$\begin{gathered} 12 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ 6 \\ \hline \end{gathered}$	70	3	$\begin{gathered} 12 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 5 \\ \hline \end{gathered}$	68	23	1	$\begin{gathered} 15 \\ 6 \\ \hline \end{gathered}$	24	$\begin{gathered} 24 \\ 9 \\ \hline \end{gathered}$	88	18 0	18	45	18 5
	13	$\begin{gathered} 14 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 5 \end{gathered}$	77	74	$\begin{gathered} \hline 11 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ \hline \end{gathered}$	6		2	$\begin{gathered} \hline 14 \\ 7 \\ \hline \end{gathered}$	89	50	$\begin{gathered} 20 \\ 3 \\ \hline \end{gathered}$	0	6	18	12 7
	14	$\begin{gathered} 22 \\ 5 \\ \hline \end{gathered}$	88	$\begin{gathered} 28 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 4 \end{gathered}$	$\begin{gathered} 22 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 6 \\ \hline \end{gathered}$	28	$\begin{gathered} \hline 10 \\ 1 \\ \hline \end{gathered}$		10	$\begin{gathered} 17 \\ 0 \end{gathered}$	61	$\begin{gathered} 13 \\ 3 \end{gathered}$	$\begin{gathered} 16 \\ 8 \\ \hline \end{gathered}$	0	$\begin{gathered} 18 \\ 1 \\ \hline \end{gathered}$	13 2	11 7
	15	$\begin{gathered} 22 \\ 5 \end{gathered}$	53	$\begin{gathered} 30 \\ 1 \end{gathered}$	77	0	$\begin{gathered} 12 \\ 5 \end{gathered}$	85	33		18	$\begin{gathered} 15 \\ 2 \end{gathered}$	27	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ 2 \end{gathered}$	16 5	$\begin{gathered} \hline 30 \\ 4 \end{gathered}$	10 0	19 9
	17	$\begin{gathered} 24 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 1 \end{gathered}$	$\begin{gathered} 18 \\ 4 \end{gathered}$	$\begin{gathered} 19 \\ 8 \end{gathered}$	$\begin{gathered} \hline 21 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 1 \end{gathered}$	47	96		45	0	0	0	0	0	0	0	0
	18	$\begin{gathered} 20 \\ 5 \end{gathered}$	$\begin{gathered} 1 \\ \hline 24 \\ 0 \end{gathered}$	$\begin{gathered} 44 \\ 6 \end{gathered}$	$\begin{gathered} 11 \\ \hline 7 \end{gathered}$	$\begin{gathered} 26 \\ 9 \end{gathered}$	$\begin{gathered} 16 \\ \hline 16 \end{gathered}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 12 \\ 5 \end{gathered}$	24	0	$\begin{gathered} 11 \\ 2 \end{gathered}$	$\begin{gathered} 29 \\ 8 \end{gathered}$	$\begin{gathered} 28 \\ 9 \end{gathered}$	49	23 6	38	9	32
	19	$\begin{gathered} 25 \\ 1 \end{gathered}$	$\begin{gathered} 20 \\ 5 \end{gathered}$	$\begin{gathered} 23 \\ 0 \end{gathered}$	$\begin{gathered} 22 \\ 3 \end{gathered}$	$\begin{gathered} 20 \\ 0 \end{gathered}$	$\begin{gathered} 21 \\ 0 \end{gathered}$	42	67		3	86	$\begin{gathered} 15 \\ 8 \end{gathered}$	$\begin{gathered} 28 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 7 \end{gathered}$	19 9	$\begin{gathered} 17 \\ 0 \end{gathered}$	12 5	17 8
	20	$\begin{gathered} 11 \\ 7 \end{gathered}$	13	$\begin{gathered} 27 \\ 6 \end{gathered}$	90	$\begin{gathered} 23 \\ 4 \end{gathered}$	7	66	$\begin{gathered} 23 \\ 0 \end{gathered}$		4	$\begin{gathered} \hline 23 \\ 6 \end{gathered}$	$\begin{gathered} 23 \\ 5 \end{gathered}$	$\begin{gathered} 11 \\ 0 \end{gathered}$	64	0	$\begin{gathered} 24 \\ 9 \end{gathered}$	19 1	2
	24	0	0	0	0	0	0	0	0		11	$\begin{gathered} 11 \\ 6 \end{gathered}$	$\begin{gathered} 33 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 7 \end{gathered}$	$\begin{gathered} 19 \\ 3 \end{gathered}$	26 6	$\begin{gathered} 28 \\ 8 \end{gathered}$	28	15 6
	25	0	0	0	0	0	0	0	0		22	$\begin{gathered} 22 \\ 2 \\ \hline \end{gathered}$	23 4	$\begin{gathered} 28 \\ 1 \end{gathered}$	$\begin{gathered} 12 \\ 4 \end{gathered}$	0	19 4	6	58
3	0	$\begin{gathered} 12 \\ 1 \end{gathered}$	$\begin{gathered} 27 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 1 \end{gathered}$	$\begin{gathered} 18 \\ 7 \end{gathered}$	97	4	$\begin{gathered} 12 \\ 8 \\ \hline \end{gathered}$		46	0	0	0	0	0	0	0	0
	1	89	87	$\begin{gathered} 20 \\ 8 \end{gathered}$	18	$\begin{gathered} 14 \\ 5 \end{gathered}$	94	6	23	25	1	23	72	$\begin{gathered} 17 \\ 2 \\ \hline \end{gathered}$	1	20 5	$\begin{gathered} 27 \\ 9 \\ \hline \end{gathered}$	4	27
	3	84	0	30	$\begin{gathered} 16 \\ 5 \end{gathered}$	$\begin{gathered} 16 \\ 6 \end{gathered}$	49	33	$\begin{gathered} 16 \\ 2 \end{gathered}$		6	$\begin{gathered} 13 \\ 6 \end{gathered}$	17	$\begin{gathered} 29 \\ 5 \end{gathered}$	$\begin{gathered} 16 \\ 6 \end{gathered}$	0	$\begin{gathered} 25 \\ 5 \end{gathered}$	74	14 1
	4	20	$\begin{gathered} 27 \\ 5 \end{gathered}$	$\begin{gathered} 19 \\ 7 \end{gathered}$	5	$\begin{gathered} 10 \\ \hline 10 \end{gathered}$	$\begin{gathered} 27 \\ 9 \end{gathered}$	$\begin{gathered} 11 \\ 3 \end{gathered}$	$\begin{gathered} 22 \\ \hline 0 \\ \hline \end{gathered}$		7	$\begin{gathered} 11 \\ \hline 6 \end{gathered}$	$\begin{gathered} 38 \\ 3 \end{gathered}$	96	65	0	$\begin{gathered} 11 \\ \hline 1 \end{gathered}$	16	11
	6	$\begin{gathered} 15 \\ 0 \end{gathered}$	$\begin{gathered} 19 \\ 9 \end{gathered}$	61	45	82	$\begin{gathered} 13 \\ 9 \end{gathered}$	49	43		14	$\begin{gathered} 18 \\ 2 \end{gathered}$	31	46	81	18 3	54	28	18 1
	7	$\begin{gathered} 13 \\ 1 \end{gathered}$	$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{gathered} 17 \\ 5 \end{gathered}$	$\begin{gathered} 14 \\ 2 \end{gathered}$	$\begin{gathered} 13 \\ 2 \end{gathered}$	$\begin{gathered} 16 \\ 6 \end{gathered}$	21	$\begin{gathered} 18 \\ 6 \end{gathered}$		47	0	0	0	0	0	0	0	0
	8	$\begin{gathered} 24 \\ 3 \end{gathered}$	56	79	16	$\begin{gathered} 19 \\ 7 \end{gathered}$	91	6	96	26	0	$\begin{gathered} 19 \\ 5 \end{gathered}$	71	$\begin{gathered} 27 \\ 0 \end{gathered}$	$\begin{gathered} 10 \\ 7 \end{gathered}$	0	$\begin{gathered} 32 \\ 5 \end{gathered}$	21	16 3
	10	$\begin{gathered} 13 \\ 6 \end{gathered}$	$\begin{gathered} 13 \\ 2 \end{gathered}$	28	34	41	$\begin{gathered} \\ \hline 10 \\ 6 \end{gathered}$	$\begin{gathered} 15 \\ 1 \end{gathered}$	1		2	$\begin{gathered} 24 \\ 3 \end{gathered}$	81	$\begin{gathered} 11 \\ 0 \end{gathered}$	$\begin{gathered} 17 \\ \hline 6 \end{gathered}$	0	$\begin{gathered} \hline 32 \\ 6 \end{gathered}$	14 2	13
	11	86	$\begin{gathered} -20 \\ 5 \end{gathered}$	$\begin{gathered} 20 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 5 \end{gathered}$	$\begin{gathered} 16 \\ 2 \end{gathered}$	$\begin{gathered} 24 \\ \hline 6 \end{gathered}$	83	$\begin{gathered} 21 \\ 6 \end{gathered}$		4	$\begin{gathered} 21 \\ 5 \end{gathered}$	76	$\begin{gathered} \hline 31 \\ 8 \end{gathered}$	$\begin{gathered} 21 \\ 2 \end{gathered}$	0	$\begin{gathered} 22 \\ 6 \end{gathered}$	19 2	16 9
	12	$\begin{gathered} 24 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 3 \\ \hline \end{gathered}$	21 3	57	$\begin{gathered} 34 \\ 5 \end{gathered}$	$\begin{gathered} 15 \\ 4 \end{gathered}$	22		15	61	$\begin{gathered} 13 \\ 6 \end{gathered}$	67	$\begin{gathered} 2 \\ \hline 12 \\ 7 \end{gathered}$	27 7	99	19 7	98
	13	21 9	34 1	$\begin{gathered} 16 \\ 4 \end{gathered}$	14 7	36	$\begin{gathered} 26 \\ 9 \end{gathered}$	87	24		48	0	0	0	0	0	0	0	0
	14	21	21 2	53	69	$\begin{gathered} 11 \\ 5 \end{gathered}$	$\begin{gathered} 18 \\ 5 \end{gathered}$	5	$\begin{gathered} 16 \\ 7 \end{gathered}$	27	1	25	19 4	21	20 8	45	91	98	16 5
	16	$\begin{gathered} 24 \\ 0 \end{gathered}$	$\begin{gathered} 30 \\ 4 \\ \hline \end{gathered}$	44	96	$\begin{gathered} 24 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ 9 \\ \hline \end{gathered}$	92	$\begin{gathered} 20 \\ 0 \\ \hline \end{gathered}$		6	$\begin{gathered} 10 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ 4 \\ \hline \end{gathered}$	29	$\begin{gathered} 0 \\ \hline 14 \\ 1 \end{gathered}$	36	$\begin{gathered} \hline 32 \\ 6 \\ \hline \end{gathered}$	14 0	23 2
	17	76	$\begin{gathered} 30 \\ 0 \\ \hline \end{gathered}$	28	74	$\begin{gathered} 16 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 3 \\ \hline \end{gathered}$	32		8	$\begin{gathered} 19 \\ 4 \end{gathered}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{gathered} 30 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 4 \end{gathered}$	72	$\begin{gathered} 26 \\ 8 \\ \hline \end{gathered}$	22	9
	18	$\begin{gathered} 24 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ 1 \\ \hline \end{gathered}$	77	99	0	$\begin{gathered} 14 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 5 \\ \hline \end{gathered}$		49	0	0	0	0	0	0	0	0
	20	$\begin{gathered} 14 \\ 4 \end{gathered}$	39	$\begin{gathered} 31 \\ 9 \\ \hline \end{gathered}$	30	$\begin{gathered} 11 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 1 \\ \hline \end{gathered}$	2	$\begin{gathered} 17 \\ 2 \\ \hline \end{gathered}$	28	0	$\begin{gathered} 12 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ 2 \\ \hline \end{gathered}$	11	$\begin{gathered} 14 \\ 6 \\ \hline \end{gathered}$	27 5	$\begin{gathered} 10 \\ 2 \\ \hline \end{gathered}$	4	32
	21	12	$\begin{gathered} 35 \\ 7 \\ \hline \end{gathered}$	68	$\begin{gathered} 15 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 9 \\ \hline \end{gathered}$		4	$\begin{gathered} 16 \\ 5 \\ \hline \end{gathered}$	19	$\begin{gathered} 29 \\ 3 \\ \hline \end{gathered}$	15 3	0	1	1	43
	22	1	1	1	1	1	1	0	1		19	$\begin{gathered} 18 \\ 1 \\ \hline \end{gathered}$	24 4	50	21 7	15 5	40	40	20 0
	25	0	0	0	0	0	0	0	0		21	63	$\begin{gathered} \hline 27 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 4 \\ \hline \end{gathered}$	11 4	62	16 7	93	20 5
	0	15 7	33 2	23 3	17 0	$\begin{gathered} 24 \\ 6 \end{gathered}$	42	24	64		50	0	0	0	0	0	0	0	0
4	1	$\begin{gathered} 10 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	10	$\begin{gathered} 23 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 1 \\ \hline \end{gathered}$	29	1	86	25 2	27	15 0	0	27 3	92	23 2
	26	0	0	0	0	0	0	0	0		14	$\begin{gathered} \hline 23 \\ 6 \\ \hline \end{gathered}$	5	$\begin{gathered} \hline 30 \\ 8 \\ \hline \end{gathered}$	11	18 0	10 4	13 6	32
5	0	$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 5 \\ \hline \end{gathered}$	83	$\begin{gathered} 16 \\ 4 \end{gathered}$	$\begin{gathered} 26 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	2		18	84	$\begin{gathered} 14 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 7 \\ \hline \end{gathered}$	53	0	24 3	10 6	11 8
	1	$\begin{gathered} 23 \\ 6 \\ \hline \end{gathered}$	14	$\begin{gathered} 29 \\ 2 \\ \hline \end{gathered}$	59	$\begin{gathered} 18 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 0 \end{gathered}$	$\begin{gathered} 17 \\ 1 \\ \hline \end{gathered}$		25	6	78	29	68	42	$\begin{gathered} 10 \\ 7 \\ \hline \end{gathered}$	6	10 3
	3	$\begin{gathered} 19 \\ 4 \end{gathered}$	$\begin{gathered} 11 \\ 5 \end{gathered}$	50	86	72	25 1	24	47		51	0	0	0	0	0	0	0	0
	12	$\begin{gathered} 13 \\ \hline 1 \end{gathered}$	$\begin{gathered} \hline 16 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 \\ 8 \end{gathered}$	80	$\begin{gathered} 28 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \hline 32 \\ 2 \end{gathered}$	65	$\begin{gathered} 14 \\ 3 \end{gathered}$	30	0	$\begin{gathered} 21 \\ 6 \end{gathered}$	$\begin{gathered} 15 \\ 9 \end{gathered}$	91	34	0	$\begin{gathered} 17 \\ 1 \end{gathered}$	2	17 0
	16	28	$\begin{gathered} 24 \\ 1 \end{gathered}$	$\begin{gathered} 20 \\ 1 \end{gathered}$	$\begin{gathered} 18 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \hline 5 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 7 \end{gathered}$	$\begin{gathered} { }^{21} \\ 0 \end{gathered}$		10	73	$\begin{gathered} 22 \\ 9 \end{gathered}$	23	$\begin{gathered} 13 \\ 0 \\ \hline \end{gathered}$	90	16	88	19 9
	21	$\begin{gathered} 12 \\ 3 \\ \hline \end{gathered}$	51	$\begin{gathered} \hline 26 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 0 \\ \hline \end{gathered}$	79	$\begin{gathered} 25 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 0 \\ \hline \end{gathered}$		13	$\begin{gathered} 12 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{y} \\ \hline 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 0 \\ \hline \end{gathered}$	25 2	95	11 2	26
	22	$\begin{gathered} 11 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ 3 \\ \hline \end{gathered}$	72	$\begin{gathered} 18 \\ 0 \\ \hline \end{gathered}$		24	9	90	$\begin{gathered} 13 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 3 \\ \hline \end{gathered}$	17 3	$\begin{gathered} 21 \\ 21 \\ \hline \end{gathered}$	20	10 5
	27	0	0	0	0	0	0	0	0		52	0	0	0	0	0	0	0	0

6	0	$\begin{gathered} 18 \\ 3 \end{gathered}$	$\begin{gathered} 27 \\ 8 \end{gathered}$	$\begin{gathered} 28 \\ 9 \end{gathered}$	$\begin{gathered} 15 \\ 8 \end{gathered}$	80	$\begin{gathered} 29 \\ 4 \end{gathered}$	6	$\begin{gathered} 19 \\ 9 \end{gathered}$	31	1	95	$\begin{gathered} 10 \\ 0 \end{gathered}$	$\begin{gathered} 22 \\ 2 \end{gathered}$	$\begin{gathered} 17 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 4 \end{gathered}$	10 1	4	73
	6	22	25	21	$\begin{gathered} 11 \\ 0 \end{gathered}$	14	73	27	22		7	17	21	30	49	14	29 7	49	14 9
	10	28	1	$\begin{gathered} 29 \\ 3 \end{gathered}$	$\begin{gathered} 11 \\ 3 \end{gathered}$	$\begin{gathered} 16 \\ 9 \end{gathered}$	$\begin{gathered} 33 \\ 0 \end{gathered}$	$\begin{gathered} 16 \\ 3 \end{gathered}$	23		22	$\begin{gathered} 17 \\ 2 \end{gathered}$	$\begin{gathered} 25 \\ 8 \end{gathered}$	66	$\begin{gathered} 17 \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 6 \end{gathered}$	27 9	$\begin{gathered} 12 \\ 5 \end{gathered}$	17 5
	11	67	$\begin{gathered} 35 \\ 1 \end{gathered}$	13	21	90	99	50	$\begin{gathered} 10 \\ 0 \end{gathered}$		25	61	$\begin{gathered} 25 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 8 \\ \hline \end{gathered}$	19	22 2	19 4	10 8
	13	$\begin{gathered} 24 \\ 4 \\ \hline \end{gathered}$	92	$\begin{gathered} 23 \\ 2 \\ \hline \end{gathered}$	63	59	$\begin{gathered} 17 \\ 2 \end{gathered}$	48	92		53	0	0	0	0	0	0	0	0
	17	11	$\begin{gathered} 25 \\ 3 \end{gathered}$	$\begin{gathered} \hline 30 \\ 2 \\ \hline \end{gathered}$	51	$\begin{gathered} \hline 17 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 0 \\ \hline \end{gathered}$	24	$\begin{gathered} \hline 20 \\ 7 \\ \hline \end{gathered}$	32	0	$\begin{gathered} 22 \\ 1 \end{gathered}$	$\begin{gathered} \hline 10 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 2 \end{gathered}$	0	c 35	6	10 3
	18	$\begin{gathered} 15 \\ 7 \end{gathered}$	18	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 1 \end{gathered}$	$\begin{gathered} 28 \\ 4 \end{gathered}$	38	52		12	$\begin{gathered} 11 \\ 2 \end{gathered}$	$\begin{gathered} 20 \\ 1 \end{gathered}$	22	$\begin{gathered} 20 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 1 \end{gathered}$	26 5	$\begin{gathered} 12 \\ 6 \end{gathered}$	11 0
	20	$\begin{gathered} \hline 21 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ 5 \\ \hline \end{gathered}$	91	13		14	$\begin{gathered} \hline 19 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ 1 \\ \hline \end{gathered}$	58	36	33 8	63	15 1
	28	0	0	0	0	0	0	0	0		24	$\begin{gathered} 12 \\ 1 \end{gathered}$	$\begin{gathered} 28 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 7 \\ \hline \end{gathered}$	30	$\begin{gathered} 16 \\ 2 \end{gathered}$	83	20	21 1
7	0	$\begin{gathered} \hline 22 \\ 0 \\ \hline \end{gathered}$	9	12	17	$\begin{gathered} \hline 16 \\ 9 \\ \hline \end{gathered}$	3	$\begin{gathered} 14 \\ 5 \end{gathered}$	77		54	0	0	0	0	0	0	0	0
	1	44	62	88	76	$\begin{gathered} 18 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ 3 \\ \hline \end{gathered}$	88	$\begin{gathered} \hline 14 \\ 6 \\ \hline \end{gathered}$	33	1	2	$\begin{gathered} 32 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 4 \end{gathered}$	0	56	10	19 9
	4	$\begin{gathered} 15 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 31 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 4 \end{gathered}$	$\begin{gathered} 15 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ 4 \end{gathered}$	$\begin{gathered} 11 \\ 2 \\ \hline \end{gathered}$	20 9		2	$\begin{gathered} 18 \\ 7 \\ \hline \end{gathered}$	8	20	49	0	30 4	30	13 2
	7	31	$\begin{gathered} 33 \\ 3 \\ \hline \end{gathered}$	50	$\begin{gathered} \hline 10 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 3 \end{gathered}$	32		11	41	$\begin{gathered} 36 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 1 \end{gathered}$	76	14	6	17 2
	8	16 7	$\begin{gathered} 29 \\ 0 \\ \hline \end{gathered}$	25	$\begin{gathered} 15 \\ 0 \end{gathered}$	$\begin{gathered} 10 \\ 4 \end{gathered}$	$\begin{gathered} 21 \\ 5 \end{gathered}$	$\begin{gathered} 15 \\ 9 \\ \hline \end{gathered}$	16 6		21	$\begin{gathered} 21 \\ 1 \end{gathered}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	33	$\begin{gathered} 13 \\ 7 \end{gathered}$	18	10	92	65
	14	$\begin{gathered} 10 \\ 4 \end{gathered}$	$\begin{gathered} 11 \\ 4 \end{gathered}$	76	$\begin{gathered} 15 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 4 \end{gathered}$	39	76	18		55	0	0	0	0	0	0	0	0
	29	0	0	0	0	0	0	0	0	34	0	$\begin{gathered} 12 \\ 7 \end{gathered}$	$\begin{gathered} 23 \\ 0 \end{gathered}$	$\begin{gathered} 18 \\ 7 \end{gathered}$	82	$\begin{gathered} 19 \\ 7 \end{gathered}$	60	4	16 1
8	0	$\begin{gathered} 11 \\ 2 \end{gathered}$	$\begin{gathered} 30 \\ 7 \end{gathered}$	$\begin{gathered} 29 \\ 5 \end{gathered}$	33	54	$\begin{gathered} 34 \\ 8 \end{gathered}$	$\begin{gathered} 17 \\ 2 \end{gathered}$	18 1		7	$\begin{gathered} 16 \\ 7 \end{gathered}$	$\begin{gathered} 14 \\ 8 \end{gathered}$	$\begin{gathered} 29 \\ 6 \end{gathered}$	$\begin{gathered} 18 \\ 6 \end{gathered}$	0	32 0	15 3	23 7
	1	4	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 13 \\ 3 \end{gathered}$	95	0	75	2	10 5		15	$\begin{gathered} 16 \\ 4 \end{gathered}$	$\begin{gathered} 20 \\ 2 \end{gathered}$	5	68	$\begin{gathered} 10 \\ 8 \end{gathered}$	11 2	19 7	14 2
	3	7	$\begin{gathered} 16 \\ 5 \end{gathered}$	$\begin{gathered} 13 \\ 0 \end{gathered}$	4	$\begin{gathered} 25 \\ 2 \end{gathered}$	22	13 1	14		17	$\begin{gathered} 15 \\ 9 \end{gathered}$	$\begin{gathered} 31 \\ 2 \end{gathered}$	44	$\begin{gathered} 15 \\ 0 \end{gathered}$	0	54	$\begin{gathered} 15 \\ 5 \end{gathered}$	18 0
	12	21 1	18	$\begin{gathered} 23 \\ 1 \end{gathered}$	$\begin{gathered} 21 \\ 7 \end{gathered}$	41	31 2	14	22 3		56	0	0	0	0	0	0	0	0
	16	10 2	39	$\begin{gathered} 29 \\ 6 \end{gathered}$	$\begin{gathered} 20 \\ 4 \end{gathered}$	98	$\begin{gathered} 22 \\ 4 \end{gathered}$	96	17 7	35	1	16	$\begin{gathered} 32 \\ 0 \end{gathered}$	$\begin{gathered} 20 \\ 7 \end{gathered}$	$\begin{gathered} 19 \\ 2 \end{gathered}$	19 9	10 0	4	23 1
	19	16 4 10	$\begin{gathered} 22 \\ 4 \\ \hline \end{gathered}$	11 0	39	46	17	99	14 5		6	$\begin{gathered} 19 \\ 7 \end{gathered}$	$\begin{gathered} \hline 33 \\ 5 \end{gathered}$	$\begin{gathered} 15 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 3 \\ \hline \end{gathered}$	27 8	21 0	45	17 4
	21	10 9	$\begin{gathered} \hline 36 \\ 8 \\ \hline \end{gathered}$	26 9	58	15	59	10 1	19 9		12	$\begin{gathered} 20 \\ 7 \\ \hline \end{gathered}$	2	55	26	0	19 5	16 8	14 5
	22	$\begin{gathered} 24 \\ 1 \end{gathered}$	67	$\begin{gathered} 24 \\ 5 \end{gathered}$	44	$\begin{gathered} \hline 23 \\ 0 \\ \hline \end{gathered}$	31 4	35	15 3		22	$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ 6 \end{gathered}$	$\begin{gathered} 28 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	26 8	$\begin{gathered} 18 \\ 5 \end{gathered}$	10 0
	24	90	$\begin{gathered} \hline 17 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 4 \end{gathered}$	$\begin{gathered} 20 \\ 1 \\ \hline \end{gathered}$	54	$\begin{gathered} 24 \\ 4 \end{gathered}$	$\begin{gathered} \hline 11 \\ 6 \\ \hline \end{gathered}$	38		57	0	0	0	0	0	0	0	0
	30	0	0	0	0	0	0	0	0	36	0	37	$\begin{gathered} 21 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ 2 \\ \hline \end{gathered}$	21 6	13 5	6	11
9	0	$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 9 \end{gathered}$	9	$\begin{gathered} 16 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ 6 \\ \hline \end{gathered}$	6	$\begin{gathered} 16 \\ 9 \\ \hline \end{gathered}$		14	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{gathered} \hline 31 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 7 \\ \hline \end{gathered}$	16	15	20 0	20 7
	1	$\begin{gathered} 18 \\ 2 \end{gathered}$	$\begin{gathered} 23 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ 4 \\ \hline \end{gathered}$	37	$\begin{gathered} 15 \\ 9 \end{gathered}$	88	10	12		15	51	$\begin{gathered} 29 \\ 7 \end{gathered}$	$\begin{gathered} 17 \\ 8 \\ \hline \end{gathered}$	0	0	35	$\begin{gathered} 17 \\ 7 \\ \hline \end{gathered}$	42
	10	$\begin{gathered} 10 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline \\ \hline 32 \\ 1 \end{gathered}$	36	$\begin{gathered} 21 \\ 3 \\ \hline \end{gathered}$	93	29 3	$\begin{gathered} 14 \\ 5 \end{gathered}$	20 6		18	$\begin{gathered} 12 \\ 0 \\ \hline \end{gathered}$	21	$\begin{gathered} 16 \\ 0 \end{gathered}$	6	0	$\begin{gathered} 18 \\ 8 \\ \hline \end{gathered}$	43	10 0
	11	21	$\begin{gathered} 13 \\ 3 \end{gathered}$	$\begin{gathered} 28 \\ 6 \end{gathered}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{gathered} 13 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 1 \\ \hline \end{gathered}$	53	$\begin{gathered} 22 \\ 1 \end{gathered}$		58	0	0	0	0	0	0	0	0
	13	$\begin{gathered} 14 \\ 2 \end{gathered}$	57	$\begin{gathered} 15 \\ 1 \end{gathered}$	89	45	92	$\begin{gathered} 20 \\ 1 \end{gathered}$	17	37	1	$\begin{gathered} 19 \\ 8 \end{gathered}$	$\begin{gathered} 26 \\ 9 \end{gathered}$	$\begin{gathered} 29 \\ 8 \end{gathered}$	81	72	31 9	82	59
	17	14	$\begin{gathered} 30 \\ 3 \end{gathered}$	$\begin{gathered} 26 \\ 7 \end{gathered}$	$\begin{gathered} 18 \\ 5 \end{gathered}$	$\begin{gathered} 13 \\ 2 \end{gathered}$	$\begin{gathered} 15 \\ 2 \end{gathered}$	4	$\begin{gathered} 21 \\ 2 \\ \hline \end{gathered}$		13	$\begin{gathered} 22 \\ 0 \\ \hline \end{gathered}$	82	15	$\begin{gathered} 19 \\ 5 \end{gathered}$	$\begin{gathered} 14 \\ 4 \end{gathered}$	23 6	2	20 4
	18	61	63	$\begin{gathered} 13 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ 9 \end{gathered}$	76	23	$\begin{gathered} 16 \\ 4 \end{gathered}$	92		23	$\begin{gathered} 12 \\ 2 \end{gathered}$	$\begin{gathered} 11 \\ 5 \end{gathered}$	$\begin{gathered} 11 \\ 5 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	0	85	$\begin{gathered} 13 \\ 5 \end{gathered}$	16 1
	20	$\begin{gathered} 21 \\ 6 \end{gathered}$	82	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{gathered} 21 \\ 8 \end{gathered}$	$\begin{gathered} 20 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ 7 \end{gathered}$	$\begin{gathered} 17 \\ 3 \end{gathered}$	$\begin{gathered} 20 \\ 5 \end{gathered}$		59	0	0	0	0	0	0	0	0
	31	0	0	0	0	0	0	0	0	38	0	$\begin{gathered} 16 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 0 \\ \hline \end{gathered}$	16 4	91	12 1
10	1	98	$\begin{gathered} 10 \\ 1 \end{gathered}$	14	82	$\begin{gathered} 17 \\ 8 \end{gathered}$	$\begin{gathered} 17 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 6 \end{gathered}$	$\begin{gathered} 11 \\ 6 \end{gathered}$		9	15 1	17 7	17 9	90	0	19 6	64	90
	2	14 9	$\begin{gathered} 23 \\ 9 \end{gathered}$	80	$\begin{gathered} 16 \\ 5 \end{gathered}$	1	$\begin{gathered} 25 \\ 3 \\ \hline \end{gathered}$	77	$\begin{gathered} 15 \\ 1 \end{gathered}$		10	$\begin{gathered} -2 \\ \hline 15 \\ 7 \end{gathered}$	$\begin{gathered} 28 \\ 9 \\ \hline \end{gathered}$	64	73	0	20 9	19 8	26
	4	16 7	$\begin{gathered} 27 \\ 4 \end{gathered}$	21 1	$\begin{gathered} 17 \\ 4 \end{gathered}$	28	27	$\begin{gathered} 15 \\ 6 \end{gathered}$	70		12	16 3	$\begin{gathered} 21 \\ 4 \end{gathered}$	18 1	10	0	24 6	10 0	14 0
	7	$\begin{gathered} 16 \\ 0 \end{gathered}$	$\begin{gathered} 11 \\ 1 \end{gathered}$	75	19	$\begin{gathered} 26 \\ 7 \end{gathered}$	$\begin{gathered} 23 \\ 1 \end{gathered}$	16	$\begin{gathered} 23 \\ 0 \\ \hline \end{gathered}$		60	0	0	0	0	0	0	0	0
	8	49	$\begin{gathered} 38 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 1 \end{gathered}$	$\begin{gathered} 19 \\ 4 \end{gathered}$	$\begin{gathered} 23 \\ 4 \end{gathered}$	49	12	$\begin{gathered} \\ \hline 11 \\ 5 \end{gathered}$	39	1	17 3	$\begin{gathered} 25 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 2 \\ \hline \end{gathered}$	12	$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	23 6	4	11 5
	14	58	$\begin{gathered} 35 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 31 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ 7 \\ \hline \end{gathered}$	70	84		3	13 9	93	77	77	0	26 4	28	18 8
	32	0	0	0	0	0	0	0	0		7	$\begin{gathered} 14 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 2 \\ \hline \end{gathered}$	49	$\begin{gathered} 16 \\ 5 \\ \hline \end{gathered}$	37	10 9	16 8
11	0	77	48	16	52	55	25	$\begin{gathered} 18 \\ 4 \end{gathered}$	45		19	0	$\begin{gathered} 29 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 8 \end{gathered}$	$\begin{gathered} 11 \\ 4 \end{gathered}$	$\begin{gathered} 11 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 8 \\ \hline \end{gathered}$	52
	1	41	$\begin{gathered} 10 \\ 2 \end{gathered}$	14 7	11	23	32 2	19 4	11 5		61	0	0	0	0	0	0	0	0
	12	83	8	29 0	2	$\begin{gathered} 27 \\ 4 \end{gathered}$	20 0	12 3	13 4	40	0	$\begin{gathered} 15 \\ 7 \end{gathered}$	$\begin{gathered} 17 \\ 5 \\ \hline \end{gathered}$	32	67	21 6	30 4	10	4
	16	$\begin{gathered} 18 \\ 2 \end{gathered}$	47	28 9	35	18 1	35 1	16	1		8	$\begin{gathered} 13 \\ 7 \end{gathered}$	37	80	45	14 4	23 7	84	10 3

	21	78	$\begin{gathered} 18 \\ 8 \end{gathered}$	17 7	32	27 3	16 6	10 4	15 2		17	14 9	$\begin{gathered} 31 \\ 2 \end{gathered}$	19 7	96	2	$\begin{gathered} 13 \\ 5 \end{gathered}$	12	30
	22	$\begin{gathered} 25 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ 4 \end{gathered}$	43	84	39	33 8	$\begin{gathered} 10 \\ 9 \\ \hline \end{gathered}$	16 5		62	0	0	0	0	0	0	0	0
	23	22	$\begin{gathered} 11 \\ 5 \end{gathered}$	$\begin{gathered} 28 \\ 0 \end{gathered}$	$\begin{gathered} 20 \\ 1 \end{gathered}$	26	19 2	$\begin{gathered} 12 \\ 4 \end{gathered}$	10	41	1	16 7	52	$\begin{gathered} 15 \\ 4 \end{gathered}$	23	0	$\begin{gathered} 12 \\ 3 \end{gathered}$	2	53
	33	0	0	0	0	0	0	0	0		3	17 3	$\begin{gathered} 31 \\ 4 \end{gathered}$	47	21 5	0	77	75	18 9
12	0	$\begin{gathered} 16 \\ 0 \end{gathered}$	77	$\begin{gathered} 22 \\ 9 \\ \hline \end{gathered}$	14 2	$\begin{gathered} 22 \\ 5 \end{gathered}$	12 3	6	18 6		9	$\begin{gathered} 13 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 4 \end{gathered}$	60	0	25	14 2	$\begin{gathered} 21 \\ 5 \end{gathered}$
	1	42	$\begin{gathered} 18 \\ 6 \end{gathered}$	$\begin{gathered} 23 \\ 5 \end{gathered}$	17 5	16 2	21 7	20	21 5		18	15	$\begin{gathered} 28 \\ 8 \end{gathered}$	$\begin{gathered} 20 \\ 7 \\ \hline \end{gathered}$	16 7	18 3	$\begin{gathered} 27 \\ 2 \\ \hline \end{gathered}$	12 8	24
	10	21	$\begin{gathered} 17 \\ 4 \end{gathered}$	$\begin{gathered} 16 \\ 9 \end{gathered}$	13 6	24 4	14 2	20 3	12 4		63	0	0	0	0	0	0	0	0
	11	32	$\begin{gathered} 23 \\ 2 \\ \hline \end{gathered}$	48	3	$\begin{gathered} 15 \\ 1 \end{gathered}$	11 0	$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	18 0	42	0	$\begin{gathered} \hline 14 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ 6 \\ \hline \end{gathered}$	11 4	27	$\begin{gathered} 28 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 3 \\ \hline \end{gathered}$	22 2
	13	$\begin{gathered} 23 \\ 4 \end{gathered}$	50	$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$	28	$\begin{gathered} 23 \\ 8 \end{gathered}$	17 6	$\begin{gathered} 10 \\ 4 \\ \hline \end{gathered}$	98		4	15 7	14	65	91	0	83	10	17 0
	18	7	74	52	18 2	24 3	76	20 7	80		24	13 7	21 8	12 6	78	35	17	16 2	71
	34	0	0	0	0	0	0	0	0		64	0	0	0	0	0	0	0	0
13	0	$\begin{gathered} 17 \\ 7 \end{gathered}$	$\begin{gathered} \hline 31 \\ 3 \\ \hline \end{gathered}$	39	81	$\begin{gathered} 23 \\ 1 \end{gathered}$	31 1	52	22 0	43	1	$\begin{gathered} 15 \\ 1 \end{gathered}$	$\begin{gathered} 11 \\ 3 \end{gathered}$	22 8	20 6	52	$\begin{gathered} 21 \\ 0 \end{gathered}$	1	22
	3	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{gathered} 17 \\ 7 \end{gathered}$	$\begin{gathered} 30 \\ 2 \end{gathered}$	56	0	25 1	$\begin{gathered} 14 \\ 7 \end{gathered}$	18 5		16	$\begin{gathered} 16 \\ 3 \end{gathered}$	$\begin{gathered} 13 \\ 2 \end{gathered}$	69	22	$\begin{gathered} 24 \\ 3 \\ \hline \end{gathered}$	3	$\begin{gathered} 16 \\ 3 \end{gathered}$	$\begin{gathered} 12 \\ 7 \end{gathered}$
	7	$\begin{gathered} 15 \\ 1 \end{gathered}$	$\begin{gathered} 26 \\ 6 \end{gathered}$	$\begin{gathered} 30 \\ 3 \end{gathered}$	72	$\begin{gathered} 21 \\ 6 \end{gathered}$	26 5	1	15 4		18	$\begin{gathered} 17 \\ 3 \end{gathered}$	$\begin{gathered} 11 \\ 4 \end{gathered}$	17 6	13 4	0	53	99	49
	20	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 5 \end{gathered}$	$\begin{gathered} 16 \\ 0 \end{gathered}$	$\begin{gathered} 21 \\ 7 \\ \hline \end{gathered}$	47	94	16	$\begin{gathered} 17 \\ 8 \\ \hline \end{gathered}$		25	$\begin{gathered} 13 \\ 9 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 10 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 1 \end{gathered}$	$\begin{gathered} 27 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 7 \end{gathered}$	98	$\begin{gathered} 12 \\ 5 \end{gathered}$
	23	62	$\begin{gathered} 37 \\ 0 \end{gathered}$	37	78	36	81	46	$\begin{gathered} 15 \\ 0 \\ \hline \end{gathered}$		65	0	0	0	0	0	0	0	0
	35	0	0	0	0	0	0	0	0	44	0	$\begin{gathered} 13 \\ 9 \\ \hline \end{gathered}$	80	$\begin{gathered} 23 \\ 4 \end{gathered}$	84	18	79	4	$\begin{gathered} 19 \\ 1 \end{gathered}$
14	0	$\begin{gathered} 20 \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ 2 \end{gathered}$	78	14	0	22	1	$\begin{gathered} 12 \\ 4 \end{gathered}$		7	$\begin{gathered} 15 \\ 7 \end{gathered}$	78	$\begin{gathered} 22 \\ 7 \end{gathered}$	4	0	$\begin{gathered} 24 \\ 4 \end{gathered}$	6	21 1
	12	55	$\begin{gathered} - \\ \hline 24 \\ 8 \end{gathered}$	$\begin{gathered} 29 \\ 9 \end{gathered}$	$\begin{gathered} 17 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 6 \end{gathered}$	$\begin{gathered} 32 \\ 2 \end{gathered}$	$\begin{gathered} 20 \\ 2 \end{gathered}$	14 4		9	$\begin{gathered} 16 \\ 3 \end{gathered}$	$\begin{gathered} 16 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 9 \end{gathered}$	9	0	$\begin{gathered} 29 \\ 3 \end{gathered}$	14 2	18 7
	15	$\begin{gathered} 20 \\ 6 \end{gathered}$	$\begin{gathered} 13 \\ 7 \end{gathered}$	54	$\begin{gathered} 21 \\ 1 \end{gathered}$	$\begin{gathered} 25 \\ 3 \end{gathered}$	$\begin{gathered} 27 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} - \\ \hline 11 \\ 8 \end{gathered}$	$\begin{gathered} 18 \\ 2 \\ \hline \end{gathered}$		22	$\begin{gathered} 17 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ 4 \end{gathered}$	$\begin{gathered} 26 \\ 0 \end{gathered}$	12	57	$\begin{gathered} 27 \\ 2 \\ \hline \end{gathered}$	3	$\begin{gathered} 14 \\ 8 \end{gathered}$
	16	$\begin{gathered} 12 \\ 7 \end{gathered}$	89	61	$\begin{gathered} 19 \\ 1 \end{gathered}$	16	$\begin{gathered} 15 \\ 6 \end{gathered}$	$\begin{gathered} 13 \\ 0 \\ \hline \end{gathered}$	95		66	0	0	0	0	0	0	0	0
	17	16	$\begin{gathered} 34 \\ 7 \end{gathered}$	$\begin{gathered} 17 \\ 9 \\ \hline \end{gathered}$	51	0	66	1	72	45	1	$\begin{gathered} 14 \\ 9 \end{gathered}$	$\begin{gathered} 13 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	18 4	$\begin{gathered} 16 \\ 8 \end{gathered}$	82	$\begin{gathered} 18 \\ 1 \end{gathered}$	$\begin{gathered} 17 \\ 7 \end{gathered}$
	21	$\begin{gathered} 22 \\ 9 \end{gathered}$	12	$\begin{gathered} 25 \\ 8 \end{gathered}$	43	79	78	2	76		6	15	$\begin{gathered} 14 \\ 9 \end{gathered}$	$\begin{gathered} 22 \\ 8 \end{gathered}$	12 1	0	67	45	$\begin{gathered} 11 \\ 4 \end{gathered}$
	36	0	0	0	0	0	0	0	0		10	$\begin{gathered} 16 \\ 7 \end{gathered}$	15	$\begin{gathered} 12 \\ 6 \end{gathered}$	29	$\begin{gathered} 14 \\ 4 \end{gathered}$	$\begin{gathered} 23 \\ 5 \end{gathered}$	$\begin{gathered} 15 \\ 3 \end{gathered}$	93
15	0	40	$\begin{gathered} 24 \\ 1 \end{gathered}$	$\begin{gathered} 22 \\ 9 \\ \hline \end{gathered}$	90	$\begin{gathered} 17 \\ 0 \\ \hline \end{gathered}$	17 6	$\begin{gathered} 17 \\ 3 \\ \hline \end{gathered}$	39		67	0	0	0	0	0	0	0	0

Table 5.3.2-3: LDPC base graph 2 ($H_{B G}$) and its parity check matrices ($V_{i, j}$)

H_{BG}		$V_{i, j}$								H_{BG}		$V_{i, j}$							
Row inde	$\begin{gathered} \text { Colum } \\ \mathrm{n} \end{gathered}$	Set index $i_{L S}$								Row inde x i	Colum n index j	$\text { Set index } \quad i_{L S}$							
i	j	0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7
0	0	9	$\begin{gathered} 17 \\ 4 \\ \hline \end{gathered}$	0	72	3	$\begin{gathered} 15 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 14 \\ 5 \\ \hline \end{gathered}$	16	26	0	0	0	0	0	0	0	0
	1	11 7	97	0	$\begin{gathered} 11 \\ 0 \\ \hline \end{gathered}$	26	$\begin{gathered} 14 \\ 3 \\ \hline \end{gathered}$	19	13 1	17	1	25 4	$\begin{gathered} \hline 15 \\ 8 \\ \hline \end{gathered}$	0	48	$\begin{gathered} 12 \\ 0 \\ \hline \end{gathered}$	13 4	57	19 6
	2	$\begin{gathered} 20 \\ 4 \end{gathered}$	$\begin{gathered} 16 \\ 6 \\ \hline \end{gathered}$	0	23	53	14	$\begin{gathered} \hline 17 \\ 6 \\ \hline \end{gathered}$	71		5	12 4	23	24	$\begin{gathered} 13 \\ 2 \\ \hline \end{gathered}$	43	23	$\begin{gathered} 20 \\ 1 \\ \hline \end{gathered}$	17 3
	3	26	66	0	$\begin{gathered} 18 \\ 1 \\ \hline \end{gathered}$	35	3	$\begin{gathered} 16 \\ 5 \\ \hline \end{gathered}$	21		11	$\begin{gathered} 11 \\ 4 \\ \hline \end{gathered}$	9	$\begin{gathered} 10 \\ 9 \end{gathered}$	$\begin{gathered} \hline 20 \\ 6 \\ \hline \end{gathered}$	65	62	$\begin{gathered} 14 \\ 2 \\ \hline \end{gathered}$	19 5
	6	$\begin{gathered} 18 \\ 9 \end{gathered}$	71	0	95	$\begin{gathered} 11 \\ 5 \end{gathered}$	40	$\begin{gathered} 19 \\ 6 \end{gathered}$	23		12	64	6	18	2	42	$\begin{gathered} 16 \\ 3 \end{gathered}$	35	21 8
	9	$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 2 \\ \hline \end{gathered}$	0	8	$\begin{gathered} 12 \\ 7 \end{gathered}$	$\begin{gathered} 12 \\ 3 \\ \hline \end{gathered}$	13	$\begin{gathered} 11 \\ 2 \\ \hline \end{gathered}$		27	0	0	0	0	0	0	0	0
	10	0	0	0	1	0	0	0	1	18	0	$\begin{gathered} 22 \\ 0 \end{gathered}$	$\begin{gathered} 18 \\ 6 \end{gathered}$	0	68	17	17 3	$\begin{gathered} 12 \\ 9 \end{gathered}$	12 8
	11	0	0	0	0	0	0	0	0		6	$\begin{gathered} 19 \\ 4 \\ \hline \end{gathered}$	6	18	16	$\begin{gathered} \hline 10 \\ 6 \\ \hline \end{gathered}$	31	$\begin{gathered} 20 \\ 3 \\ \hline \end{gathered}$	21 1
1	0	$\begin{gathered} 16 \\ 7 \end{gathered}$	27	13 7	53	19	17	18	14 2 1		7	50	46	86	$\begin{gathered} 15 \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ 2 \end{gathered}$	22	$\begin{gathered} 14 \\ 0 \end{gathered}$	21 0
	3	$\begin{gathered} 16 \\ 6 \\ \hline \end{gathered}$	36	$\begin{gathered} 12 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 6 \\ \hline \end{gathered}$	94	65	27	$\begin{gathered} 17 \\ 4 \\ \hline \end{gathered}$		28	0	0	0	0	0	0	0	0
	4	$\begin{gathered} 25 \\ 3 \\ \hline \end{gathered}$	48	0	$\begin{gathered} 11 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 4 \end{gathered}$	63	3	$\begin{gathered} 18 \\ 3 \\ \hline \end{gathered}$	19	0	87	58	0	35	79	13	11 0	39
	5	$\begin{gathered} 12 \\ 5 \end{gathered}$	92	0	$\begin{gathered} \hline 15 \\ 6 \\ \hline \end{gathered}$	66	1	$\begin{gathered} 10 \\ 2 \end{gathered}$	27		1	20	42	15 8	$\begin{gathered} \hline 13 \\ 8 \\ \hline \end{gathered}$	28	13 5	$\begin{gathered} \hline 12 \\ 4 \\ \hline \end{gathered}$	84
	6	$\begin{gathered} 22 \\ 6 \\ \hline \end{gathered}$	31	88	$\begin{gathered} 11 \\ \hline 5 \\ \hline \end{gathered}$	84	55	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	96		10	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 4 \end{gathered}$	86	41	$\begin{gathered} 14 \\ 5 \\ \hline \end{gathered}$	52	88
	7	$\begin{gathered} \hline 15 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 7 \\ \hline \end{gathered}$	0	$\begin{gathered} 20 \\ 0 \\ \hline \end{gathered}$	98	37	17	23		29	0	0	0	0	0	0	0	0
	8	$\begin{gathered} 22 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	0	29	69	$\begin{gathered} 17 \\ 1 \\ \hline \end{gathered}$	14	9	20	1	26	76	0	6	2	12 8	$\begin{gathered} 19 \\ 6 \\ \hline \end{gathered}$	11 7
	9	$\begin{gathered} 25 \\ 2 \\ \hline \end{gathered}$	3	55	31	50	$\begin{gathered} 13 \\ 13 \end{gathered}$	$\begin{gathered} 18 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 7 \end{gathered}$		4	$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$	61	14 8	20	$\begin{gathered} 10 \\ 3 \end{gathered}$	52	35	22 7
	11	0	0	0	0	0	0	0	0		11	29	$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	10 4	$\begin{gathered} 14 \\ 1 \end{gathered}$	78	17 3	11 4	6
	12	0	0	0	0	0	0	0	0		30	0	0	0	0	0	0	0	0
2	0	81	25	20	$\begin{gathered} 15 \\ 2 \\ \hline \end{gathered}$	95	98	$\begin{gathered} 12 \\ 6 \end{gathered}$	74	21	0	76	$\begin{gathered} 15 \\ 7 \end{gathered}$	0	80	91	$\begin{gathered} 15 \\ 6 \end{gathered}$	10	23 8
	1	$\begin{gathered} 11 \\ 4 \end{gathered}$	$\begin{gathered} 11 \\ 4 \end{gathered}$	94	$\begin{gathered} 13 \\ 1 \end{gathered}$	$\begin{gathered} 10 \\ 6 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 3 \end{gathered}$	31		8	42	$\begin{gathered} 17 \\ 5 \end{gathered}$	17	43	75	$\begin{gathered} 16 \\ 6 \end{gathered}$	$\begin{gathered} 12 \\ 2 \end{gathered}$	13
	3	44	$\begin{gathered} 11 \\ 7 \end{gathered}$	99	46	92	$\begin{gathered} 10 \\ 7 \end{gathered}$	47	3		13	$\begin{gathered} 21 \\ 0 \end{gathered}$	67	33	81	81	40	23	11
	4	52	$\begin{gathered} 11 \\ 0 \end{gathered}$	9	$\begin{gathered} 19 \\ 1 \end{gathered}$	$\begin{gathered} 11 \\ 0 \end{gathered}$	82	$\begin{gathered} 18 \\ 3 \end{gathered}$	53		31	0	0	0	0	0	0	0	0
	8	$\begin{gathered} 24 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 8 \\ \hline \end{gathered}$	91	$\begin{gathered} 11 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ \hline \end{gathered}$	22	1	$\begin{gathered} 22 \\ 2 \\ \hline \end{gathered}$	20	0	49	54	18	$\begin{gathered} 20 \\ 2 \\ \hline \end{gathered}$	19 5
	10	1	1	1	0	1	1	1	0		2	63	52	4	1	$\begin{gathered} 13 \\ 2 \\ \hline \end{gathered}$	16 3	12 6	44
	12	0	0	0	0	0	0	0	0		32	0	0	0	0	0	0	0	0
	13	0	0	0	0	0	0	0	0	23	0	23	$\begin{gathered} \hline 10 \\ 6 \\ \hline \end{gathered}$	0	$\begin{gathered} \hline 15 \\ 6 \\ \hline \end{gathered}$	68	11 0	52	5
3	1	8	$\begin{gathered} 13 \\ 6 \end{gathered}$	38	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 0 \end{gathered}$	53	36	$\begin{gathered} 23 \\ 9 \\ \hline \end{gathered}$		3	$\begin{gathered} 23 \\ 5 \\ \hline \end{gathered}$	86	75	54	$\begin{gathered} 11 \\ 5 \\ \hline \end{gathered}$	13 2	$\begin{gathered} 17 \\ 0 \\ \hline \end{gathered}$	94
	2	58	$\begin{gathered} 17 \\ 5 \\ \hline \end{gathered}$	15	6	$\begin{gathered} 12 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 4 \\ \hline \end{gathered}$	48	$\begin{gathered} 17 \\ 1 \\ \hline \end{gathered}$		5	$\begin{gathered} \hline 23 \\ 8 \\ \hline \end{gathered}$	95	$\begin{gathered} 15 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 4 \\ \hline \end{gathered}$	56	15 0	13	11 1
	4	$\begin{gathered} \hline 15 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 2 \\ \hline \end{gathered}$	36	22	$\begin{gathered} 17 \\ 4 \\ \hline \end{gathered}$	18	95		33	0	0	0	0	0	0	0	0
	5	$\begin{gathered} 10 \\ 4 \end{gathered}$	72	$\begin{gathered} 14 \\ 6 \end{gathered}$	$\begin{gathered} 12 \\ 4 \end{gathered}$	4	$\begin{gathered} 12 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 0 \\ \hline \end{gathered}$	24	1	46	$\begin{gathered} 18 \\ 2 \\ \hline \end{gathered}$	0	$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	30	11 3	11 3	81
	6	$\begin{gathered} 20 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 3 \\ \hline \end{gathered}$	12	$\begin{gathered} 12 \\ 4 \\ \hline \end{gathered}$	73	17	$\begin{gathered} 20 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 9 \\ \hline \end{gathered}$		2	13 9	$\begin{gathered} 15 \\ 3 \end{gathered}$	69	88	42	10 8	$\begin{gathered} 16 \\ 1 \end{gathered}$	19
	7	54	$\begin{gathered} 11 \\ 8 \end{gathered}$	57	11 0	49	89	3	$\begin{gathered} 19 \\ 9 \\ \hline \end{gathered}$		9	8	64	87	63	10 1	61	88	13 0
	8	18	28	53	$\begin{gathered} 15 \\ 6 \end{gathered}$	$\begin{gathered} 12 \\ 8 \\ \hline \end{gathered}$	17	19 1 1	43		34	0	0	0	0	0	0	0	0
	9	$\begin{gathered} 12 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 6 \\ \hline \end{gathered}$	46	$\begin{gathered} 13 \\ 3 \\ \hline \end{gathered}$	79	$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 0 \\ \hline \end{gathered}$	75	25	0	22 8	45	0	$\begin{gathered} 21 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 8 \\ \hline \end{gathered}$	72	19 7	66
	10	0	0	0	1	0	0	0	1		5	15 6	21	65	94	63	13 6	19 4	95
	13	0	0	0	0	0	0	0	0		35	0	0	0	0	0	0	0	0
4	0	17 9	72	0	$\begin{gathered} 20 \\ 0 \\ \hline \end{gathered}$	42	86	43	29	26	2	29	67	0	90	14 2	36	16 4 17	14 6
	1	21 4	74	$\begin{gathered} 13 \\ 6 \\ \hline \end{gathered}$	16	24	67	27	14 0		7	14 3	$\begin{gathered} 13 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 0 \\ \hline \end{gathered}$	6	28	38	17 2	66
	11	71	29	$\begin{gathered} 15 \\ 7 \end{gathered}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	51	83	$\begin{gathered} 11 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 0 \end{gathered}$		12	16 0	55	13	$\begin{gathered} 22 \\ 1 \end{gathered}$	10 0	53	49	19 0
	14	0	0	0	0	0	0	0	0		13	$\begin{gathered} 12 \\ 2 \\ \hline \end{gathered}$	85	7	6	$\begin{gathered} 13 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 1 \\ \hline \end{gathered}$	86
5	0	$\begin{gathered} 23 \\ 1 \\ \hline \end{gathered}$	10	0	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	40	79	$\begin{gathered} 13 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 1 \\ \hline \end{gathered}$		36	0	0	0	0	0	0	0	0
	1	41	44	13 1	$\begin{gathered} 13 \\ \hline 8 \end{gathered}$	$\begin{gathered} 14 \\ 0 \\ \hline \end{gathered}$	84	49	41	27	0	8	$\begin{gathered} \hline 10 \\ 3 \\ \hline \end{gathered}$	0	27	13	42	16 8	64

	5	$\begin{gathered} 19 \\ 4 \end{gathered}$	$\begin{gathered} 12 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 2 \\ \hline \end{gathered}$	17 0	84	35	36	$\begin{gathered} \hline 16 \\ 9 \\ \hline \end{gathered}$		6	$\begin{gathered} 15 \\ 1 \end{gathered}$	50	32	11 8	10	10 4	19 3	18 1
	7	$\begin{gathered} 15 \\ 9 \end{gathered}$	80	$\begin{gathered} 14 \\ 1 \end{gathered}$	21 9	$\begin{aligned} & 13 \\ & 7 \end{aligned}$	10 3	13 2	88		37	0	0	0	0	0	0	0	0
	11	10 3	48	64	$\begin{gathered} 19 \\ 3 \end{gathered}$	71	60	62	$\begin{gathered} 20 \\ 7 \end{gathered}$	28	1	98	70	0	21 6	10 6	64	14	7
	15	0	0	0	0	0	0	0	0		2	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{gathered} 11 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 6 \\ \hline \end{gathered}$	21 2	77	24	18 6	14 4
6	0	$\begin{gathered} 15 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 9 \\ \hline \end{gathered}$	0	$\begin{gathered} 12 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ 9 \\ \hline \end{gathered}$	47	7	$\begin{gathered} 13 \\ 7 \\ \hline \end{gathered}$		5	$\begin{gathered} 13 \\ 13 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ \hline 16 \\ \hline \end{gathered}$	11 0	19 3	43	14 9	46	16
	5	$\begin{gathered} \hline 22 \\ 8 \end{gathered}$	92	$\begin{gathered} 12 \\ 4 \end{gathered}$	55	87	$\begin{gathered} 15 \\ 4 \end{gathered}$	34	72		38	0	0	0	0	0	0	0	0
	7	45	$\begin{gathered} 10 \\ 0 \end{gathered}$	99	31	$\begin{gathered} 10 \\ 7 \\ \hline \end{gathered}$	10	$\begin{gathered} 19 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 2 \\ \hline \end{gathered}$	29	0	18	$\begin{gathered} 11 \\ 0 \end{gathered}$	0	$\begin{gathered} \hline 10 \\ 8 \\ \hline \end{gathered}$	13 3	13 9	50	25
	9	28	49	45	$\begin{gathered} \hline 22 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 13 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 4 \end{gathered}$		4	28	17	$\begin{gathered} 15 \\ 4 \end{gathered}$	61	25	16 1	27	57
	11	$\begin{gathered} \hline 15 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 4 \end{gathered}$	$\begin{gathered} 14 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 9 \\ \hline \end{gathered}$	29	12	56		39	0	0	0	0	0	0	0	0
	16	0	0	0	0	0	0	0	0	30	2	71	12 0	0	$\begin{gathered} \hline 10 \\ 6 \\ \hline \end{gathered}$	87	84	70	37
7	1	$\begin{gathered} 12 \\ 9 \\ \hline \end{gathered}$	80	0	$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	97	48	$\begin{gathered} 16 \\ 3 \\ \hline \end{gathered}$	86		5	$\begin{gathered} 24 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 4 \end{gathered}$	35	44	56	17 3	17	13 9
	5	$\begin{gathered} 14 \\ 7 \end{gathered}$	$\begin{gathered} 18 \\ 6 \end{gathered}$	45	13	$\begin{gathered} 13 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 5 \\ \hline \end{gathered}$	78	$\begin{gathered} 18 \\ 6 \\ \hline \end{gathered}$		7	9	52	51	$\begin{gathered} 18 \\ 5 \end{gathered}$	10 4	93	50	22
	7	$\begin{gathered} 14 \\ 0 \\ \hline \end{gathered}$	16	$\begin{gathered} 14 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	35	24	$\begin{gathered} 14 \\ 3 \\ \hline \end{gathered}$	87		9	84	56	$\begin{gathered} 13 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 6 \end{gathered}$	70	29	6	17
	11	3	$\begin{gathered} 10 \\ 2 \end{gathered}$	96	$\begin{gathered} 15 \\ 0 \end{gathered}$	$\begin{gathered} \hline 10 \\ 8 \end{gathered}$	47	$\begin{gathered} 10 \\ 7 \end{gathered}$	$\begin{gathered} 17 \\ 2 \end{gathered}$		40	0	0	0	0	0	0	0	0
	13	$\begin{gathered} 11 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 3 \\ \hline \end{gathered}$	78	$\begin{gathered} 18 \\ 1 \end{gathered}$	65	55	58	$\begin{gathered} 15 \\ 4 \\ \hline \end{gathered}$	31	1	$\begin{gathered} 10 \\ 6 \end{gathered}$	3	0	$\begin{gathered} 14 \\ 7 \end{gathered}$	80	$\begin{gathered} 11 \\ 7 \end{gathered}$	11 5	[20
	17	0	0	0	0	0	0	0	0		13	1	$\begin{gathered} 17 \\ 0 \\ \hline \end{gathered}$	20	$\begin{gathered} 18 \\ 2 \end{gathered}$	13 9	$\begin{gathered} 14 \\ 8 \end{gathered}$	18 9	46
8	0	$\begin{gathered} 14 \\ 2 \end{gathered}$	$\begin{gathered} 11 \\ 8 \end{gathered}$	0	$\begin{gathered} 14 \\ 7 \end{gathered}$	70	53	$\begin{gathered} 10 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \\ 6 \\ \hline \end{gathered}$		41	0	0	0	0	0	0	0	0
	1	94	70	65	43	69	31	$\begin{gathered} 1 \\ \hline 17 \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ \hline 9 \end{gathered}$	32	0	$\begin{gathered} 24 \\ 2 \end{gathered}$	84	0	$\begin{gathered} \hline 10 \\ 8 \\ \hline \end{gathered}$	32	$\begin{gathered} 11 \\ 6 \\ \hline \end{gathered}$	11 0	17 9
	12	$\begin{gathered} 23 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 2 \\ \hline \end{gathered}$	87	$\begin{gathered} 15 \\ 2 \end{gathered}$	88	$\begin{gathered} 16 \\ 1 \\ \hline \end{gathered}$	22	$\begin{gathered} 22 \\ 5 \\ \hline \end{gathered}$		5	44	8	20	21	89	73	0	14
	18	0	0	0	0	0	0	0	0		12	$\begin{gathered} 16 \\ 6 \end{gathered}$	17	$\begin{gathered} 12 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 0 \end{gathered}$	71	$\begin{gathered} 14 \\ 2 \end{gathered}$	16 3	$\begin{gathered} 11 \\ 6 \end{gathered}$
9	1	$\begin{gathered} 20 \\ 3 \end{gathered}$	28	0	2	97	$\begin{gathered} 10 \\ 4 \end{gathered}$	$\begin{gathered} 18 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 7 \end{gathered}$		42	0	0	0	0	0	0	0	0
	8	$\begin{gathered} 20 \\ 5 \end{gathered}$	$\begin{gathered} 13 \\ 2 \end{gathered}$	97	30	40	$\begin{gathered} 14 \\ 2 \end{gathered}$	27	$\begin{gathered} 13 \\ 8 \\ \hline \end{gathered}$	33	2	$\begin{gathered} 13 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 5 \end{gathered}$	0	71	13 5	$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$	16 3	46
	10	61	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	51	$\begin{gathered} 18 \\ 4 \\ \hline \end{gathered}$	24	99	$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	48		7	$\begin{gathered} 16 \\ 4 \\ \hline \end{gathered}$	17 9	88	12	6	13 7	17 3	2
	11	$\begin{gathered} 24 \\ 7 \end{gathered}$	17 8	85	83	49	64	81	68		10	$\begin{gathered} 12 \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ \hline 4 \end{gathered}$	13	$\begin{gathered} 10 \\ 9 \end{gathered}$	2	29	17 9	10 6
	19	0	0	0	0	0	0	0	0		43	0	0	0	0	0	0	0	0
10	0	11	59	0	$\begin{gathered} 17 \\ 4 \\ \hline \end{gathered}$	46	$\begin{gathered} 11 \\ 1 \end{gathered}$	$\begin{gathered} 12 \\ 5 \end{gathered}$	38	34	0	$\begin{gathered} 14 \\ 7 \end{gathered}$	$\begin{gathered} 17 \\ 3 \end{gathered}$	0	29	37	11	19 7	18 4
	1	$\begin{gathered} 18 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ 4 \\ \hline \end{gathered}$	17	$\begin{gathered} 15 \\ 15 \\ \hline \end{gathered}$	41	25	60	$\begin{gathered} 21 \\ 7 \\ \hline \end{gathered}$		12	85	$\begin{gathered} 17 \\ 7 \\ \hline \end{gathered}$	19	$\begin{gathered} 20 \\ 1 \\ \hline \end{gathered}$	25	41	19 1	13 5
	6	0	22	$\begin{gathered} 15 \\ 6 \\ \hline \end{gathered}$	8	$\begin{gathered} 10 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 120 \\ 8 \\ \hline \end{gathered}$		13	36	12	78	69	11 4	$\begin{gathered} 16 \\ 2 \end{gathered}$	19 3	14 1
	7	$\begin{gathered} 11 \\ 7 \\ \hline \end{gathered}$	52	20	56	96	23	51	$\begin{gathered} 23 \\ 2 \\ \hline \end{gathered}$		44	0	0	0	0	0	0	0	0
	20	0	0	0	0	0	0	0	0	35	1	57	77	0	91	60	12 6	15 7	85
11	0	11	32	0	99	28	91	39	$\begin{gathered} 17 \\ 8 \\ \hline \end{gathered}$		5	40	$\begin{gathered} 18 \\ 4 \end{gathered}$	$\begin{gathered} 15 \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 5 \\ \hline \end{gathered}$	13 7	$\begin{gathered} 15 \\ 2 \\ \hline \end{gathered}$	16 7	22 5
	7	$\begin{gathered} 23 \\ 6 \\ \hline \end{gathered}$	92	7	$\begin{gathered} 13 \\ 8 \end{gathered}$	30	$\begin{gathered} 17 \\ 5 \end{gathered}$	29	$\begin{gathered} 21 \\ 4 \end{gathered}$		11	63	18	6	55	93	$\begin{gathered} -17 \\ 2 \\ \hline \end{gathered}$	18	17 5
	9	$\begin{gathered} 21 \\ 0 \end{gathered}$	$\begin{gathered} 17 \\ 4 \end{gathered}$	4	$\begin{gathered} 11 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \\ 6 \\ \hline \end{gathered}$	24	35	$\begin{gathered} 16 \\ 8 \end{gathered}$		45	0	0	0	0	0	0	0	0
	13	56	$\begin{gathered} 15 \\ 4 \\ \hline \end{gathered}$	2	99	64	14 1	8	51		0	14 0	25	0	1	12 1 12	73	19 7	17 8
	21	0	0	0	0	0	0	0	0		2	38	15 1 1	63	17 5	12 9	15 4	16 7	11 2
12	1	63	39	0	46	33	$\begin{gathered} 12 \\ 2 \\ \hline \end{gathered}$	18	12 4 12	36	7	15 4	17 0	82	83	26	12 9	17 9	10 6
	3	$\begin{gathered} 11 \\ 1 \end{gathered}$	93	$\begin{gathered} 11 \\ 3 \end{gathered}$	$\begin{gathered} 21 \\ 7 \end{gathered}$	$\begin{gathered} 12 \\ 2 \\ \hline \end{gathered}$	11	$\begin{gathered} 15 \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ 2 \\ \hline \end{gathered}$		46	0	0	0	0	0	0	0	0
	11	14	11	48	$\begin{gathered} 10 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 1 \\ \hline \end{gathered}$	4	49	72	37	10	21 9	37	0	40	97	16 7	18 1 1	15 4 1
	22	0	0	0	0	0	0	0	0		13	15 1	31	$\begin{gathered} 14 \\ 4 \\ \hline \end{gathered}$	12	56	38	19 3	11 4
13	0	83	49	0	37	76	29	32	48		47	0	0	0	0	0	0	0	0
	1	2	$\begin{gathered} 12 \\ \hline 12 \\ 5 \end{gathered}$	$\begin{gathered} 11 \\ 2 \end{gathered}$	$\begin{gathered} 11 \\ 3 \\ \hline \end{gathered}$	37	91	53	57	38	1	31	84	0	37	1	11 2	15 7	42
	8	38	35	$\begin{gathered} 10 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 3 \end{gathered}$	62	27	95	$\begin{gathered} 16 \\ 7 \end{gathered}$		5	66	15 1	93	97	70	7	17 3	41
	13	22 2	$\begin{gathered} 16 \\ 6 \\ \hline \end{gathered}$	26	$\begin{gathered} 14 \\ 0 \\ \hline \end{gathered}$	47	$\begin{gathered} 12 \\ 7 \end{gathered}$	$\begin{gathered} 18 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \hline 21 \\ 9 \end{gathered}$		11	38	19 0	19	46	1	19	19 1	10 5
	23	0	0	0	0	0	0	0	0		48	0	0	0	0	0	0	0	0
14	1	$\begin{gathered} 0 \\ \hline 11 \\ 5 \end{gathered}$	19	0	36	$\begin{gathered} 14 \\ 3 \end{gathered}$	11	91	82	39	0	$\begin{gathered} 23 \\ 9 \end{gathered}$	93	0	$\begin{gathered} 10 \\ 6 \end{gathered}$	11 9	$\begin{gathered} 10 \\ 9 \end{gathered}$	18 1	16 7
	6	$\begin{gathered} 14 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 13 \\ 8 \\ \hline \end{gathered}$	95	51	$\begin{gathered} 14 \\ 5 \\ \hline \end{gathered}$	20	$\begin{gathered} 23 \\ 2 \\ \hline \end{gathered}$		7	17 2	$\begin{gathered} 13 \\ 2 \\ \hline \end{gathered}$	24	18 1 1	32	6	15 7	45
	11	3	21	57	40	$\begin{gathered} 13 \\ 0 \\ \hline \end{gathered}$	8	52	$\begin{gathered} 20 \\ 4 \\ \hline \end{gathered}$		12	34	57	$\begin{gathered} \hline 13 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 4 \end{gathered}$	14 2	$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$	17 3	18 9

	13	$\begin{gathered} 23 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 3 \\ \hline \end{gathered}$	27	$\begin{gathered} 11 \\ 6 \\ \hline \end{gathered}$	97	16 6	$\begin{gathered} 10 \\ 9 \\ \hline \end{gathered}$	16 2
	24	0	0	0	0	0	0	0	0
15	0	51	68	0	$\begin{gathered} 11 \\ 6 \\ \hline \end{gathered}$	13 9	13 7	17 4	38
	10	17 5	63	73	20 0	96	10 3	10 8	21 7
	11	$\begin{gathered} 21 \\ 3 \\ \hline \end{gathered}$	81	99	$\begin{gathered} 11 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 8 \\ \hline \end{gathered}$	40	10 2	15 7
	25	0	0	0	0	0	0	0	0
16	1	20 3	87	0	75	48	78	12 5	17 0
	9	14 2	17 7	79	15 8	9	15 8	31	23
	11	8	13 5	$\begin{gathered} 11 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ 4 \\ \hline \end{gathered}$	28	17	54	17 5
	12	24 2	64	14 3	97	8	16 5	17 6	20 2

	49	0	0	0	0	0	0	0	0
40	2	0	10 3	0	98	6	16 0	19 3	78
	10	75	10 7	36	35	73	15 6	16 3	67
	13	$\begin{gathered} 12 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 3 \\ \hline \end{gathered}$	36	$\begin{gathered} 10 \\ 2 \\ \hline \end{gathered}$	82	17 9	18 0
	50	0	0	0	0	0	0	0	0
41	1	12 9	14 7	0	12 0	48	13 2	19 1	53
	5	22 9	7	2	$\begin{gathered} 10 \\ 1 \\ \hline \end{gathered}$	47	6	19 7	21 5
	11	11 8	60	55	81	19	8	16 7	23 0
	51	0	0	0	0	0	0	0	0

5.3.3 Channel coding of small block lengths

The bit sequence input for a given code block to channel coding is denoted by $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$, where K is the number of bits to encode. After encoding the bits are denoted by $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$.

5.3.3.1 Encoding of 1-bit information

For $K=1$, the code block is encoded according to Table 5.3.3.1-1, where $N=Q_{m}$ and Q_{m} is the modulation order for the code block.

Table 5.3.3.1-1: Encoding of 1-bit information

Q_{m}	Encoded bits $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$
$\mathbf{1}$	$\left[c_{0}\right]$
2	$\left[c_{0} \mathrm{y}\right]$
4	$\left[c_{0} \mathrm{y} \mathrm{x}\right]$
6	$\left[c_{0} \mathrm{y} \times \mathrm{xxx}\right]$
8	$\left[c_{0} \mathrm{y} \times \times \times \times \times \mathrm{x}\right]$

The " x " and " y " in Table 5.3.3.1-1 are placeholders for Clause 6.3.1.1 of [4, TS 38.211] to scramble the information bits in a way that maximizes the Euclidean distance of the modulation symbols carrying the information bits.

5.3.3.2 Encoding of 2-bit information

For $K=2$, the code block is encoded according to Table 5.3.3-2, where $c_{2}=\left(c_{0}+c_{1}\right) \bmod 2, N=3 Q_{m}$, and
Q_{m} is the modulation order for the code block.
Table 5.3.3.2-1: Encoding of 2-bit information

Q_{m}	Encoded bits $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$
1	$\left[C_{0} C_{1} C_{2}\right]$
2	$\left[C_{0} C_{1} C_{2} C_{0} C_{1} C_{2}\right]$
4	$\left[\begin{array}{lll}c_{0} c_{1} \times \mathrm{XX} & c_{2} c_{0} \times \mathrm{X} C_{1} c_{2} \mathrm{XX}\end{array}\right]$
6	$\left[c_{0} c_{1} \mathrm{XXXX} C_{2} c_{0} \mathrm{XXXX} C_{1} c_{2} \mathrm{XXXX}\right]$
8	

The " x " in Table 5.3.3.2-1 are placeholders for Clause 6.3.1.1 of [4, TS 38.211] to scramble the information bits in a way that maximizes the Euclidean distance of the modulation symbols carrying the information bits.

5.3.3.3 Encoding of other small block lengths

For $3 \leq K \leq 11$, the code block is encoded by $d_{i}=\left(\sum_{k=0}^{K-1} c_{k} \cdot M_{i, k}\right) \bmod 2$, where $i=0,1, \cdots, N-1, \quad N=32$,
and $\quad M_{i, k}$ represents the basis sequences as defined in Table 5.3.3.3-1.
Table 5.3.3.3-1: Basis sequences for (32, K) code

i	$\mathrm{M}_{\mathrm{i}, 0}$	$\mathrm{M}_{\mathrm{i}, 1}$	$\mathrm{M}_{\mathrm{i}, 2}$	$\mathrm{M}_{\mathrm{i}, 3}$	$\mathrm{M}_{\mathrm{i}, 4}$	$\mathrm{M}_{\mathrm{i}, 5}$	$\mathrm{M}_{\mathrm{i}, 6}$	$\mathrm{M}_{\mathrm{i}, 7}$	$\mathrm{M}_{\mathrm{i}, \mathrm{8}}$	$\mathrm{M}_{\mathrm{i}, 9}$	$\mathrm{M}_{\mathrm{i}, 10}$
0	1	1	0	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0	0	1	1
2	1	0	0	1	0	0	1	0	1	1	1
3	1	0	1	1	0	0	0	0	1	0	1
4	1	1	1	1	0	0	0	1	0	0	1
5	1	1	0	0	1	0	1	1	1	0	1
6	1	0	1	0	1	0	1	0	1	1	1
7	1	0	0	1	1	0	0	1	1	0	1
8	1	1	0	1	1	0	0	1	0	1	1
9	1	0	1	1	1	0	1	0	0	1	1
1 0	1	0	1	0	0	1	1	1	0	1	1
1 1	1	1	1	0	0	1	1	0	1	0	1
1 2	1	0	0	1	0	1	0	1	1	1	1
1 3 1	1	1	0	1	0	1	0	1	0	1	1
1 4	1	0	0	0	1	1	0	1	0	0	1
1 5	1	1	0	0	1	1	1	1	0	1	1
1 6	1	1	1	0	1	1	1	0	0	1	0
1 7	1	0	0	1	1	1	0	0	1	0	0
1 8	1	1	0	1	1	1	1	1	0	0	0
1 9	1	0	0	0	0	1	1	0	0	0	0
2 0	1	0	1	0	0	0	1	0	0	0	1
2 1 1	1	1	0	1	0	0	0	0	0	1	1
2 2	1	0	0	0	1	0	0	1	1	0	1
2 3	1	1	1	0	1	0	0	0	1	1	1
2 4	1	1	1	1	1	0	1	1	1	1	0
2 5	1	1	0	0	0	1	1	1	0	0	1
2	1	0	1	1	0	1	0	0	1	1	0
2 7	1	1	1	1	0	1	0	1	1	1	0
2 8	1	0	1	0	1	1	1	0	1	0	0
2 9	1	0	1	1	1	1	1	1	1	0	0
3 0	1	1	1	1	1	1	1	1	1	1	1
3 1	1	0	0	0	0	0	0	0	0	0	0

5.4 Rate matching

5.4.1 Rate matching for Polar code

The rate matching for Polar code is defined per coded block and consists of sub-block interleaving, bit collection, and bit interleaving. The input bit sequence to rate matching is $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$. The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$.

5.4.1.1 Sub-block interleaving

The bits input to the sub-block interleaver are the coded bits $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$. The coded bits $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$ are divided into 32 sub-blocks. The bits output from the sub-block interleaver are denoted as $y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}$, generated as follows:

$$
\text { for } \begin{aligned}
& n=0 \quad \text { to } \quad N-1 \\
& i=\langle 32 n / N\rfloor ; \\
& J(n)=P(i) \times(N / 32)+\bmod (n, N / 32) ; \\
& y_{n}=d_{J(n)} ;
\end{aligned}
$$

end for
where the sub-block interleaver pattern $\quad P(i) \quad$ is given by Table 5.4.1.1-1.
Table 5.4.1.1-1: Sub-block interleaver pattern $\quad P(i)$

i	$P(i)$	i	$P i$	i	$P(i)$	i	$P i$	i	$P i$	i	$P i$	i	$P(i)$	i	$P i i$
0	0	4	3	8	8	12	10	16	12	20	14	24	24	28	27
1	1	5	5	9	16	13	18	17	20	21	22	25	25	29	29
2	2	6	6	10	9	14	11	18	13	22	15	26	26	30	30
3	4	7	7	11	17	15	19	19	21	23	23	27	28	31	31

The sets of bit indices \bar{Q}_{I}^{N} and \bar{Q}_{F}^{N} are determined as follows, where $K, n_{P C}$, and Q_{0}^{N-1} are defined in Clause 5.3.1

$$
\begin{aligned}
& \bar{Q}_{F, t m p}^{N}=\varnothing \\
& \text { if } \quad E<N \\
& \text { if } \quad K / E \leq 7 / 16 \quad \text {-- puncturing } \\
& \text { for } n=0 \quad \text { to } \quad N-E-1 \\
& \quad \bar{Q}_{F, t m p}^{N}=\bar{Q}_{F, t m p}^{N} \cup\{J(n)\}
\end{aligned}
$$

end for
if $E \geq 3 N / 4$

$$
\bar{Q}_{F, t m p}^{N}=\bar{Q}_{F, t m p}^{N} \cup\{0,1, \ldots,\{3 N / 4-E / 2]-1\} ;
$$

else

$$
\bar{Q}_{F, t m p}^{N}=\bar{Q}_{F, t m p}^{N} \cup\{0,1, \ldots,[9 N / 16-E / 4]-1\} ;
$$

end if
else -- shortening

$$
\text { for } n=E \text { to } N-1
$$

$$
\bar{Q}_{F, t m p}^{N}=\bar{Q}_{F, t m p}^{N} \cup(J(n)\} ;
$$

end for
end if
end if

$$
\bar{Q}_{I, t m p}^{N}=Q_{0}^{N-1}\left\{\bar{Q}_{F, t m p}^{N} i\right.
$$

$\bar{Q}_{I}^{N} \quad$ comprises $\quad\left(K+n_{P C}\right) \quad$ most reliable bit indices in $\quad \bar{Q}_{I, t m p}^{N}$;
$\bar{Q}_{F}^{N}=Q_{0}^{N-1}\left\{\bar{Q}_{I}^{N} \dot{i} ;\right.$

5.4.1.2 Bit selection

The bit sequence after the sub-block interleaver $y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}$ from Clause 5.4.1.1 is written into a circular buffer of length N.

Denoting by E the rate matching output sequence length, the bit selection output bit sequence e_{k}, $k=0,1,2, \ldots, E-1$, is generated as follows:
if $E \geq N \quad$-- repetition

$$
\text { for } k=0 \text { to } E-1
$$

$$
e_{k}=y_{\bmod (k, N)}
$$

end for else
if $K / E \leq 7 / 16 \quad$-- puncturing
for $k=0$ to $E-1$

$$
e_{k}=y_{k+N-E}
$$

end for
else -- shortening

$$
\text { for } k=0 \text { to } E-1
$$

$$
e_{k}=y_{k}
$$

end for
end if
end if

5.4.1.3 Interleaving of coded bits

The bit sequence $e_{0}, e_{1}, e_{2}, \ldots, e_{E-1}$ is interleaved into bit sequence $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$, as follows:

If $I_{B L I}=1$
Denote T as the smallest integer such that $T(T+1) / 2 \geq E$;

$$
k=0 \text {; }
$$

$$
\text { for } i=0 \quad \text { to } \quad T-1
$$

$$
\text { for } j=0 \text { to } T-1-i
$$

if $k<E$

$$
v_{i, j}=e_{k} ;
$$

else

$$
v_{i, j}=<\underset{i}{N U L L>i} ;
$$

end if

$$
k=k+1
$$

end for
end for

$$
k=0 \text {; }
$$

$$
\text { for } j=0 \text { to } T-1
$$

$$
\text { for } i=0 \text { to } T-1-j
$$

$$
\text { if } \underset{i}{v_{i, j} \neq i N U L L>i}
$$

$$
\begin{aligned}
& f_{k}=v_{i, j} ; \\
& k=k+1
\end{aligned}
$$

end if
end for
end for
else

$$
\text { for } \begin{aligned}
i=0 & \text { to } E-1 \\
& f_{i}=e_{i} ;
\end{aligned}
$$

end for
end if
The value of E is no larger than 8192.

5.4.2 Rate matching for LDPC code

The rate matching for LDPC code is defined per coded block and consists of bit selection and bit interleaving. The input bit sequence to rate matching is $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$. The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$.

5.4.2.1 Bit selection

The bit sequence after encoding $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$ from Clause 5.3.2 is written into a circular buffer of length $N_{c b}$ for the r-th coded block, where N is defined in Clause 5.3.2.

For the $\quad r \quad$-th code block, let $\quad N_{c b}=N \quad$ if $\quad I_{L B R M}=0 \quad$ and $\quad N_{c b}=\min \left(N, N_{r e f}\right) \quad$ otherwise, where $N_{\text {ref }}=\left\lfloor\frac{T B S_{\text {LBRM }}}{C \cdot R_{\text {LBRM }}}\right\rfloor, \quad R_{\text {LBRM }}=2 / 3 \quad, \quad T B S_{\text {LBRM }}$ is determined according to Clause 6.1.4.2 in [6, TS 38.214] for UL-SCH and Clause 5.1.3.2 in [6, TS 38.214] for DL-SCH/PCH, assuming the following:

- maximum number of layers for one TB for UL-SCH is given by X, where
- if the higher layer parameter maxMIMO-Layers of PUSCH-ServingCellConfig of the serving cell is configured, X is given by that parameter
- elseif the higher layer parameter maxRank of pusch-Config of the serving cell is configured, X is given by the maximum value of maxRank across all BWPs of the serving cell
- otherwise, X is given by the maximum number of layers for PUSCH supported by the UE for the serving cell
- maximum number of layers for one TB for DL-SCH/PCH is given by the minimum of X and 4 , where
- if the higher layer parameter maxMIMO-Layers of PDSCH-ServingCellConfig of the serving cell is configured, X is given by that parameter
- otherwise, X is given by the maximum number of layers for PDSCH supported by the UE for the serving cell
- if the higher layer parameter mcs-Table given by a pdsch-Config for at least one DL BWP of the serving cell is set to 'qam256', maximum modulation order $Q_{m}=8$ is assumed for DL-SCH; otherwise a maximum modulation order $Q_{m}=6$ is assumed for DL-SCH;
- if the higher layer parameter mcs-Table or mcs-TableTransformPrecoder given by a pusch-Config or configuredGrantConfig for at least one UL BWP of the serving cell is set to 'qam256', maximum modulation order $Q_{m}=8$ is assumed for UL-SCH; otherwise a maximum modulation order $Q_{m}=6$ is assumed for ULSCH
- maximum coding rate of 948/1024;
- $\quad n_{P R B}=n_{P R B, L B R M}$ is given by Table 5.4.2.1-1, where the value of $n_{P R B, L B R M}$ for DL-SCH is determined according to the initial downlink bandwidth part if there is no other downlink bandwidth part configured to the UE;
- $\quad N_{R E}=156 \widehat{P r}_{\text {PRB }}$;
- C is the number of code blocks of the transport block determined according to Clause 5.2.2.

Table 5.4.2.1-1: Value of $n_{P R B, L B R M}$

Maximum number of PRBs across all configured DL BWPs and UL BWPs of a carrier for DL- SCH and UL-SCH, respectively	$n_{\text {PRB,LBRM }}$
Less than 33	32
33 to 66	66
67 to 107	107
108 to 135	135
136 to 162	162
163 to 217	217
Larger than 217	273

Denoting by E_{r} the rate matching output sequence length for the r-th coded block, where the value of E_{r} is determined as follows:

$$
\begin{aligned}
& \text { Set } j=0 \\
& \text { for } r=0 \text { to } C-1
\end{aligned}
$$

if the $\quad r$-th coded block is not scheduled for transmission as indicated by CBGTI according to Clause 5.1.7.2 for DL-SCH and 6.1.5.2 for UL-SCH in [6, TS 38.214]

$$
E_{r}=0 ;
$$

else

$$
\text { if } \quad j \leq C^{\prime}-\bmod \left(G /\left(N_{L} \cdot Q_{m}\right), C^{\prime}\right)-1
$$

$$
E_{r}=N_{L} \cdot Q_{m} \cdot\left\lfloor\frac{G}{N_{L} \cdot Q_{m} \cdot C^{\prime}}\right\rfloor
$$

else

$$
E_{r}=N_{L} \cdot Q_{m} \cdot\left[\frac{G}{N_{L} \cdot Q_{m} \cdot C^{\prime}}\right\rceil
$$

end if

$$
j=j+1
$$

end if
end for
where

- $\quad N_{L}$ is the number of transmission layers that the transport block is mapped onto;
- $\quad Q_{m}$ is the modulation order;
- G is the total number of coded bits available for transmission of the transport block;
- $\quad C^{\prime}=C \quad$ if CBGTI is not present in the DCI scheduling the transport block and C^{\prime} is the number of scheduled code blocks of the transport block if CBGTI is present in the DCI scheduling the transport block.

Denote by $\quad r V_{i d}$ the redundancy version number for this transmission ($r V_{i d}=0,1,2$ or 3), the rate matching output bit sequence $e_{k}, \quad k=0,1,2, \ldots, E-1 \quad$, is generated as follows, where k_{0} is given by Table 5.4.2.1-2 according to the value of $r \nu_{i d}$ and LDPC base graph:

$$
\begin{aligned}
& \text { k=0 ; } \\
& j=0 \text {; } \\
& \text { while } k<E \\
& \text { if } \\
& d_{\left(K_{0}+j\right) \bmod N_{c_{c o s}} \neq i} \text { NULL> } \\
& e_{k}=d_{\left(k_{0}+j\right) \bmod N_{c b}} \text {; } \\
& k=k+1 \text {; }
\end{aligned}
$$

end if

$$
j=j+1
$$

end while
Table 5.4.2.1-2: Starting position of different redundancy versions, k_{0}

$r v_{i d}$	k_{0}	
	LDPC base graph 1	LDPC base graph 2
0	0	0
1	$\left\lfloor\frac{17 N_{c b}}{66 Z_{c}}\right\rfloor Z_{c}$	$\left\lfloor\frac{13 N_{c b}}{50 Z_{c}}\right\rfloor Z_{c}$
2	$\left\lfloor\frac{33 N_{c b}}{66 Z_{c}}\right\rfloor Z_{c}$	$\left.\frac{25 N_{c b}}{50 Z_{c}}\right\rfloor Z_{c}$
3	$\left\lfloor\frac{56 N_{c b}}{66 Z_{c}}\right\rfloor Z_{c}$	$\left.\frac{43 N_{c b}}{50 Z_{c}}\right\rfloor Z_{c}$

5.4.2.2 Bit interleaving

The bit sequence $e_{0}, e_{1}, e_{2}, \ldots, e_{E-1}$ is interleaved to bit sequence $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$, according to the following, where the value of Q_{m} is the modulation order.

$$
\begin{aligned}
& \text { for } j=0 \quad \text { to } E / Q_{m}-1 \\
& \text { for } \quad i=0 \text { to } Q_{m}-1 \\
& f_{i+j \cdot Q_{m}}=e_{i E / Q_{m}+j}
\end{aligned}
$$

end for
end for

5.4.3 Rate matching for channel coding of small block lengths

The input bit sequence to rate matching is $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$. The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$, where E is the rate matching output sequence length. The bit sequence $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$ is obtained by the following:
for $k=0$
to $E-1$

$$
f_{k}=d_{k \bmod N} ;
$$

end for

5.5 Code block concatenation

The input bit sequence for the code block concatenation block are the sequences $f_{r k}$, for $r=0, \ldots, C-1$ and $k=0, \ldots, E_{r}-1$, where E_{r} is the number of rate matched bits for the r-th code block. The output bit sequence from the code block concatenation block is the sequence g_{k} for $k=0, \ldots, G-1$.

The code block concatenation consists of sequentially concatenating the rate matching outputs for the different code blocks. Therefore,

Set $k=0$ and $r=0$
while $r<C$
Set $j=0$
while $j<E_{r}$

$$
\begin{aligned}
& g_{k}=f_{r j} \\
& k=k+1 \\
& j=j+1
\end{aligned}
$$

end while

$$
r=r+1
$$

end while

6 Uplink transport channels and control information

6.1 Random access channel

The sequence index for the random access channel is received from higher layers and is processed according to [4, TS 38.211].

6.2 Uplink shared channel

6.2.1 Transport block CRC attachment

Error detection is provided on each UL-SCH transport block through a Cyclic Redundancy Check (CRC).
The entire transport block is used to calculate the CRC parity bits. Denote the bits in a transport block delivered to layer 1 by $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$, and the parity bits by $p_{0}, p_{1}, p_{2}, p_{3}, \ldots, p_{L-1}$, where A is the payload size and
L is the number of parity bits. The lowest order information bit a_{0} is mapped to the most significant bit of the transport block as defined in Clause 6.1.1 of [TS38.321].

The parity bits are computed and attached to the UL-SCH transport block according to Clause 5.1, by setting L to 24 bits and using the generator polynomial $g_{\text {CRC24A }}(D) \quad$ if $\quad A>3824$; and by setting L to 16 bits and using the generator polynomial $g_{\text {CRC16 }}(D)$ otherwise.

The bits after CRC attachment are denoted by $b_{0}, b_{1}, b_{2}, b_{3}, \ldots, b_{B-1}$, where $B=A+L$.

6.2.2 LDPC base graph selection

For initial transmission of a transport block with coding rate $\quad R \quad$ indicated by the MCS index according to Clause 6.1.4.1 in [6, TS 38.214] and subsequent re-transmission of the same transport block, each code block of the transport block is encoded with either LDPC base graph 1 or 2 according to the following:

- if $A \leq 292$, or if $A \leq 3824$ and $R \leq 0.67$, or if $R \leq 0.25$, LDPC base graph 2 is used;
- otherwise, LDPC base graph 1 is used,
where A is the payload size as described in Clause 6.2.1.

6.2.3 Code block segmentation and code block CRC attachment

The bits input to the code block segmentation are denoted by $b_{0}, b_{1}, b_{2}, b_{3}, \ldots, b_{B-1}$ where B is the number of bits in the transport block (including CRC).

Code block segmentation and code block CRC attachment are performed according to Clause 5.2.2.
The bits after code block segmentation are denoted by $c_{r 0}, c_{r 1}, c_{r 2}, c_{r 3}, \ldots, c_{r\left|K_{r}-1\right\rangle}$, where r is the code block number and K_{r} is the number of bits for code block number $\quad r \quad$ according to Clause 5.2.2.

6.2.4 Channel coding of UL-SCH

Code blocks are delivered to the channel coding block. The bits in a code block are denoted by
 number $\quad r$. The total number of code blocks is denoted by C and each code block is individually LDPC encoded according to Clause 5.3.2.

After encoding the bits are denoted by

$$
d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left|N_{r}-1\right|} \text {, where the values of } \quad N_{r} \quad \text { is given in Clause }
$$ 5.3.2.

6.2.5 Rate matching

Coded bits for each code block, denoted as $d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left|N_{r}-1\right|}$, are delivered to the rate match block, where r is the code block number, and N_{r} is the number of encoded bits in code block number r. The total number of code blocks is denoted by C and each code block is individually rate matched according to Clause 5.4.2 by setting $\quad I_{\text {LBRM }}=1$ if higher layer parameter rateMatching is set to limitedBufferRM and by setting $\quad I_{\text {LBRM }}=0$ otherwise.

After rate matching, the bits are denoted by $f_{r 0}, f_{r 1}, f_{r 2}, f_{r 3}, \ldots, f_{r\left|E_{r}-1\right|}$, where E_{r} is the number of rate matched bits for code block number r.

6.2.6 Code block concatenation

The input bit sequence for the code block concatenation block are the sequences $f_{r 0}, f_{r 1}, f_{r 2}, f_{r 3}, \ldots, f_{r\left(E_{r}-1\right)}$, for $r=0, \ldots, C-1$ and where E_{r} is the number of rate matched bits for the r-th code block.

Code block concatenation is performed according to Clause 5.5.

The bits after code block concatenation are denoted by $g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{G-1}$, where G is the total number of coded bits for transmission.

6.2.7 Data and control multiplexing

Denote the coded bits for UL-SCH as $g_{0}^{\mathrm{UL}-\mathrm{SCH}}, g_{1}^{\mathrm{UL}-\mathrm{SCH}}, g_{2}^{\mathrm{UL}-\mathrm{SCH}}, g_{3}^{\mathrm{UL}-\mathrm{SCH}}, \ldots, g_{G^{\mathrm{ULLSCH}} \mathrm{SCH}}^{-1}$.
Denote the coded bits for HARQ-ACK or jointly coded bits for HARQ-ACK and CG-UCI when the high layer parameter cg-UCI-Multiplexing is configured, if any, as $g_{0}^{\mathrm{ACK}}, g_{1}^{\mathrm{ACK}}, g_{2}^{\mathrm{ACK}}, g_{3}^{\mathrm{ACK}}, \ldots, g_{G^{\mathrm{ACK}}}^{-1}$.
Denote the coded bits for CSI part 1 , if any, as $g_{0}^{\text {CSI-part1 }}, g_{1}^{\text {CSI-part1 }}, g_{2}^{\text {CSI-part1 }}, g_{3}^{\text {CSI-part1 }}, \ldots, g_{G^{\text {CSI plpart1 }}-1}$.

$$
g_{0}^{\mathrm{CSI}-\mathrm{part} 2}, g_{1}^{\mathrm{CSI}-\mathrm{part} 2}, g_{2}^{\mathrm{CSI}-\mathrm{part} 2}, g_{3}^{\mathrm{CSI}-\mathrm{part} 2}, \ldots, g_{G^{\mathrm{CSII} \mathrm{ch}-\mathrm{par} 2}-1}
$$

Denote the coded bits for CSI part 2, if any, as
Denote the coded bits for CG-UCI without HARQ-ACK, if any, as

$$
g_{0}^{C G-U C I}, g_{1}^{C G-U C I}, g_{2}^{C G-U C I}, g_{3}^{C G-U C I}, \ldots, g_{G^{C G-U C I}-1}^{C G-U C}
$$

Denote the multiplexed data and control coded bit sequence as $g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{G-1}$.
Denote l as the OFDM symbol index of the scheduled PUSCH, starting from 0 to $N_{\text {symb,all }}^{\text {PUSCH }}-1$, where $\quad N_{\text {symb,dll }}^{\text {PUSCH }}$ is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS.

Denote $\quad k$ as the subcarrier index of the scheduled PUSCH, starting from 0 to $\quad M_{\mathrm{sc}}^{\mathrm{PUSCH}}-1$, where $\quad M_{\mathrm{sc}}^{\mathrm{PUSCH}}$ is expressed as a number of subcarriers.

Denote $\Phi_{l}^{\mathrm{UL}-\mathrm{SCH}}$ as the set of resource elements, in ascending order of indices k, available for transmission of data in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\text {PUSCH }}-1$.

Denote ${ }^{M_{\mathrm{sc}}^{\mathrm{UL}-\mathrm{SCH}}(l)=\left|\Phi_{l}^{\mathrm{UL}-\mathrm{SCH}}\right|}$ as the number of elements in set $\Phi_{l}^{\mathrm{UL}-\mathrm{SCH}}$. Denote $\Phi_{l}^{\mathrm{UL}-\mathrm{SCH}}(j)$ as the j-th element in $\Phi_{l}^{\mathrm{UL}-\mathrm{SCH}}$

Denote $\Phi_{l}^{\text {UCI }}$ as the set of resource elements, in ascending order of indices k, available for transmission of UCI in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\mathrm{PUSCH}}-1$. Denote ${ }^{M_{\mathrm{sc}}^{\mathrm{UCI}}(l)=\left|\Phi_{l}^{\mathrm{UCI}}\right|}$ as the number of elements in set Φ_{l}^{UCI}. Denote $\Phi_{l}^{\mathrm{UCI}}(j)$ as the j-th element in Φ_{l}^{UCI}. For any OFDM symbol that carriers DMRS of the PUSCH, $\Phi_{l}^{\mathrm{UCI}}=\geqslant$. For any OFDM symbol that does not carry DMRS of the PUSCH, $\Phi_{l}^{\mathrm{UCI}}=\Phi_{l}^{\mathrm{UL}-\mathrm{SCH}}$.

If frequency hopping is configured for the PUSCH,

- denote $l^{l^{11}}$ as the OFDM symbol index of the first OFDM symbol after the first set of consecutive OFDM symbol(s) carrying DMRS in the first hop;
- denote $l^{l^{(2)}}$ as the OFDM symbol index of the first OFDM symbol after the first set of consecutive OFDM symbol(s) carrying DMRS in the second hop.
- denote $l_{\mathrm{CSI}}^{(1)}$ as the OFDM symbol index of the first OFDM symbol that does not carry DMRS in the first hop;
- denote $l_{\text {CSI }}^{(2)}$ as the OFDM symbol index of the first OFDM symbol that does not carry DMRS in the second hop;
- if HARQ-ACK is present for transmission on the PUSCH with UL-SCH or if both HARQ-ACK and CG-UCI are present on the same PUSCH with UL-SCH, let

$$
-\quad G^{\mathrm{ACK}}(1)=N_{L} \cdot Q_{m} \cdot\left[G^{\mathrm{ACK}} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right] \quad \text { and } \quad G^{\mathrm{ACK}}(2)=N_{L} \cdot Q_{m} \cdot\left[G^{\mathrm{ACK}} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right]
$$

- if CSI is present for transmission on the PUSCH with UL-SCH, let

$$
\begin{aligned}
& \text { - } \quad G^{\text {CSI-part1 }}(1)=N_{L} \cdot Q_{m} \cdot\left[G^{\text {CSI-part1 }} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right] \text {; } \\
& \text { - } \quad G^{\mathrm{CSI}-\mathrm{part1}}(2)=N_{L} \cdot Q_{m} \cdot\left[G^{\mathrm{CSI}-\mathrm{part} 1} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right] \text {; } \\
& \text { - } \quad G^{\mathrm{CSI}-\mathrm{part} 2}(1)=N_{L} \cdot Q_{m} \cdot\left[G^{\mathrm{CSI}-\mathrm{part2} 2} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right] \text {; and } \\
& G^{\mathrm{CSI}-\mathrm{part} 2}(2)=N_{L} \cdot Q_{m} \cdot\left[G^{\mathrm{CSI}-\mathrm{part} 2} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right] ;
\end{aligned}
$$

- if CG-UCI is present for transmission on the PUSCH with UL-SCH and without HARQ-ACK, let

$$
\begin{aligned}
& G^{C G-U C I}(1)=N_{L} \cdot Q_{m} \cdot\left\lfloor G^{C G-U C I} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right\rfloor \text { and } \\
& \left.G^{C G-U C I}(2)=N_{L} \cdot Q_{m} \cdot \Gamma G^{C G-U C I} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right\rceil
\end{aligned}
$$

- if only HARQ-ACK and CSI part 1 are present for transmission on the PUSCH without UL-SCH, let

$$
\begin{aligned}
& G^{\mathrm{ACK}}(1)=\min \left(N_{L} \mathbf{Q}_{m}{ }^{\mathrm{ACK}} /\left(2 \boldsymbol{Q}_{L} \boldsymbol{Q}_{m}\right) M_{3} \hat{M}_{m}\right) ; \\
& \text { - } \quad G^{\mathrm{ACK}}(2)=G^{\mathrm{ACK}}-G^{\mathrm{ACK}}(1) \text {; } \\
& \text { - } \quad G^{\text {CII-part1 }}(1)=M_{1} \cdot N_{L} \cdot Q_{m}-G^{\text {ACK }}(1) \text {; and } \\
& \text { - } \quad G^{\text {CSI-part1 }}(2)=G^{\text {CSI-part1 }}-G^{\text {CSI-part1 }}(1) \text {; }
\end{aligned}
$$

- if HARQ-ACK, CSI part 1 and CSI part 2 are present for transmission on the PUSCH without UL-SCH, let

$$
\begin{array}{ll}
- & G^{\mathrm{ACK}}(1)=\min \left(N_{L} \hat{2}_{m}\right. \\
-\quad G^{\mathrm{ACK}}(2)=G^{\mathrm{ACK}}-G^{\mathrm{ACK}}(1)
\end{array}
$$

- if the number of HARQ-ACK information bits is more than 2 or if both HARQ-ACK and CG-UCI are present on the same PUSCH with UL-SCH, $G^{\text {CSI-part1 }}(1)=\min \left(N_{L} \cdot Q_{m} \cdot\left[G^{\mathrm{CSI}-\text { part1 }} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right], M_{1} \cdot N_{L} \cdot Q_{m}-G^{\text {ACK }}(1)\right)$; otherwise, $\left.G^{\text {CSI-part1 }}(1)=\min \left(N_{L} \boldsymbol{Q}_{m}{ }^{\text {CSI-part1 }} /\left(2 \boldsymbol{Q}_{L}\right\rangle_{m}\right) M_{1} \boldsymbol{Q}_{m}-G_{r r d}^{\text {ACK }}(1)\right)$
- $\quad G^{\text {CSI-part }}(2)=G^{\text {CSI-part1 }}-G^{\text {CSI-part1 }}(1)$;
- $\quad G^{\mathrm{CSI}-\text { part2 }}(1)=M_{1} \cdot N_{L} \cdot Q_{m}-G^{\mathrm{CSI}-\text { part1 }}(1) \quad$ if the number of HARQ-ACK information bits is no more than 2, and $G^{\mathrm{CSI}-\mathrm{part2}}(1)=M_{1} \cdot N_{L} \cdot Q_{m}-G^{\mathrm{ACK}}(1)-G^{\mathrm{CSI}-\mathrm{part} 1}(1) \quad$ otherwise; and
- $\quad G^{\mathrm{CSI}-\text { part2 }}(2)=M_{2} \cdot N_{L} \cdot Q_{m}-G^{\mathrm{CSI}-\text { part1 }}(2) \quad$ if the number of HARQ-ACK information bits is no more than 2, and $G^{\mathrm{CSI}-\text { part2 }}(2)=M_{2} \cdot N_{L} \cdot Q_{m}-G^{\mathrm{ACK}}(2)-G^{\mathrm{CSI}-\text { part1 }}(2) \quad$ otherwise;
- if CG-UCI is present for transmission on the PUSCH with UL-SCH and without HARQ-ACK, let

$$
\begin{array}{ll}
\left.-\quad G^{C S I-p a r t 1}(1)=\min \left(N_{L} \cdot Q_{m} \cdot l G^{C S I-p a r t ~ 1} /\left(2 \cdot N_{L} \cdot Q_{m}\right)\right\rfloor, M_{1} \cdot N_{L} \cdot Q_{m}-G^{C G-U C I}(1)\right) \\
-\quad G^{C S I-\text { part } 1}(2)=G^{C S I-\text { part } 1}-G^{C S I-\text { part } 1}(1)
\end{array}
$$

- $\quad G^{\text {CSI-part2 }}(1)=M_{1} \cdot N_{L} \cdot Q_{m}-G^{\text {CG-UCI }}(1)-G^{\text {CSI-part } 1}(1)$; and
- $\quad G^{\text {CSI-part } 2}(2)=M_{2} \cdot N_{L} \cdot Q_{m}-G^{\text {CG-UCI }}(2)-G^{\text {CSI-part } 1}(2)$;
- if CSI part 1 and CSI part 2 are present for transmission on the PUSCH without UL-SCH, let

- $G^{\text {CSI-part }}(2)=G^{\text {CSI-part1 }}-G^{\text {CSI-part }}(1)$;
- $\quad G^{\text {CSIpart2 }}(1)=M_{1} \cdot N_{L} \cdot Q_{m}-G^{\text {CSLpart1 }}(1)$; and
- $\quad G^{\text {CSI-part2 }}(2)=M_{2} \cdot N_{L} \cdot Q_{m}-G^{\text {CSI-part1 }}(2)$;
- let $N_{\text {hop }}^{\text {PUSCH }}=2$, and denote $N_{\text {symblhop }}^{\text {PUSCH }}(1), N_{\text {symb,hop }}^{\text {PUSCC }}(2)$ as the number of OFDM symbols of the PUSCH in the first and second hop, respectively;
- N_{L} is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH;

If frequency hopping is not configured for the PUSCH,

- denote $l^{(1)}$ as the OFDM symbol index of the first OFDM symbol after the first set of consecutive OFDM symbol(s) carrying DMRS;
- denote $l_{\text {CSI }}^{(1)}$ as the OFDM symbol index of the first OFDM symbol that does not carry DMRS;
- if HARQ-ACK is present for transmission on the PUSCH or if both HARQ-ACK and CG-UCI are present on the same PUSCH with UL-SCH, let $\quad G^{A C K}(1)=G^{A C K}$;
- if CSI is present for transmission on the PUSCH, let $G^{\text {CSI-part1 }}(1)=G^{\text {CSI-part1 }}$ and $G^{\text {CSI-part2 }}(1)=G^{\text {CSLpart2 }}$;
- if CG-UCI is present for transmission on the PUSCH without HARQ-ACK, let $\quad G^{C G-U C I}(1)=G^{C G-U C I}$; - let $N_{\text {hop }}^{\text {PUSCH }}=1$ and $N_{\text {symb,bop }}^{\text {PUSH }}(1)=N_{\text {symb,all }}^{\text {PUSCH }}$.

The multiplexed data and control coded bit sequence $g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{G-1} \quad$ is obtained according to the following:

Step 1:

Set $\bar{\Phi}_{l}^{\text {UL-SCH }}=\Phi_{l}^{\text {UL-SCH }}$ for $\quad l=0,1,2, \ldots, N_{\text {symb, }, \text { ll }}^{\text {PUSCH }}-1$;

Set $\overline{\bar{M}}_{\mathrm{sc}}^{\mathrm{UC} \text {-SCH }}(l)=\left|\bar{\Phi}_{l}^{\mathrm{UL} \text {-SCH }}\right|$ for $\quad l=0,1,2, \ldots, N_{\mathrm{symb}, \mathrm{all}}^{\mathrm{PUSH}}-1$;
Set $\bar{\Phi}_{l}^{\mathrm{UCl}}=\Phi_{l}^{\text {UCI }}$ for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\mathrm{PUSCH}}-1$;
Set $\bar{M}_{\mathrm{sc}}^{\mathrm{UCl}}(l)=\left|\bar{\Phi}_{l}^{\mathrm{UCl}}\right|{ }_{\text {for }} \quad l=0,1,2, \ldots, N_{\text {symblall }}^{\mathrm{PUSCH}}-1$;
if the number of HARQ-ACK information bits to be transmitted on PUSCH is 0 , 1 or 2 bits and without CG-UCI the number of reserved resource elements for potential HARQ-ACK transmission is calculated according to Clause 6.3.2.4.2.1, by setting $O_{\text {АСК }}=2$;
denote $G_{\mathrm{wd}}^{\text {ACK }}$ as the number of coded bits for potential HARQ-ACK transmission using the reserved resource elements;
if frequency hopping is configured for the PUSCH, let $G_{\mathrm{Nd}}^{\mathrm{ACK}}(1)=N_{L} \omega_{m} \mathrm{ACd} /\left(2 \omega_{L}\right)$ and

$$
G_{\mathrm{nd}}^{\mathrm{ACK}}(2)=N_{L} \hat{W}_{m} \hat{\mathrm{~N}}_{\mathrm{vd}}^{\mathrm{ACK}} /\left(2 \hat{W}_{L} \hat{Q}_{m}\right)
$$

if frequency hopping is not configured for the PUSCH, let $G_{\mathrm{vd}}^{\text {ACK }}(1)=G_{\mathrm{vd}}^{\mathrm{Ack}}$;
denote $\bar{\Phi}_{l}^{\text {rd }}$ as the set of reserved resource elements for potential HARQ-ACK transmission, in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb, } 1 \mathrm{ll}}^{\mathrm{PUSCH}}-1$;

Set $m_{\text {count }}^{\text {ACK }}(1)=0$;
Set $m_{\text {count }}^{\text {ACK }}(2)=0$;

$$
\bar{\Phi}_{l}^{\text {rvd }}=\varnothing \quad \text { for } \quad l=0,1,2, \ldots, N_{\text {symb }, a l l}^{\mathrm{PUSCCH}}-1 ;
$$

for $i=1$ to $N_{\text {hop }}^{\text {PUSCH }}$

$$
l=l^{(i)} ;
$$

$$
\text { while } m_{\text {count }}^{\mathrm{ACK}}(i)<G_{\mathrm{rvd}}^{\mathrm{ACK}}(i)
$$

$$
\text { if } \bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)>0
$$

$$
\begin{aligned}
& \text { if } \begin{array}{c}
G_{\mathrm{rvd}}^{\mathrm{ACK}}(i)-m_{\mathrm{count}}^{\mathrm{ACK}}(i) \bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l) \widehat{W}_{L} \widehat{Q}_{m} \\
d=1 ; \\
m_{\mathrm{count}}^{\mathrm{RE}}
\end{array}=\bar{M}_{\mathrm{sc}}^{\mathrm{UL}-\mathrm{SCH}}(l) ;
\end{aligned}
$$

end if

$$
\begin{aligned}
& \text { if } G_{\text {rvd }}^{\mathrm{ACK}}(i)-m_{\text {count }}^{\mathrm{ACK}}(i)<\bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l) \hat{\mathrm{O}}_{L} \hat{\boldsymbol{Q}}_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \left.m_{\text {count }}^{\mathrm{RE}}=\mathrm{C}_{\mathrm{rvd}}^{\mathrm{Ack}}(i)-m_{\text {count }}^{\mathrm{Ack}}(i)\right) /\left(N_{L} \boldsymbol{Q}_{m}\right) ;
\end{aligned}
$$

end if
end for

> end if

$$
l=l+1 ;
$$

end while
end for
else

$$
\bar{\Phi}_{l}^{\mathrm{rvd}}=\varnothing \quad \text { for } \quad l=0,1,2, \ldots, N_{\mathrm{symb}, \mathrm{lll}}^{\mathrm{PUSCH}}-1
$$

end if
Denote $\quad \bar{M}_{\mathrm{sc}, \mathrm{rvd}}^{\bar{\Phi}}(l)=\left|\bar{\Phi}_{l}^{\mathrm{rvd}}\right|$ as the number of elements in $\bar{\Phi}_{l}^{\mathrm{rvd}}$.

Step 2:

if HARQ-ACK is present for transmission on the PUSCH and the number of HARQ-ACK information bits is more than 2 or if both HARQ-ACK and CG-UCI are present on the same PUSCH with UL-SCH,

$$
\begin{aligned}
& \text { Set } m_{\text {count }}^{\mathrm{ACK}}(1)=0 ; \\
& \text { Set } m_{\text {count }}^{\mathrm{ACK}}(2)=0 ; \\
& \text { Set } m_{\text {count,all }}^{\mathrm{ACK}}=0 ; \\
& \text { for } i=1 \quad \text { to } N_{\text {hop }}^{\mathrm{PUSCH}} \\
& \quad l=l^{(i)} ; \\
& \text { while } m_{\text {count }}^{\mathrm{ACK}}(i)<G^{\mathrm{ACK}}(i)
\end{aligned}
$$

$$
\text { if } \bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)>0
$$

$$
\text { if } G^{\mathrm{ACK}}(i)-m_{\text {count }}^{\mathrm{ACK}}(i)\left\langle\bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l) \widehat{\boldsymbol{\phi}}_{L} \widehat{\mathbf{Q}}_{m}\right.
$$

$$
d=1
$$

$$
m_{\mathrm{count}}^{\mathrm{RE}}=\bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)
$$

end if

$$
{ }_{\text {if }} G^{\mathrm{ACK}}(i)-m_{\text {count }}^{\mathrm{ACK}}(i)<\bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l) \hat{\mathrm{D}}_{L} \hat{2}_{m}
$$

$$
\begin{aligned}
& \text { for } j=0 \text { to } m_{\text {count }}^{\mathrm{RE}}-1 \\
& \bar{\Phi}_{l}^{\text {rvd }}=\bar{\Phi}_{l}^{\text {rvd }} U\left\{\bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}}(j)\right\} \\
& m_{\text {count }}^{\mathrm{ACK}}(i)=m_{\text {count }}^{\mathrm{ACK}}(i)+N_{L} \cdot Q_{m} ;
\end{aligned}
$$

$$
\begin{aligned}
& d=\widehat{S}_{\mathrm{sc}}^{\mathrm{UCI}}(l) \widehat{\mathrm{Q}}_{\mathrm{L}} /\left(G^{\mathrm{ACK}}(i)-m_{\text {count }}^{\mathrm{ACK}}(i)\right) ; \\
& m_{\text {count }}^{\mathrm{RE}}=\left\lceil\left(G^{\mathrm{ACK}}(i)-m_{\text {count }}^{\mathrm{ACK}}(i)\right) /\left(N_{L} \cdot Q_{m}\right)\right\rceil ;
\end{aligned}
$$

end if

$$
\begin{aligned}
& \text { for } j=0 \text { to } m_{\text {count }}^{\mathrm{RE}}-1 \\
& k=\bar{\Phi}_{l}^{\mathrm{UCI}}(j \hat{)}) ; \\
& \text { for } \quad v=0 \text { to } N_{L} \cdot Q_{m}-1 \\
& \bar{g}_{l, k, v}=g_{m_{\text {count all }}^{\text {ACK }}}^{\text {ACK }} \quad ; \\
& m_{\text {count,all }}^{\mathrm{ACK}}=m_{\text {count,all }}^{\mathrm{ACK}}+1 \text {; } \\
& m_{\text {count }}^{\mathrm{ACK}}(i)=m_{\text {count }}^{\mathrm{ACK}}(i)+1 \text {; }
\end{aligned}
$$

end for
end for

$$
\begin{aligned}
& \bar{\Phi}_{l, t m p}^{\mathrm{UCI}}=\hat{\geqslant} ; \\
& \text { for } \quad j=0 \quad \text { to } \quad m_{\text {count }}^{\mathrm{RE}}-1 \\
& \bar{\Phi}_{l, t m p}^{\mathrm{UCI}}=\bar{\Phi}_{l, t m p}^{\mathrm{UCI}} \cup \bar{\Phi}_{l}^{\mathrm{UCI}}(j \geqslant)
\end{aligned}
$$

end for

$$
\begin{aligned}
& \bar{\Phi}_{l}^{\mathrm{UCI}}=\bar{\Phi}_{l}^{\mathrm{UCI}} \backslash \bar{\Phi}_{l, t m p}^{\mathrm{UCI}} ; \\
& \bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}}=\bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}} \backslash \bar{\Phi}_{l, t m p}^{\mathrm{UCI}} ; \\
& \bar{M}_{\mathrm{sC}}^{\mathrm{UCI}}(l)=\left|\bar{\Phi}_{l}^{\mathrm{UCI}}\right| ; \\
& \bar{M}_{\mathrm{sC}}^{\mathrm{UL}-\mathrm{SCH}}(l)=\left|\bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}}\right| ;
\end{aligned}
$$

end if

$$
l=l+1 ;
$$

end while
end for
end if

Step 2A:

If CG-UCI is present for transmission on the PUSCH without HARQ-ACK,

Set $\quad m_{\text {count }}^{\text {CG-UCI }}(1)=0$;
Set $\quad m_{\text {count }}^{\text {CG-UCI }}(2)=0$;
Set $\quad m_{\text {count,all }}^{C G-U C I}=0$;
for $i=1$ to $N_{\text {hop }}^{\text {PUSCH }}$
$l=l^{(i)}$;
while $m_{\text {count }}^{\text {CG-UCI }}(i)<G^{C G-U C I}(i)$
if $\quad \dot{M}_{s c}^{U C I}(l)>0$
if $\quad G^{C G-U C I}(i)-m_{\text {count }}^{C G-U C I}(1) \geq \dot{M}_{\text {sc }}^{U C I}(l) \cdot N_{L} \cdot Q_{m}$
$d=1$;

$$
m_{\text {count }}^{\Re}=\dot{M}_{\mathrm{sc}}^{U C I}(l) ;
$$

end if
if $\quad G^{C G-U C I}(i)-m_{\text {count }}^{C G-U C I}(1)<\dot{M}_{s c}^{U C I}(l) \cdot N_{L} \cdot Q_{m}$

$$
\begin{aligned}
& \left.d=l \dot{M}_{s c}^{U C I}(l) \cdot N_{L} \cdot Q_{m} /\left(G^{C G-U C I}(i)-m_{\text {count }}^{C G-U C I}(i)\right)\right\rfloor ; \\
& m_{\text {count }}^{\Re}=\left\lceil\left(G^{C G-U C I}(i)-m_{\text {count }}^{C G-U C I}(i)\right) /\left(N_{L} \cdot Q_{m}\right)\right\rceil ;
\end{aligned}
$$

end if
for $j=0$ to $m_{\text {count }}^{\Re}-1$
$k=\stackrel{\prime}{\Phi}_{l}^{U C I}(j . d) ;$

$$
\text { for } \quad v=0 \text { to } N_{L} \cdot Q_{m}-1
$$

$$
\dot{g}_{l, k, v}=g_{m_{\text {coum }, a l}}^{C G-U C I}
$$

$$
m_{\text {count }, \text { all }}^{C G-U C I}=m_{\text {count }, \text { all }}^{C G-U C I}+1
$$

$$
m_{\text {count }}^{C G-U C I}(i)=m_{\text {count }}^{C G-U C I}(i)+1
$$

end for
end for

$$
\Phi_{l, t m p}^{U C I}=\varnothing ;
$$

for $j=0$ to $m_{\text {count }}^{\Re}-1$

$$
\stackrel{\prime}{\Phi}_{l, t m p}^{U C I}=\dot{\Phi}_{l, t m p}^{U C I} \cup \dot{\Phi}_{l}^{U C I}(j . d)
$$

end for

$$
\begin{aligned}
& \dot{\Phi}_{l}^{U C I}=\dot{\Phi}_{l}^{U C I}\left\{\dot{\Phi}^{\Phi} \dot{\epsilon}_{l, t m p}^{U C I} ;\right. \\
& \dot{\Phi}_{l}^{U L-S C H}=\stackrel{\prime}{\Phi}_{l}^{U L-S C H}\left\{\dot{\Phi} \dot{\delta}_{l, t m p}^{U C I}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \dot{M}_{s c}^{U C I}(l)=\left|\dot{\Phi}_{l}^{U C I}\right| ; \\
& \dot{M}_{s c}^{U L-S C H}(I)=\left|\dot{\Phi}_{l}^{U L-S C H}\right|
\end{aligned}
$$

end if

$$
l=l+1 ;
$$

end while
end for
end if

Step 3:

if CSI is present for transmission on the PUSCH,

$$
\begin{aligned}
& \text { Set } m_{\text {count }}^{\text {CSI-part1 }}(1)=0 ; \\
& \text { Set } m_{\text {count }}^{\text {CSI-part1 }}(2)=0 ; \\
& \text { Set } m_{\text {count,all }}^{\text {CSI-prt1 }}=0 ; \\
& \text { for } i=1 \quad \text { to } \quad N_{\text {hop }}^{\text {PUSCH }} \\
& l=l_{\mathrm{CSI}}^{(i)} ; \\
& \text { while } \bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)-\bar{M}_{\mathrm{sc}, \text { rvd }}^{\bar{\Phi}}(l) \text { po } \\
& l=l+1 ;
\end{aligned}
$$

end while

$$
\text { while } m_{\text {count }}^{\text {CSI-part1 }}(i)<G^{\text {CSI-part1 }}(i)
$$

$$
\begin{aligned}
& \text { if } \bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)-\bar{M}_{\mathrm{sc}, \mathrm{rvd}}^{\bar{\Phi}}(l)>0 \\
& \text { if } \left.G^{\mathrm{CSI} \text {-part1 }}(i)-m_{\text {count }}^{\mathrm{CSI} \text { part1 }}(i) \text { 领 } \bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)-\bar{M}_{\mathrm{sc}, \text { rvd }}^{\Phi}(l)\right) \hat{\mathrm{D}}_{L} \hat{\mathbf{Q}}_{m} \\
& d=1 ; \\
& m_{\mathrm{count}}^{\mathrm{RE}}=\bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)-\bar{M}_{\mathrm{sc}, \mathrm{rvd}}^{\Phi}(l) ;
\end{aligned}
$$

end if

$$
\begin{aligned}
& { }_{\text {if }} G^{\mathrm{CSI}-\mathrm{part1}}(i)-m_{\text {count }}^{\mathrm{CSI}-\mathrm{part1}}(i)<\left(\bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)-\bar{M}_{\mathrm{sc}, \text { rvd }}^{\Phi}(l)\right) \widehat{\mathrm{O}}_{L} \hat{\mathbf{Q}}_{m} \\
& \left.d=\hat{\boldsymbol{Q}}_{\mathrm{sc}}^{\mathrm{UCI}}(l)-M_{\mathrm{sc}, \mathrm{rvd}}^{\bar{\Phi}}(l)\right) \hat{\mathrm{D}}_{L} \hat{\mathbf{Q}}_{m} /\left(G^{\mathrm{CSI}-\mathrm{part1}}(i)-m_{\text {count }}^{\mathrm{CSI}-\mathrm{part}}(i)\right) ; \\
& m_{\text {count }}^{\mathrm{RE}}=\left\lceil\left(G^{\mathrm{CSI}-\text {-part1 }}(i)-m_{\text {count }}^{\mathrm{CSI}-\text { part1 }}(i)\right) /\left(N_{L} \cdot Q_{m}\right)\right\rceil ;
\end{aligned}
$$

end if

$$
\begin{aligned}
& \bar{\Phi}_{l}^{\text {temp }}=\bar{\Phi}_{l}^{\mathrm{UCl}} \backslash \bar{\Phi}_{l}^{\text {rvd }} ; \\
& \text { for } j=0 \text { to } m_{\text {count }}^{\mathrm{RE}}-1 \\
& k=\bar{\Phi}_{l}^{\text {temp }}(j \geqslant) ; \\
& \text { for } \quad v=0 \text { to } N_{L} \cdot Q_{m}-1 \\
& \bar{g}_{l, k, v}=g_{m_{\text {count all }}^{\text {CSII }} \text {.part1 }}^{\text {CSI }} \quad ; \\
& m_{\text {count,all }}^{\text {CSI-part1 }}=m_{\text {count,all }}^{\text {CSI-part1 }}+1 \text {; } \\
& m_{\text {count }}^{\text {CSI-part1 }}(i)=m_{\text {count }}^{\text {CSI-part1 }}(i)+1 \text {; }
\end{aligned}
$$

end for
end for

$$
\begin{aligned}
& \left.\bar{\Phi}_{l, t m p}^{\mathrm{UCI}}=\right\rangle \\
& \text { for } j=0 \quad \text { to } m_{\text {count }}^{\mathrm{RE}}-1 \\
& \quad \bar{\Phi}_{l, t m p}^{\mathrm{UCI}}=\bar{\Phi}_{l, t m p}^{\mathrm{UCI}} U \bar{\Phi}_{l}^{\mathrm{temp}}(j \geqslant)
\end{aligned}
$$

end for

$$
\begin{aligned}
& \bar{\Phi}_{l}^{\mathrm{UCI}}=\bar{\Phi}_{l}^{\mathrm{UCI}} \backslash \bar{\Phi}_{l, t m p}^{\mathrm{UCI}} \\
& \bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}}=\bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}} \backslash \bar{\Phi}_{l, t m p}^{\mathrm{UCI}} ; \\
& \bar{M}_{\mathrm{sC}}^{\mathrm{UCI}}(l)=\left|\bar{\Phi}_{l}^{\mathrm{UCI}}\right| \\
& \bar{M}_{\mathrm{sc}}^{\mathrm{UL}-\mathrm{SCH}}(l)=\left|\bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}}\right| ;
\end{aligned}
$$

end if

$$
l=l+1
$$

end while
end for

Set $m_{\text {count }}^{\text {CSI-part2 }}(1)=0$;
Set $m_{\text {count }}^{\text {CSI-part2 }}(2)=0$;
Set $m_{\text {count, all }}^{\text {CSI-part2 }}=0$;
for $i=1$ to $N_{\text {hop }}^{\text {PUSCH }}$

$$
l=l_{\mathrm{CSI}}^{(i)} ;
$$

while $\bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)$ Po

$$
l=l+1 ;
$$

end while
while $m_{\text {count }}^{\text {CSI-part2 }}(i)<G^{\text {CSI-part2 }}(i)$

$$
\text { if } \bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)>0
$$

$$
\begin{aligned}
& \text { if } G^{\mathrm{CSI}-\mathrm{part} 2}(i)-m_{\mathrm{count}}^{\mathrm{CSI}-\mathrm{part} 2}(i) \hat{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l) \widehat{\mathrm{D}}_{L} \widehat{\otimes}_{m} \\
& d=1 \quad ; \\
& m_{\mathrm{count}}^{\mathrm{RE}}=\bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)
\end{aligned}
$$

end if

$$
\begin{aligned}
& { }_{\text {if }} G^{\text {CSI-part2 }}(i)-m_{\text {count }}^{\text {CSI-part2 }}(i)<\bar{M}_{\text {sc }}^{\mathrm{UCI}}(l) \hat{\mathrm{d}}_{L} \hat{Q}_{m}
\end{aligned}
$$

$$
\begin{aligned}
& m_{\text {count }}^{\mathrm{RE}}=\left\lceil\left(G^{\mathrm{CSI}-\mathrm{part2}}(i)-m_{\text {count }}^{\mathrm{CSI}-\mathrm{part} 2}(i)\right) /\left(N_{L} \cdot Q_{m}\right)\right\rceil \text {; }
\end{aligned}
$$

end if

$$
\begin{aligned}
& \text { for } j=0 \text { to } m_{\text {count }}^{\mathrm{RE}}-1 \\
& k=\bar{\Phi}_{l}^{\mathrm{UCI}}(j \hat{}) ; \\
& \text { for } \quad v=0 \text { to } N_{L} \cdot Q_{m}-1 \\
& \bar{g}_{l, k, v}=g_{m_{\text {count all }}^{\text {CSII }}}^{\substack{\text { CSIpart2 }}} \quad ; \\
& m_{\text {count,all }}^{\mathrm{CSI}-\text { part2 }}=m_{\text {count,all }}^{\mathrm{CSI}-\mathrm{art} 2}+1 \text {; } \\
& m_{\text {count }}^{\text {CSI-part2 }}(i)=m_{\text {count }}^{\text {CSI-part2 }}(i)+1 \text {; }
\end{aligned}
$$

end for
end for

$$
\begin{aligned}
& \left.\bar{\Phi}_{l, t m p}^{\mathrm{UCI}}=\right\rangle \\
& \text { for } \quad j=0 \quad \text { to } \quad m_{\text {count }}^{\mathrm{RE}}-1 \\
& \left.\quad \bar{\Phi}_{l, t m p}^{\mathrm{UCI}}=\bar{\Phi}_{l, \text { tmp }}^{\mathrm{UCI}} \cup \bar{\Phi}_{l}^{\mathrm{UCI}}(j\rangle\right) ;
\end{aligned}
$$

end for

$$
\begin{aligned}
& \bar{\Phi}_{l}^{\mathrm{UCI}}=\bar{\Phi}_{l}^{\mathrm{UCI}} \backslash \bar{\Phi}_{l, t m p}^{\mathrm{UCI}} ; \\
& \bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}}=\bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}} \backslash \bar{\Phi}_{l, t m p}^{\mathrm{UCI}} ; \\
& \bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l)=\left|\bar{\Phi}_{l}^{\mathrm{UCI}}\right| ; \\
& \bar{M}_{\mathrm{sc}}^{\mathrm{UL}-\mathrm{SCH}}(l)=\left|\bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}}\right| ;
\end{aligned}
$$

end if

$$
l=l+1 ;
$$

end while
end for
end if

Step 4:

if UL-SCH is present for transmission on the PUSCH,

$$
\begin{aligned}
& \text { Set } m_{\text {count }}^{\mathrm{UL}-\mathrm{SCH}}=0 \text {; } \\
& \text { for } l=0 \quad \text { to } \quad N_{\text {symb,all }}^{\text {PUSCH }}-1 \\
& \text { if } \bar{M}_{\mathrm{sc}}^{\mathrm{UL}-\mathrm{SCH}}(l)>0 \\
& \text { for } j=0 \quad \text { to } \bar{M}_{\mathrm{sc}}^{\mathrm{UL}-\mathrm{SCH}}(I)-1 \\
& k=\bar{\Phi}_{l}^{\mathrm{UL}-\mathrm{SCH}}(j) ; \\
& \text { for } v=0 \text { to } N_{L} \cdot Q_{m}-1 \\
& \bar{g}_{l, k, v}=g_{m_{\text {count }}^{\text {UL-SCH }}}^{\text {UL-SCH }} ; \\
& m_{\text {count }}^{\mathrm{UL}-\mathrm{SCH}}=m_{\text {count }}^{\mathrm{UL}-\mathrm{SCH}}+1 \text {; }
\end{aligned}
$$

end for
end for
end if
end for
end if

Step 5:

if HARQ-ACK is present for transmission on the PUSCH without CG-UCI and the number of HARQ-ACK information bits is no more than 2 ,

Set $m_{\text {count }}^{\mathrm{ACK}}(1)=0$;
Set $m_{\text {count }}^{\mathrm{ACK}}(2)=0$;
Set $m_{\text {count,all }}^{\mathrm{ACK}}=0$;
for $i=1$ to $N_{\text {hop }}^{\text {PUSCH }}$
$l=l^{(i)}$;
while $m_{\text {count }}^{\text {ACK }}(i)<G^{\text {ACK }}(i)$

$$
\text { if } \bar{M}_{\mathrm{sc}, \mathrm{rvd}}^{\bar{\Phi}}(l)>0
$$

end if
end if

$$
\begin{gathered}
\text { for } j=0 \text { to } m_{\text {count }}^{\mathrm{RE}}-1 \\
k=\bar{\Phi}_{l}^{\mathrm{rvd}}(j)
\end{gathered}
$$

$$
\text { for } \quad v=0 \text { to } N_{L} \cdot Q_{m}-1
$$

$$
\bar{g}_{l, k, v}=g_{m_{\text {count all }}^{\text {ACK }}}^{\text {ACK }}
$$

$$
m_{\mathrm{count}, \mathrm{all}}^{\mathrm{ACK}}=m_{\mathrm{count}, \mathrm{all}}^{\mathrm{ACK}}+1
$$

$$
m_{\text {count }}^{\mathrm{ACK}}(i)=m_{\text {count }}^{\mathrm{ACK}}(i)+1
$$

end for
end for
end if

$$
l=l+1
$$

end while

$$
\begin{aligned}
& { }_{\text {if }} G^{\mathrm{ACK}}(i)-m_{\text {count }}^{\mathrm{ACK}}(i)<\bar{M}_{\mathrm{sc}, \text { rvd }}^{\bar{T}}(l) \widehat{\mathrm{D}}_{L} \widehat{Q}_{m} \\
& d=\bar{S}_{\mathrm{sc}, \text { rd }}^{\Phi}(l) \widehat{\mathrm{Q}}_{L} \hat{\mathbf{Q}}_{m} /\left(G^{\mathrm{ACK}}(i)-m_{\mathrm{count}}^{\mathrm{ACK}}(i)\right) ; \\
& m_{\text {count }}^{\mathrm{RE}}\left\lceil\left\lceil\left(G^{\mathrm{ACK}}(i)-m_{\text {count }}^{\mathrm{ACK}}(i)\right) /\left(N_{L} \cdot Q_{m}\right)\right\rangle ;\right.
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\text {if }} G^{\mathrm{ACK}}(i)-m_{\text {count }}^{\mathrm{ACK}}(i)\left\langle\bar{M}_{\mathrm{sc}, \text { rvd }}^{\Phi}(I) \mathrm{D}_{L} \hat{Q}_{m}\right. \\
& d=1 \text {; } \\
& m_{\text {count }}^{\mathrm{RE}}=\bar{M}_{\mathrm{sc}, \text { rvd }}^{\Phi}(l) ;
\end{aligned}
$$

end for
end if

Step 6:

$$
\begin{aligned}
& \text { Set } t=0 ; \\
& \text { for } \quad l=0 \quad \text { to } \quad N_{\mathrm{symb}, \mathrm{dll}}^{\mathrm{PUSCH}}-1 \\
& \text { for } \quad j=0 \quad \text { to } M_{\mathrm{sc}}^{\mathrm{UL}-\mathrm{SCH}}(l)-1 \\
& k=\Phi_{l}^{\mathrm{UL}-\mathrm{sCH}}(j) ; \\
& \text { for } \quad v=0 \text { to } N_{L} \cdot Q_{m}-1 \\
& \quad g_{t}=\bar{g}_{l, k, v} ; \\
& t=t+1 ;
\end{aligned}
$$

end for
end for
end for

6.3 Uplink control information

6.3.1 Uplink control information on PUCCH

The procedure in this clause applies to PUCCH formats 2/3/4.

6.3.1.1 UCI bit sequence generation

6.3.1.1.1 HARQ-ACK/SR only

If only HARQ-ACK bits are transmitted on a PUCCH, the UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$ is determined by

If only HARQ-ACK and SR bits are transmitted on a PUCCH, the UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$ is determined by setting $a_{i}=\widetilde{o}_{i}^{A C K}$ for $i=0,1, \ldots, O^{\mathrm{ACK}}-1, a_{i}=\widetilde{o}_{i-O^{A C K}}^{S R}$ for $i=O^{\mathrm{ACK}}, 0^{\mathrm{ACK}}+1, \ldots, 0^{\mathrm{ACK}}+O^{\mathrm{SR}}-1$, and $A=O^{\mathrm{ACK}}+O^{\mathrm{SR}}$, where the HARQ-ACK bit sequence
 given by Clause 9.2.5.1 of [5, TS 38.213].

6.3.1.1.2 CSI only

The bitwidth for PMI of codebookType=typeI-SinglePanel with 2 CSI-RS ports is 2 for Rank=1 and 1 for Rank=2, according to Clause 5.2.2.2.1 in [6, TS 38.214].

The bitwidth for PMI of codebookType=typeI-SinglePanel with more than 2 CSI-RS ports is provided in Tables 6.3.1.1.2-1, where the values of $\left(N_{1}, N_{2}\right)$ and $\left(O_{1}, O_{2}\right)$ are given by Clause 5.2.2.2.1 in [6, TS 38.214].

Table 6.3.1.1.2-1: PMI of codebookType=typel-SinglePanel

	Information field $X_{1} \quad$ for wideband PMI			Information field X_{2} for widebandPMIor per subband PMI	
	$\left(i_{1,1}, i_{1,2}\right)$		$i_{1,3}$	i_{2}	
	codebookMode=1	codebookMode=2		codebookMode= 1	codebookMode=2
Rank $=1$ with >2 CSI-RS ports, $N_{2}>1$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & \text { 勋 } \frac{N_{1} O_{1}}{2} \\ & 2 \end{aligned}$	N/A	2	4
$\begin{gathered} \text { Rank }=1 \text { with }>2 \\ \text { CSI-RS ports, } \\ N_{2}=1 \end{gathered}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	$\left(\left\lceil\log _{2}\left(\frac{N_{1} O_{1}}{2}\right)\right\rceil, 00\right.$	N/A	2	4
Rank=2 with 4 CSI-RS ports, $N_{2}=1$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	$\left(\left\lceil\log _{2}\left(\frac{N_{1} O_{1}}{2}\right)\right\rceil\right.$,	1	1	3
Rank=2 with >4 CSI-RS ports, $N_{2}>1$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{ogg}_{2} \frac{N_{1} O_{1}}{2} \\ & \mathrm{og}_{2} \frac{N_{2} O_{2}}{2} \end{aligned}$	2	1	3
$\begin{gathered} \text { Rank }=2 \text { with }>4 \\ \text { CSI-RS ports, } \\ N_{2}=1 \end{gathered}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	$\left(\left\lceil\log _{2}\left(\frac{N_{1} O_{1}}{2}\right)\right\rceil, 0\right)$	2	1	3
$\begin{aligned} & \text { Rank=3 or 4, } \\ & \text { with } 4 \text { CSI-RS } \\ & \text { ports } \end{aligned}$	$\left(\mathrm{g}_{2} N_{1} \mathrm{O}_{1}, \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$		0	1	
Rank=3 or 4, with 8 or 12 CSIRS ports	$\left(\mathrm{S}_{2} \mathrm{~N}_{1} \mathrm{O}_{1} \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$		2	1	
Rank=3 or 4, with >=16 CSIRS ports	$\mathrm{gg}_{2} \frac{N_{1} \mathrm{O}_{1}}{2}, \mathrm{~g}_{2} N_{2} \mathrm{O}_{2}$		2	1	
Rank=5 or 6	$\left(\mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$		N/A	1	
$\begin{aligned} & \text { Rank=7 or } 8, \\ & N_{1}=4, N_{2}=1 \end{aligned}$	$\mathrm{g}_{2} \frac{N_{1} \mathrm{O}_{1}}{2} \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$		N/A	1	
$\begin{gathered} \text { Rank=7 or } 8, \\ N_{1}>2, N_{2}=2 \end{gathered}$	$\mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1} \mathrm{O}_{2} \frac{\mathrm{~N}_{2} \mathrm{O}_{2}}{2}$		N/A	1	

Rank=7 or 8, with $N_{1}>4, N_{2}=1$ or $N_{1}=2, N_{2}=2$ or $N_{1}>2, N_{2}>2$			

The bitwidth for PMI of codebookType = typeI-MultiPanel is provided in Tables 6.3.1.1.2-2, where the values of $\left(N_{g}, N_{1}, N_{2}\right)$ and $\left(O_{1}, O_{2}\right)$ are given by Clause 5.2.2.2.2 in [6, TS 38.214].

Table 6.3.1.1.2-2: PMI of codebookType= typeI-MultiPaneI

	Information fields X_{1} for wideband					Information fields X_{2} for wideband or per subband			
	$\left(i_{1,1}, i_{1,2}\right)$	$i_{1,3}$	$i_{1,4,1}$	$i_{1,4,2}$	$i_{1,4,3}$	i_{2}	$i_{2,0}$	$i_{2,1}$	$i_{2,2}$
Rank=1 with $N_{g}=2$ codebookMode $=1$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	N/A	2	N/A	N/A	2	N/A	N/A	N/A
Rank=1 with $\quad N_{g}=4$ codebookMode $=1$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \end{aligned}$	N/A	2	2	2	2	N/A	N/A	N/A
$\begin{gathered} \text { Rank=2 with } N_{g}=2 \\ N_{1} N_{2}=2 \\ \text { codebookMode }=1 \end{gathered}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \end{aligned}$	1	2	N/A	N/A	1	N/A	N/A	N/A
$\begin{gathered} \text { Rank=3 or } 4 \text { with } \quad N_{g}=2, \\ N_{1} N_{2}=2 \\ \text { codebookMode }=1 \end{gathered}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \end{aligned}$	0	2	N/A	N/A	1	N/A	N/A	N/A
$\begin{aligned} & \text { Rank=2 or } 3 \text { or } 4 \text { with } \\ & N_{g}=2 \quad N_{1} N_{2}>2 \\ & \text { codebookMode }=1 \end{aligned}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \end{aligned}$	2	2	N/A	N/A	1	N/A	N/A	N/A
$\begin{gathered} \text { Rank=2 with } \quad N_{g}=4, \\ N_{1} N_{2}=2 \\ \text { codebookMode }=1 \end{gathered}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \end{aligned}$	1	2	2	2	1	N/A	N/A	N/A
$\begin{gathered} \text { Rank=3 or } 4 \text { with } N_{g}=4, \\ N_{1} N_{2}=2 \\ \text { codebookMode }=1 \end{gathered}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	0	2	2	2	1	N/A	N/A	N/A
$\begin{aligned} & \text { Rank=2 or } 3 \text { or } 4 \text { with } \\ & N_{g}=4 \quad, N_{1} N_{2}>2 \end{aligned}$	$\left(\mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}\right.$	2	2	2	2	1	N/A	N/A	N/A

codebookMode=1	$\mathrm{Jg}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$								
Rank=1 with $N_{g}=2$ codebookMode $=2$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	N/A	2	2	N/A	N/A	2	1	1
$\begin{gathered} \text { Rank=2 with } \quad N_{g}=2, \\ N_{1} N_{2}=2 \\ \text { codebookMode }=2 \end{gathered}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	1	2	2	N/A	N/A	1	1	1
$\begin{gathered} \text { Rank=3 or } 4 \text { with } N_{g}=2 \\ N_{1} N_{2}=2 \\ \text { codebookMode }=2 \end{gathered}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \end{aligned}$	0	2	2	N/A	N/A	1	1	1
$\begin{aligned} & \text { Rank=2 or } 3 \text { or } 4 \text { with } \\ & N_{g}=2 \quad N_{1} N_{2}>2 \\ & \text { codebookMode }=2 \end{aligned}$	$\begin{aligned} & \mathrm{g}_{2} \mathrm{~N}_{1} \mathrm{O}_{1}, \\ & \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	2	2	2	N/A	N/A	1	1	1

The bitwidth for PMI with 1 CSI-RS port is 0 .
The bitwidth for RI/LI/CQI/CRI of codebookType=typeI-SinglePanel is provided in Tables 6.3.1.1.2-3.
Table 6.3.1.1.2-3: RI, LI, CQI, and CRI of codebookType=typel-SinglePanel

Field	Bitwidth				
	1 antenna port	2 antenna ports	4 antenna ports	>4 antenna ports	
				Rank1~4	Rank5~8
Rank Indicator	0	$\min \left(1,\left[\log _{2} n_{\mathrm{RI}}\right]\right)$	$\min \left(2,\left[\log _{2} n_{\mathrm{RI}}\right]\right)$	$\left\lceil\log _{2} n_{\mathrm{RI}}\right\rceil$	$\left\lceil\log _{2} n_{\mathrm{RI}}\right\rceil$
Layer Indicator	0	人 $\mathrm{g}_{2} v$	$\min \left(2, \mathrm{~g}_{2} v\right.$	$\min \left(2, \mathrm{~g}_{2} v\right.$	$\min \left(2, \mathrm{~g}_{2} v\right)$
Wide-band CQI for the first TB	4	4	4	4	4
Wideband CQI for the second TB	0	0	0	0	4
Subband differential CQI for the first TB	2	2	2	2	2
Subband differential CQI for the second TB	0	0	0	0	2
CRI	$\left\lceil\log _{2}\left(K_{s}^{\text {CSI-RS }}\right.\right.$	$\left\lceil\log _{2}\left(K_{s}^{\mathrm{CSI}-\mathrm{RS}}\right)\right\rceil$	$\left\lceil\log _{2}\left(K_{s}^{\text {CSI-RS }}\right)\right\rceil$	$\left\lceil\log _{2}\left(K_{s}^{\mathrm{CSI}-\mathrm{RS}}\right)\right.$	$\left\lceil\log _{2}\left(K_{s}^{\mathrm{CSI}-\mathrm{RS}}\right)\right\rceil$

$n_{\mathrm{RI}} \quad$ in Table 6.3.1.1.2-3 is the number of allowed rank indicator values according to Clause 5.2.2.2.1 [6, TS 38.214]. v is the value of the rank. The value of $K_{s}^{\mathrm{CSI}-\mathrm{RS}}$ is the number of CSI-RS resources in the corresponding resource set. The values of the rank indicator field are mapped to allowed rank indicator values with increasing order, where ' 0 ' is mapped to the smallest allowed rank indicator value.

The bitwidth for RI/LI/CQI/CRI of codebookType = typeI-MultiPanel is provided in Table 6.3.1.1.2-4.

Table 6.3.1.1.2-4: RI, LI, CQI, and CRI of codebookType=typeI-MultiPanel

Field	Bitwidth
Rank Indicator	$\min \left(2,\left\lceil\log _{2} n_{\mathrm{RI}}\right\rceil\right)$
Layer Indicator	$\min \left(2, \mathrm{~g}_{2} v\right.$
Wide-band CQI	4
Subband differential CQI	2
CRI	$\left\lceil\log _{2}\left(K_{s}^{\mathrm{CSI}-\mathrm{RS}}\right)\right\rceil$

where $\quad n_{\mathrm{RI}}$ is the number of allowed rank indicator values according to Clause 5.2.2.2.2 [6, TS 38.214], v is the value of the rank, and is the number of CSI-RS resources in the corresponding resource set. The values of the rank indicator field are mapped to allowed rank indicator values with increasing order, where ' 0 ' is mapped to the smallest allowed rank indicator value.

The bitwidth for RI/LI/CQI of codebookType= typeII or codebookType=typeII-PortSelection is provided in Table 6.3.1.1.2-5.

Table 6.3.1.1.2-5: RI, LI, and CQI of codebookType=typell or typell-PortSelection

Field	Bitwidth
Rank Indicator	$\min \left(1,\left[\log _{2} n_{\mathrm{RI}}\right]\right)$
Layer Indicator	$\min \left(2, \mathrm{~g}_{2} v\right.$
Wide-band CQI	4
Subband differential CQI	2
Indicator of the number of non-zero wideband amplitude coefficients M_{l} for layer l	$\left\lceil\log _{2}(2 L-1)\right\rceil$

where $n_{R I}$ is the number of allowed rank indicator values according to Clauses 5.2.2.2.3 and 5.2.2.2.4 [6, TS 38.214] and v is the value of the rank. The values of the rank indicator field are mapped to allowed rank indicator values with increasing order, where ' 0 ' is mapped to the smallest allowed rank indicator value.

The bitwidth for CRI, SSBRI, RSRP, and differential RSRP are provided in Table 6.3.1.1.2-6.
Table 6.3.1.1.2-6: CRI, SSBRI, and RSRP

Field	Bitwidth
CRI	$\left\lceil\log _{2}\left(K_{s}^{\mathrm{CSI}-\mathrm{RS}}\right)\right\rceil$
SSBRI	$\left\lceil\log _{2}\left(K_{s}^{\mathrm{SSB}}\right)\right\rceil$
RSRP	7
Differential RSRP	4

$\begin{array}{ll}\text { where } & K_{s}^{\text {CSI-RS }} \text { is the number of CSI-RS resources in the corresponding resource set, and } \\ \text { configured number of } \mathrm{SS} / \mathrm{PBCH} \text { blocks in the } & K_{s}^{\text {SSB }}\end{array}$ is the configured number of SS/PBCH blocks in the corresponding resource set for reporting 'ssb-Index-RSRP'.

Table 6.3.1.1.2-6A: CRI, SSBRI, and SINR

Field	Bitwidth
CRI	$\left.\Gamma \log _{2}\left(K_{s}^{C S I-R S}\right)\right\rceil$
SSBRI	$\left.\Gamma \log _{2}\left(K_{s}^{S S B}\right)\right\rceil$
SINR	7
Differential SINR	4

where $K_{s}^{C S I-R S}$ is the number of CSI-RS resources in the corresponding resource set, and $K_{s}^{S S B}$ is the configured number of SS/PBCH blocks in the corresponding resource set for reporting 'ssb-Index-SINR'.

Table 6.3.1.1.2-7: Mapping order of CSI fields of one CSI report, pmi-FormatIndicator=widebandPMI and cqi-FormatIndicator=widebandCQI

CSI report number	CSI fields
CSI report \#n	CRI as in Tables 6.3.1.1.2-3/4, if reported
	Rank Indicator as in Tables 6.3.1.1.2-3/4, if reported
	Layer Indicator as in Tables 6.3.1.1.2-3/4, if reported
	Zero padding bits O_{P}, if needed
	PMI wideband information fields X_{1}, from left to right as in Tables 6.3.1.1.2-1/2, if reported
	PMI wideband information fields X_{2}, from left to right as in Tables 6.3.1.1.2-1/2, or codebook index for 2 antenna ports according to Clause 5.2.2.2.1 in [6, TS38.214], if reported
	Wideband CQI for the first TB as in Tables 6.3.1.1.2-3/4, if reported
	Wideband CQI for the second TB as in Tables 6.3.1.1.2-3/4, if reported

The number of zero padding bits O_{P} in Table 6.3.1.1.2-7 is 0 for 1 CSI-RS port and $O_{P}=N_{\text {max }}-N_{\text {reported }}$ for more than 1 CSI-RS port, where

- $\quad N_{\max }=\max _{r \in S_{\text {Rank }}} B(r)$ and $S_{\text {Rank }}$ is the set of rank values r that are allowed to be reported;
- $\quad N_{\text {reported }}=B(R)$, where R is the reported rank;
- For 2 CSI-RS ports,

$$
B(r)=N_{\mathrm{PMI}}(r)+N_{\mathrm{CQI}}(r)+N_{\mathrm{LI}}(r)
$$

- For more than 2 CSI-RS ports, $\quad B(r)=N_{\text {PMI,i1 }}(r)+N_{\text {PMI,i2 }}(r)+N_{\mathrm{CQI}}(r)+N_{\mathrm{LI}}(r)$;
- if PMI is reported, $\quad N_{\text {PMI }}(1)=2$ and $\quad N_{\text {PMI }}(2)=1$; otherwise, $\quad N_{\text {PMI }}(r)=0$;
- if PMI $\quad i 1$ is reported, $\quad N_{\text {PMI,i1 }}|r|$ is obtained according to Tables 6.3.1.1.2-1/2; otherwise, $\quad N_{\text {PMI,i1 }}|r|=0$;
- if PMI i2 is reported, $\quad N_{\text {PMI,i2 }}|r|$ is obtained according to Tables 6.3.1.1.2-1/2; otherwise, $\quad N_{\text {PMI,i2 }}|r|=0$;
- if CQI is reported, $\quad N_{\text {CQI }}(r)$ is obtained according to Tables 6.3.1.1.2-3/4; otherwise, $\quad N_{\text {CQI }}(r)=0 \quad$;
- if LI is reported, $N_{\mathrm{LI}}(r)$ is obtained according to Tables 6.3.1.1.2-3/4; otherwise, $\quad N_{\mathrm{LI}}(r)=0$.

Table 6.3.1.1.2-8: Mapping order of CSI fields of one report for CRI/RSRP or SSBRI/RSRP reporting

CSI report number	CSI fields
CSI report \#n	CRI or SSBRI \#1 as in Table 6.3.1.1.2-6, if reported
	CRI or SSBRI \#2 as in Table 6.3.1.1.2-6, if reported
	CRI or SSBRI \#3 as in Table 6.3.1.1.2-6, if reported
	CRI or SSBRI \#4 as in Table 6.3.1.1.2-6, if reported
	RSRP \#1 as in Table 6.3.1.1.2-6, if reported
	Differential RSRP \#2 as in Table 6.3.1.1.2-6, if reported
	Differential RSRP \#3 as in Table 6.3.1.1.2-6, if reported
	Differential RSRP \#4 as in Table 6.3.1.1.2-6, if reported

Table 6.3.1.1.2-8A: Mapping order of CSI fields of one report for CRI/SINR or SSBRI/SINR reporting

CSI report number	
CSI report \#n	CSI fields
	CRI or SSBRI \#1 as in Table 6.3.1.1.2-6A, if reported
	CRI or SSBRI \#2 as in Table 6.3.1.1.2-6A, if reported
	CRI or SSBRI \#3 as in Table 6.3.1.1.2-6A, if reported
	CRI or SSBRI \#4 as in Table 6.3.1.1.2-6A, if reported
	SINR \#1 as in Table 6.3.1.1.2-6A, if reported
	Differential SINR \#2 as in Table 6.3.1.1.2-6A, if reported
	Differential SINR \#3 as in Table 6.3.1.1.2-6A, if reported
	Differential SINR \#4 as in Table 6.3.1.1.2-6A, if reported

Table 6.3.1.1.2-9: Mapping order of CSI fields of one CSI report, CSI part 1, pmi-Formatlndicator= subbandPMI or cqi-FormatIndicator=subbandCQI

CSI report number	CSI fields
CSI report \#n CSI part 1	CRI as in Tables 6.3.1.1.2-3/4, if reported
	Rank Indicator as in Tables 6.3.1.1.2-3/4/5, if reported
	Wideband CQI for the first TB as in Tables 6.3.1.1.2-3/4/5, if reported
	Subband differential CQI for the first TB with increasing order of subband number as in Tables 6.3.1.1.2-3/4/5, if reported
	Indicator of the number of non-zero wideband amplitude coefficients M_{0} for layer 0 as in Table 6.3.1.1.2-5, if reported
	Indicator of the number of non-zero wideband amplitude coefficients M_{1} for layer 1 as in Table 6.3.1.1.2-5 (if the rank according to the reported RI is equal to one, this field is set to all zeros), if 2-layer PMI reporting is allowed according to the rank restriction in Clauses 5.2.2.2.3 and 5.2.2.2.4 [6, TS 38.214] and if reported
Note: $\begin{aligned} & \text { Subbands } \\ & \text { continuous }\end{aligned}$	given CSI report n indicated by the higher layer parameter csi-ReportingBand are numbered in the increasing order with the lowest subband of csi-ReportingBand as subband 0.

Table 6.3.1.1.2-10: Mapping order of CSI fields of one CSI report, CSI part 2 wideband, pmiFormatIndicator= subbandPMI or cqi-FormatIndicator=subbandCQI

CSI report number	CSI fields
CSI report \#n CSI part 2 wideband	Wideband CQI for the second TB as in Tables 6.3.1.1.2-3/4/5, if present and reported
	Layer Indicator as in Tables 6.3.1.1.2-3/4/5, if reported
	PMI wideband information fields X_{1}, from left to right as in Tables 6.3.1.1.2-1/2, if reported
	PMI wideband information fields X_{2}, from left to right as in Tables 6.3.1.1.2-1/2, or codebook index for 2 antenna ports according to Clause 5.2.2.2.1 in [6, TS38.214], if pmiFormatIndicator= widebandPMI and if reported

Table 6.3.1.1.2-11: Mapping order of CSI fields of one CSI report, CSI part 2 subband, pmiFormatIndicator= subbandPMI or cqi-FormatIndicator=subbandCQI

CSI report \#n Part 2 subband	Subband differential CQI for the second TB of all even subbands with increasing order of subband number, as in Tables 6.3.1.1.2-3/4/5, if cqi-FormatIndicator=subbandCQI and if reported
	PMI subband information fields X_{2} of all even subbands with increasing order of subband number, from left to right as in Tables 6.3.1.1.2-1/2, or codebook index for 2 antenna ports according to Clause 5.2.2.2.1 in [6, TS38.214] of all even subbands with increasing order of subband number, if pmi-FormatIndicator= subbandPMI and if reported
	Subband differential CQI for the second TB of all odd subbands with increasing order of subband number, as in Tables 6.3.1.1.2-3/4/5, if cqi-FormatIndicator=subbandCQI and if reported
	PMI subband information fields X_{2} of all odd subbands with increasing order of subband number, from left to right as in Tables 6.3.1.1.2-1/2, or codebook index for 2 antenna ports according to Clause 5.2.2.2.1 in [6, TS38.214] of all odd subbands with increasing order of subband number, if pmi-FormatIndicator= subbandPMI and if reported
Note: \quad Sub	ds for given CSI report n indicated by the higher layer parameter csi-ReportingBand are numbere ously in the increasing order with the lowest subband of csi-ReportingBand as subband 0.

If none of the CSI reports for transmission on a PUCCH is of two parts, the CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-12, are mapped to the UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$ starting with a_{0}. The most significant bit of each field is mapped to the lowest order information bit for that field, e.g. the most significant bit of the first field is mapped to
a_{0}
Table 6.3.1.1.2-12: Mapping order of CSI reports to UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$, without two-part CSI report(s)

UCI bit sequence	CSI report number
a_{0}	CSI report \#1 a_{1} a_{2} a_{3} \vdots
as in Table 6.3.1.1.2-7/8	
a_{A-1}	\ldots
	as in Table 6.3.1.1.2-7/8

If at least one of the CSI reports for transmission on a PUCCH is of two parts, two UCI bit sequences are generated, $a_{0}^{(1)}, a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, \ldots, a_{A^{(1)}-1}^{(1)}$ and $a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{A^{(2)}-1}^{(2)}$. The CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-13, are mapped to the UCI bit sequence $a_{0}^{(1)}, a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, \ldots, a_{A^{(1)}-1}^{(1)}$ starting with $\quad a_{0}^{(1)}$. The most significant bit of each field is mapped to the lowest order information bit for that field, e.g. the most significant bit of the first field is mapped to $a_{0}^{(1)}$. The CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-14, are mapped to the UCI bit sequence $a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{A^{(2)}-1}^{\text {(2) }}$ starting with $a_{0}^{(2)}$. The most significant bit of each field is mapped to the lowest order information bit for that field, e.g. the most significant bit of the first field is mapped to $a_{0}^{(2)}$. If the length of UCI bit sequence $a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{A^{(2)}-1}^{(2)}$ is less than 3 bits, zeros shall be appended to the UCI bit sequence until its length equals 3 .

Table 6.3.1.1.2-13: Mapping order of CSI reports to UCI bit sequence $a_{0}^{(1)}, a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, \ldots, a_{A^{(1)}-1}^{(1)}$, with two-part CSI report(s)

UCI bit sequence	CSI report number

where CSI report \#1, CSI report \#2, ..., CSI report \#n in Table 6.3.1.1.2-13 correspond to the CSI reports in increasing order of CSI report priority values according to Clause 5.2 .5 of [6, TS38.214].

Table 6.3.1.1.2-14: Mapping order of CSI reports to UCI bit sequence with two-part CSI report(s)

UCI bit sequence	CSI report number
$\begin{gathered} a_{0}^{(2)} \\ a_{1}^{(2)} \\ a_{2}^{(2)} \\ a_{3}^{(2)} \\ \vdots \\ a_{A^{(2)}-1}^{(2)} \end{gathered}$	CSI report \#1, CSI part 2 wideband, as in Table 6.3.1.1.2-10 if CSI part 2 exists for CSI report \#1
	CSI report \#2, CSI part 2 wideband, as in Table 6.3.1.1.2-10 if CSI part 2 exists for CSI report \#2
	\ldots
	CSI report \#n, CSI part 2 wideband, as in Table 6.3.1.1.2-10 if CSI part 2 exists for CSI report \#n
	CSI report \#1, CSI part 2 subband, as in Table 6.3.1.1.2-11 if CSI part 2 exists for CSI report \#1
	CSI report \#2, CSI part 2 subband, as in Table 6.3.1.1.2-11 if CSI part 2 exists for CSI report \#2
	...
	CSI report \#n, CSI part 2 subband, as in Table 6.3.1.1.2-11 if CSI part 2 exists for CSI report \#n

where CSI report \#1, CSI report \#2, ..., CSI report \#n in Table 6.3.1.1.2-14 correspond to the CSI reports in increasing order of CSI report priority values according to Clause 5.2 .5 of [6, TS38.214].

6.3.1.1.3 HARQ-ACK/SR and CSI

If none of the CSI reports for transmission on a PUCCH is of two parts, the UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$ is generated according to the following, where $A=O^{\mathrm{ACK}}+O^{\mathrm{SR}}+O^{\mathrm{CSI}}$:

- if there is HARQ-ACK for transmission on the PUCCH, the HARQ-ACK bits are mapped to the UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{0^{A C K}}^{-1}{ }^{\text {, where }} a_{i}=\widetilde{o}_{i}^{\text {ACK }}$ for $i=0,1, \ldots, O^{\text {ACK }}-1$, the HARQ-ACK bit sequence $\tilde{0}_{0}^{A C K},\left\{\left\{_{1}^{A C K}, \ldots, \tilde{0}_{0^{A C K}}{ }^{A C K} i \quad\right.\right.$ is given by Clause 9.1 of [5, TS38.213], and $O^{\text {ACK }}$ is number of HARQ-ACK bits; if there is no HARQ-ACK for transmission on the PUCCH, set $O^{\text {ACK }}=0$;
- if there is SR for transmission on the PUCCH, set $a_{i}=\tilde{o}_{i-O^{A C K}}^{S R} \quad$ for $\quad i=0^{\mathrm{ACK}}, 0^{\mathrm{ACK}}+1, \ldots, 0^{\mathrm{ACK}}+O^{\mathrm{SR}}-1$, where the SR bit sequence $\stackrel{\sim}{0}_{0}^{\text {SR }},\left\{\left\{_{0}^{\sim S R}, \ldots, \tilde{0}_{0_{S R}^{S R}}^{\sim} i\right.\right.$ is given by Clause 9.2.5.1 of [5, TS 38.213]; if there is no SR for transmission on the PUCCH, set $\quad O^{\mathrm{SR}}=0$;
- the CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-12, are mapped to
 the number of CSI bits.

If at least one of the CSI reports for transmission on a PUCCH is of two parts, two UCI bit sequences are generated, $a_{0}^{(1)}, a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, \ldots, a_{A^{(1)}-1}^{(1)}$ and $a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{A^{(2)}-1}^{(2)}$, according to the following, where $A^{(1)}=O^{\mathrm{ACK}}+O^{\mathrm{SR}}+O^{\mathrm{CSI}-\text { part1 }}$ and $A^{(2)}=O^{\mathrm{CSI} \text {-part2 }}$:

- if there is HARQ-ACK for transmission on the PUCCH, the HARQ-ACK bits are mapped to the UCI bit sequence $a_{0}^{(1)}, a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, \ldots, a_{0^{\text {ACK }}}^{-1}(1)$, where $a_{i}^{(1)}=\tilde{o}_{i}^{\text {ACK }}$ for $i=0,1, \ldots, O^{\text {ACK }}-1$, the HARQ-ACK bit sequence $\tilde{0}_{0}^{A C K},\left\{\tilde{0}_{1}^{A C K}, \ldots, \tilde{0}_{0^{A C K}}{ }_{-1}^{i}{ }^{i}\right.$ is given by Clause 9.1 of [5, TS38.213], and $O^{A C K}$ is number of HARQACK bits; if there is no HARQ-ACK for transmission on the PUCCH, set $\quad O^{\text {ACK }}=0$;
- if there is SR for transmission on the PUCCH, set $a_{i}=\tilde{o}_{i-O^{A C K}}^{S R}$ for $i=O^{\mathrm{ACK}}, O^{\mathrm{ACK}}+1, \ldots, 0^{\mathrm{ACK}}+0^{\mathrm{SR}}-1$, where the SR bit sequence $\quad \stackrel{\sim}{\sim_{0}^{S R}},\left\{\tilde{0}_{1}^{S R}, \ldots, \tilde{0}_{0^{S R}-1}^{\sim S R}\right.$ is given by Clause 9.2.5.1 of [5, TS 38.213]; if there is no SR for transmission on the PUCCH, set $\quad O^{\mathrm{SR}}=0$;
- the CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-13, are mapped to
 the number of CSI bits in CSI part 1 of all CSI reports;
- the CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.1.1.2-14, are mapped to the UCI bit sequence $a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{A^{(2)}-1}^{(2)} \quad$ starting with $a_{0}^{(2)}$, where $O^{\text {CSI-part2 }}$ is the number of CSI bits in CSI part 2 of all CSI reports. If the length of UCI bit sequence $a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{A^{(2)}-1}^{(2)}$ is less than 3 bits, zeros shall be appended to the UCI bit sequence until its length equals 3 .

6.3.1.2 Code block segmentation and CRC attachment

The UCI bit sequence from clause 6.3.1.1 is denoted by $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$, where A is the payload size. The procedure in 6.3.1.2.1 applies for $A \geq 12$ and the procedure in Clause 6.3.1.2.2 applies for $A \leq 11$

6.3.1.2.1 UCI encoded by Polar code

If the payload size $A \geq 12$, code block segmentation and CRC attachment is performed according to Clause 5.2.1. If ($A \geq 360$ and $E \geq 1088$) or if $A<13, I_{\text {seg }}=1$; otherwise $I_{\text {seg }}=0$, where E is the rate matching output sequence length as given in Clause 6.3.1.4.1.

If $12 \leq A \leq 19$, the parity bits $\quad p_{r 0}, p_{r 1}, p_{r 2}, \ldots, p_{r(L-1)} \quad$ in Clause 5.2 .1 are computed by setting $L \quad$ to 6 bits and using the generator polynomial $g_{\text {CRC6 }}(D)$ in Clause 5.1, resulting in the sequence $c_{r 0}, c_{r 1}, c_{r 2}, c_{r 3}, \ldots, c_{r\left(K_{r}-1\right)}$ where r is the code block number and K_{r} is the number of bits for code block number r.

If $A \geq 20$, the parity bits $\quad p_{r 0}, p_{r 1}, p_{r 2}, \ldots, p_{r(L-1)} \quad$ in Clause 5.2.1 are computed by setting L to 11 bits and using the generator polynomial $g_{\mathrm{CRC11}}(D)$ in Clause 5.1, resulting in the sequence $c_{r 0}, c_{r 1}, c_{r 2}, c_{r 3}, \ldots, c_{r\left|K_{r}-1\right|}$ where
r is the code block number and K_{r} is the number of bits for code block number r.

6.3.1.2.2 UCI encoded by channel coding of small block lengths

If the payload size $A \leq 11, \mathrm{CRC}$ bits are not attached.
The output bit sequence is denoted by $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$, where $c_{i}=a_{i}$ for $i=0,1, \ldots, A-1$ and $K=A$.

6.3.1.3 Channel coding of UCI

6.3.1.3.1 UCI encoded by Polar code

Information bits are delivered to the channel coding block. They are denoted by

$$
c_{r 0}, c_{r 1}, c_{r 2}, c_{r 3}, \ldots, c_{r\left(K_{r}-1\right)} \text {, where }
$$ r is the code block number, and K_{r} is the number of bits in code block number r. The total number of code blocks is denoted by C and each code block is individually encoded by the following:

If $18 \leq K_{r} \leq 25$, the information bits are encoded via Polar coding according to Clause 5.3.1, by setting $n_{\max }=10, I_{I L}=0, n_{P C}=3, n_{P C}^{w m}=1$ if $E_{r}-K_{r}+3>192$ and $n_{P C}^{w m}=0$ if $E_{r}-K_{r}+3 \leq 192$,
where E_{r} is the rate matching output sequence length as given in Clause 6.3.1.4.1.
If $K_{r}>30$, the information bits are encoded via Polar coding according to Clause 5.3.1, by setting $n_{\max }=10$, $I_{I L}=0, n_{P C}=0$, and $n_{P C}^{w m}=0$

After encoding the bits are denoted by

$$
d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left(N_{r}-1\right)} \text {, where } \quad N_{r} \quad \text { is the number of coded bits in code }
$$ block number r

6.3.1.3.2 UCI encoded by channel coding of small block lengths

Information bits are delivered to the channel coding block. They are denoted by $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$, where K is the number of bits.

The information bits are encoded according to Clause 5.3.3.
After encoding the bits are denoted by $d_{0}, d_{1}, d_{2}, d_{3}, \ldots, d_{N-1}$, where N is the number of coded bits.

6.3.1.4 Rate matching

For PUCCH formats 2/3/4, the total rate matching output sequence length $E_{\text {tot }}$ is given by Table 6.3.1.4-1, where $N_{\text {symb, UCI }}^{\text {PUCCH } 2} \quad, \quad N_{\text {symb, UCI }}^{\text {PUCCH }}$, , and $\quad N_{\text {symb, UCI }}^{\text {PUCCH, }} \quad$ are the number of symbols carrying UCI for PUCCH formats $2 / 3 / 4$ respectively; $N_{\mathrm{PRB}}^{\mathrm{PUCCH}, 2}$ and $N_{\mathrm{PRB}}^{\mathrm{PUCCH}, 3}$ are the number of PRBs that are determined by the UE for PUCCH formats 2/3 transmission respectively according to Clause 9.2 of [5, TS38.213]; and $N_{S F}^{P U C C H, 2}, N_{S F}^{P U C C H, 3}$, and $N_{\mathrm{SF}}^{\mathrm{PUCCH}, 4}$ are the spreading factors for PUCCH format 2, PUCCH format 3, and PUCCH format 4, respectively.

Table 6.3.1.4-1: Total rate matching output sequence length $E_{\text {tot }}$

PUCCH format	Modulation order	
	QPSK	п/2-BPSK
PUCCH format 2	$16 \cdot N_{\text {symb, UCI }}^{P U C C H, 2} \cdot N_{P R B}^{P U C C H, 2} / N_{S F}^{P U C C H, 2}$	N/A
PUCCH format 3	$24 \cdot N_{\text {symb }, U C I}^{P U C C H, 3} \cdot N_{P R B}^{P U C C H, 3} / N_{S F}^{P U C C H, 3}$	$12 \cdot N_{s y m b, U C I}^{P U C C H, 3} \cdot N_{P R B}^{\text {PUCCH }, 3} / N_{S F}^{P U C C}$
PUCCH format 4	$24 \cdot N_{\mathrm{symb}, \mathrm{UCI}}^{\mathrm{PUCCH}, 4} / N_{\mathrm{SF}}^{\mathrm{PUCCH}, 4}$	$12 \cdot N_{\mathrm{symb}, \mathrm{UCl}}^{\mathrm{PUCCH}, 4} / N_{\mathrm{SF}}^{\mathrm{PUCCH}, 4}$

6.3.1.4.1 UCI encoded by Polar code

The input bit sequence to rate matching is $d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left(N_{r}-1\right)}$ where r is the code block number, and N_{r} is the number of coded bits in code block number r.

Table 6.3.1.4.1-1: Rate matching output sequence length $E_{U C I}$

UCI(s) for transmission on a PUCCH	UCI for encoding	Value of $E_{\text {UCI }}$
HARQ-ACK	HARQ-ACK	$E_{\text {UCI }}=E_{\text {tot }}$
HARQ-ACK, SR	HARQ-ACK, SR	$E_{\text {UCI }}=E_{\text {tot }}$
CSI (CSI not of two parts)	CSI	$E_{\text {UCI }}=E_{\text {tot }}$
HARQ-ACK, CSI (CSI not of two parts)	HARQ-ACK, CSI	$E_{\text {UCI }}=E_{\text {tot }}$
HARQ-ACK, SR, CSI (CSI not of two parts)	$\begin{aligned} & \text { HARQ-ACK, SR, } \\ & \text { CSI } \end{aligned}$	$E_{\text {UCI }}=E_{\text {tot }}$
CSI (CSI of two parts)	CSI part 1	$E_{\mathrm{UCI}}=\min \left(E_{\text {tot }},\left[\left(O^{\text {CSI-part1 }}+L\right) / R_{\mathrm{UCI}}^{\max } / Q_{m}\right] \cdot Q_{m}\right)$
	CSI part 2	$E_{\mathrm{UCI}}=E_{\mathrm{tot}}-\min \left(E_{\text {tot }},\left\lceil\left(O^{\text {CII-part1 }}+L\right) / R_{\mathrm{UCI}}^{\max } / Q_{m}\right] \cdot Q_{m}\right)$
HARQ-ACK, CSI (CSI of two parts)	$\begin{aligned} & \text { HARQ-ACK, CSI } \\ & \text { part } 1 \end{aligned}$	$E_{\mathrm{UCI}}=\min \left(E_{\text {tot }},\left[\left(O^{\text {ACK }}+O^{\text {CSI-part1 }}+L\right) / R_{\mathrm{UCI}}^{\max } / Q_{m}\right] \cdot Q_{m}\right)$
	CSI part 2	$E_{\mathrm{UCI}}=E_{\text {tot }}-\min \left(E_{\text {tot }},\left\lceil\left(O^{\text {ACK }}+O^{\text {CSI-part1 }}+L\right) / R_{\mathrm{UCI}}^{\max } / Q_{m}\right] \cdot Q_{m}\right)$
HARQ-ACK, SR, CSI (CSI of two parts)	HARQ-ACK, SR, CSI part 1	$E_{\mathrm{UCI}}=\min \left(E_{\text {tot }},\left\lceil\left(O^{\mathrm{ACK}}+O^{\mathrm{SR}}+O^{\text {CSI-part1 }}+L\right) / R_{\mathrm{UCI}}^{\max } / Q_{m}\right\rangle \cdot Q_{m}\right)$
	CSI part 2	$E_{\mathrm{UCI}}=E_{\text {tot }}-\min \left(E_{\text {tot }},\left\lceil\left(O^{\mathrm{ACK}}+O^{\mathrm{SR}}+O^{\mathrm{CSI}-\mathrm{part1}}+L\right) / R_{\mathrm{UCI}}^{\max } / Q_{m}\right\rceil \cdot Q_{m}\right)$

Rate matching is performed according to Clause 5.4.1 by setting $I_{B I L}=1$ and the rate matching output sequence length to $\quad E_{r}=\left|E_{\mathrm{UCI}} / C_{\mathrm{UCI}}\right|$, where $\quad C_{\mathrm{UCI}} \quad$ is the number of code blocks for UCI determined according to Clause 6.3.1.2.1 and the value of $\quad E_{\mathrm{UCI}} \quad$ is given by Table 6.3.1.4.1-1:

- $\quad O^{\text {ACK }}$ is the number of bits for HARQ-ACK for transmission on the current PUCCH;
- O^{SR} is the number of bits for SR for transmission on the current PUCCH;
- $\quad O^{\text {CSI-part1 }}$ is the number of bits for CSI part 1 for transmission on the current PUCCH;
- $\quad O^{\text {CSI-part2 }}$ is the number of bits for CSI part 2 for transmission on the current PUCCH;
- if $A \$ 360, L=11$; otherwise, L is the number of CRC bits determined according to clause 6.3.1.2.1, where A equals $O^{\text {CSI-part1 }}$ for "CSI (CSI of two parts)", equals $O^{\text {ACK }}+O^{\text {CSI-part1 }}$ for "HARQ-ACK, CSI (CSI of two parts)", and equals $O^{\text {ACK }}+O^{\mathrm{SR}}+O^{\text {CSI-part1 }}$ for "HARQ-ACK, SR, CSI (CSI of two parts)" respectively in Table 6.3.1.4.1-1;;
- $R_{\mathrm{UCI}}^{\max }$ is the configured maximum PUCCH coding rate;
- $\quad E_{\text {tot }} \quad$ is given by Table 6.3.1.4-1.

The output bit sequence after rate matching is denoted as $f_{r 0}, f_{r 1}, f_{r 2}, \ldots, f_{r\left(E_{r}-1\right)}$ where E_{r} is the length of rate matching output sequence in code block number r.

6.3.1.4.2 UCI encoded by channel coding of small block lengths

The input bit sequence to rate matching is

$$
d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}
$$

The value of $\quad E_{\mathrm{UCI}} \quad$ is determined according to Table 6.3.1.4.1-1 by setting $L=0$
Rate matching is performed according to Clause 5.4 .3 by setting the rate matching output sequence length $E=E_{\mathrm{UCI}}$.
The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$.

6.3.1.5 Code block concatenation

The input bit sequence for the code block concatenation block are the sequences $f_{r 0}, f_{r 1}, f_{r 2}, \ldots, f_{r\left(E_{r}-1\right)}$, for $r=0, \ldots, C-1$ and where E_{r} is the number of rate matched bits for the r-th code block.
Code block concatenation is performed according to Clause 5.5.
The bits after code block concatenation are denoted by $g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{G^{\prime}-1}$, where $\quad G^{\prime}=\left[E_{\mathrm{UCI}} / C_{\mathrm{UCI}} \mid \cdot C_{\mathrm{UCI}} \quad\right.$ with the values of $\quad E_{\mathrm{UCI}} \quad$ and C_{UCI} given in Clause 6.3.1.4.1. Let G be the total number of coded bits for transmission and $G=G^{\prime}+\bmod \left(E_{\mathrm{UCI}}, C_{\mathrm{UCI}}\right)$. Set $g_{i}=0$ for $i=G^{\prime}, G^{\prime}+1, \ldots, G-1$.

6.3.1.6 Multiplexing of coded UCI bits to PUCCH

If CSI of two parts are transmitted on a PUCCH, the coded bits corresponding to UCI bit sequence $a_{0}^{(1)}, a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, \ldots, a_{A^{(1)}-1}^{(1)}$ is denoted by $g_{0}^{(1)}, g_{1}^{(1)}, g_{2}^{(1)}, g_{3}^{(1)}, \ldots, g_{G^{(1)}-1}^{(1)}$ and the coded bits corresponding to UCI bit sequence $a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{A^{(2)}-1}^{(2)}$ is denoted by $g_{0}^{(2)}, g_{1}^{(2)}, g_{2}^{(2)}, g_{3}^{(2)}, \ldots, g_{G^{(2)}-1}^{(2)}$. The coded bit sequence $g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{G-1}$, where $G=G^{(1)}+G^{(2)} \quad$, is generated according to the following.

Table 6.3.1.6-1: PUCCH DMRS and UCI symbols

$\begin{aligned} & \text { PUCCH } \\ & \text { duration } \\ & \text { (symbols) } \end{aligned}$	PUCCH DMRS symbol indices	Number of UCI symbol indices sets $N_{\mathrm{UCI}}^{\mathrm{set}}$	$1^{\text {st }} \mathrm{UCI}$ symbol indices set $S_{\mathrm{UCI}}^{(1)}$	$2^{\text {nd }} \mathrm{UCI}$ symbol indices set $S_{\mathrm{UCl}}^{(2)}$	$3^{\text {rd }} \mathrm{UCI}$ symbol indices set $S_{\mathrm{UCI}}^{(3)}$
4	\{1\}	2	\{0,2\}	\{3\}	-
4	\{0,2\}	1	\{1,3\}	-	-
5	\{0, 3\}	1	$\{1,2,4\}$	-	-
6	\{1, 4\}	1	$\{0,2,3,5\}$	-	-
7	\{1, 4\}	2	$\{0,2,3,5\}$	\{6\}	-
8	\{1, 5\}	2	$\{0,2,4,6\}$	\{3, 7\}	-
9	\{1, 6\}	2	$\{0,2,5,7\}$	$\{3,4,8\}$	-
10	$\{2,7\}$	2	$\{1,3,6,8\}$	$\{0,4,5,9\}$	-
10	$\{1,3,6,8\}$	1	\{0,2,4,5,7,9\}	-	-
11	$\{2,7\}$	3	\{1,3,6,8\}	\{0,4,5,9\}	\{10\}
11	\{1,3,6,9\}	1	\{0,2,4,5,7,8,10\}	-	-
12	\{2, 8\}	3	\{1,3,7,9\}	\{0,4,6,10\}	$\{5,11\}$
12	\{1,4,7,10\}	1	\{0,2,3,5,6,8,9,11\}	-	-
13	$\{2,9\}$	3	\{1,3,8,10\}	\{0,4,7,11\}	\{5,6,12\}
13	\{1,4,7,11\}	2	\{0,2,3,5,6,8,10,12\}	\{9\}	-
14	\{3, 10\}	3	\{2,4,9,11\}	\{1,5,8,12\}	\{0,6,7,13\}
14	\{1,5,8,12\}	2	\{0,2,4,6,7,9,11,13\}	$\{3,10\}$	-

Denote ${ }^{S_{l}}$ as UCI OFDM symbol index. Denote $N_{\text {UCI }}^{(i)} \quad$ as the number of elements in UCI symbol indices set $S_{\mathrm{UCI}}^{(i)}$ for $i=1, \ldots, N_{\mathrm{UCI}}^{\text {set }}$, where $S_{\mathrm{UCI}}^{(i)}$ and $N_{\mathrm{UCI}}^{\text {set }}$ are given by Table 6.3.1.6-1 according to the PUCCH
duration and the PUCCH DMRS configuration. Denote $N_{\text {symb, UCI }}^{\text {PUCCH }}=\sum_{i=1}^{N_{\text {UCI }}^{\text {set }}} N_{\text {UCI }}^{(i)}$ as the number of OFDM symbols carrying UCI in the PUCCH. Denote Q_{m} as the modulation order of the PUCCH.
For PUCCH format 3, set $\quad N_{\mathrm{UCI}}^{\text {symbol }}=12 \cdot N_{\mathrm{PRB}}^{\mathrm{PUCCH}, 3} / N_{\mathrm{SF}}^{\mathrm{PUCCH}, 3}$, where $N_{\mathrm{PRB}}^{\mathrm{PUCCH}, 3}$ is the number of PRBs that is determined by the UE for PUCCH format 3 transmission according to Clause 9.2 of [5, TS 38.213], and $\quad N_{\mathrm{SF}}^{\mathrm{PUCCH}, 3}$ is the spreading factor for PUCCH format 3 [4, TS 38.211].

For PUCCH format 4, set $N_{\mathrm{UCI}}^{\text {symbol }}=12 / N_{\mathrm{SF}}^{\mathrm{PUCCH}, 4}$, where $N_{\mathrm{SF}}^{\mathrm{PUCCH}, 4}$ is the spreading factor for PUCCH format 4.
Find the smallest $j>0 \quad$ such that $\left(\sum_{i=1}^{j} N_{\mathrm{UCI}}^{(i)}\right) \cdot N_{\mathrm{UCI}}^{\text {symbol }} \cdot Q_{m} \geq G^{(1)}$.
Set $n_{1}=0$;
Set $n_{2}=0$;
Set $\quad \bar{N}_{\mathrm{UCI}}^{\text {symbol }}=\left\lfloor\left(G^{(1)}-\left(\sum_{i=1}^{j-1} N_{\mathrm{UCI}}^{(i)}\right) \cdot N_{\mathrm{UCI}}^{\text {symbol }} \cdot Q_{m}\right) /\left(N_{\mathrm{UCI}}^{(j)} \cdot Q_{m}\right)\right\rfloor$;
Set $\quad M=\bmod \left(\left(G^{(1)}-\left(\sum_{i=1}^{j-1} N_{\mathrm{UCI}}^{(i)}\right) \cdot N_{\mathrm{UCI}}^{\text {symbol }} \cdot Q_{m}\right) / Q_{m}, N_{\mathrm{UCI}}^{(j)}\right)$;
for $\quad l=0 \quad$ to $\quad N_{\text {symb, UCI }}^{\mathrm{PUCCH},}-1$
if $S_{l} \in \sum_{i=1}^{j-1} S_{\mathrm{UCI}}^{(i)}$
for $k=0$ to $N_{\mathrm{UCI}}^{\text {symbol }}-1$
for $v=0$ to $Q_{m}-1$

$$
\bar{g}_{l, k, v}=g_{n_{1}}^{(1)} ;
$$

$$
n_{1}=n_{1}+1 ;
$$

end for
end for
elseif $\quad s_{l} \in S_{\mathrm{UCI}}^{(j)}$
if $\quad M>0$

$$
\gamma=1 ;
$$

else

$$
\gamma=0 ;
$$

end if

$$
\begin{aligned}
& \begin{array}{l}
M=M-1 ; \\
\text { for } k=0 \quad \text { to } \bar{N}_{\mathrm{UCI}}^{\text {symbol }}+\gamma-1 \\
\text { for } \quad v=0 \quad \text { to } Q_{m}-1 \\
\bar{g}_{l, k, v}=g_{n_{1}}^{(1)} ; \\
n_{1}=n_{1}+1 ;
\end{array}
\end{aligned}
$$

end for
end for

$$
\begin{aligned}
& \text { for } \begin{array}{l}
k=\bar{N}_{\mathrm{UCI}}^{\text {symbol }}+\gamma \text { to } N_{\mathrm{UCl}}^{\text {symbol }}-1 \\
\text { for } \quad v=0 \quad \text { to } Q_{m}-1 \\
\quad \bar{g}_{l, k, v}=g_{n_{2}}^{(2)} ; \\
\\
n_{2}=n_{2}+1 ;
\end{array},
\end{aligned}
$$

end for
end for
else

$$
\begin{aligned}
& \text { for } k=0 \quad \text { to } \\
& \text { for } \quad v=0 \quad \text { to } N_{\mathrm{UCI}}^{\text {symbol }}-1 \\
& \bar{g}_{l, k, v}=g_{n_{2}}^{(2)} ; \\
& n_{2}=n_{2}+1 ;
\end{aligned}
$$

end for
end for
end if
end for
Set $n=0$
for $l=0 \quad$ to $\quad N_{\text {symb, UCI }}^{\mathrm{PUCCCH}}-1$

$$
\begin{aligned}
& \text { for } k=0 \quad \text { to } \quad N_{\mathrm{UCI}}^{\text {symbol }}-1 \\
& \text { for } \quad v=0 \quad \text { to } Q_{m}-1 \\
& g_{n}=\bar{g}_{l, k, v} \quad ;
\end{aligned}
$$

$$
n=n+1
$$

end for
end for end for

6.3.2 Uplink control information on PUSCH

6.3.2.1 UCI bit sequence generation

6.3.2.1.1 HARQ-ACK

If HARQ-ACK bits are transmitted on a PUSCH, the UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$ is determined as follows:

- If UCI is transmitted on PUSCH without UL-SCH and the UCI includes CSI part 1 without CSI part 2,
- if there is no HARQ-ACK bit given by Clause 9.1 of [5, TS 38.213], set $a_{0}=0, a_{1}=0$, and $A=2$;
- if there is only one HARQ-ACK bit $\stackrel{\sim}{0}_{0}^{A C K}$ given by Clause 9.1 of [5, TS 38.213], set $a_{0}=\widetilde{0}_{0}^{A C K}$,

$$
a_{1}=0 \quad, \text { and } \quad A=2
$$

- otherwise, set $a_{i}=\widetilde{o}_{i}^{A C K}$ for $i=0,1, \ldots, O^{\text {ACK }}-1$ and $A=O^{\text {ACK }}$, where the HARQ-ACK bit
sequence $\tilde{0}_{0}^{\tilde{0}_{0}^{A C K}},\left\{\tilde{0}_{1}^{A C K}, \ldots, \tilde{0}_{0^{A C K}}^{A C K}{ }_{-1}^{i}\right.$ is given by Clause 9.1 of [5, TS 38.213].

6.3.2.1.2 CSI

The bitwidth for PMI of codebookType=typeI-SinglePanel and codebookType=typeI-MultiPanel is specified in Clause 6.3.1.1.2.

The bitwidth for RI/LI/CQI/CRI of codebookType=typeI-SinglePanel and codebookType=typeI-MultiPanel is specified in Clause 6.3.1.1.2.

The bitwidth for PMI of codebookType=typeII is provided in Tables 6.3.2.1.2-1, where the values of $\left(N_{1}, N_{2}\right)$, $\left(O_{1}, O_{2}\right), L, N_{\text {PSK }}, M_{1}, M_{2}$, and $K^{(2)}$ are given by Clause 5.2.2.2.3 in [6, TS 38.214].

Table 6.3.2.1.2-1: PMI of codebookType= typell

	Information fields X_{1} for wideband PMI						Information fields $\begin{gathered}X_{2} \quad \text { for wideband PMI or per } \\ \text { subband PMI }\end{gathered}$			
	$i_{1,1}$	$i_{1,2}$	$i_{1,3,1}$	$i_{1,4,1}$	$\dot{l}_{1,3,2}$	$i_{1,4,2}$	$i_{2,1,1}$	$i_{2,1,2}$	$i_{2,2,1}$	$i_{2,2,2}$
$\begin{array}{\|c} \text { Rank }=1 \\ \text { SBAmp } \\ \text { off } \end{array}$	$\left\lceil\log _{2}\left(O_{1} O_{2}\right)\right.$	$\left[\log _{2}\binom{N_{1} N_{2}}{L}\right.$	$\left[\log _{2} 2 L\right.$	32L-	N/A	N/A	$\left(M_{1}-1\right) \cdot \log _{2} N_{\text {PSK }}$	N/A	N/A	N/A
$\begin{array}{\|c} \text { Rank }=2 \\ \text { SBAmp } \\ \text { off } \end{array}$	$\left\lceil\log _{2}\left(O_{1} O_{2}\right)\right.$	$\left[\log _{2}\binom{N_{1} N_{2}}{L}\right.$	$\left\lceil\log _{2} 2 L\right.$	32L-	$\left\lceil\log _{2}(2 L)\right.$	32L-	$\left(M_{1}-1\right) \cdot \log _{2} N_{\text {PSK }}$	$\left(M_{2}-1\right) \cdot \log _{2} N_{\text {PSK }}$	N/A	N/A
$\begin{array}{\|c} \text { Rank }=1 \\ \text { SBAmp } \\ \text { on } \end{array}$	$\left\lceil\log _{2}\left(O_{1} O_{2}\right)\right.$	$\left[\log _{2}\binom{N_{1} N_{2}}{L}\right.$	$\left[\log _{2} 2 L\right.$	32L-	N/A	N/A	$\begin{aligned} & \min \left(M_{1}, K^{(2)}\right) \cdot \log _{2} N_{\mathrm{PSK}} \\ & -\log _{2} N_{\text {PSK }} \\ & +2 \cdot\left(M_{1}-\min \left(M_{1}, K^{(2)}\right)\right. \end{aligned}$	N/A	$\min \left(M_{1}, K^{(2)}\right)-$	N/A

Rank=2 SBAmp on	$\left\lceil\log _{2}\left(O_{1} O_{2}\right)\right.$	$\left[\log _{2}\binom{N_{1} N_{2}}{L}\right.$	$\left\lceil\log _{2} 2 L\right.$	$32 L-$	$\left\lceil\log _{2}(2 L)\right.$	$32 L^{-}$	$\min \left(M_{1}, K^{(2)}\right) \cdot \log _{2} N_{\mathrm{PSK}}$ $-\log _{2} N_{\text {PSK }}$ $+2 \cdot\left(M_{1}-\min \left(M_{1}, K^{(2)}\right)\right.$	$\begin{aligned} & \min \left(M_{2}, K^{(2)}\right) \cdot \log _{2} N_{\mathrm{PS}} \\ & -\log _{2} N_{\mathrm{PSK}} \\ & +2 \cdot\left(M_{2}-\min \left(M_{2}, K^{(2)}\right.\right. \end{aligned}$	$\min \left(M_{1}, K^{(2)}\right)-$	$\min \left(M_{2}, K^{(2)}\right)-1$

The bitwidth for PMI of codebookType=typeII-r16 is provided in Tables 6.3.2.1.2-1A, where the values of
$\left(N_{1}, N_{2}\right), \quad\left(O_{1}, O_{2}\right), L, \quad K^{N Z}, \quad N_{3}$, and $\left\{M_{l\}_{l=1, \ldots, v}}\right.$ are given by Clause 5.2.2.2.5 in [6, TS 38.214].

Table 6.3.2.1.2-1A: PMI of codebookType= typell-r16

$\begin{gathered} \text { Rank= } \\ N_{3} \\ N_{3} \end{gathered}$	4	4	4	${ }_{\text {A }}{ }^{\text {/ }}$	N/A	$\left\lceil\log _{2}\left(\begin{array}{l}1 \\ n\end{array}\right.\right.$	$\left\lceil\log _{2}(1)\right.$	$\left\lceil\log _{2}\left(\begin{array}{l}1 \\ n\end{array}\right.\right.$		$3\left(K^{1}\right.$	$4\left(K^{1}\right.$	6 LM
$\begin{gathered} \text { Rank= } \\ 4 \\ N_{3} \end{gathered}$	4	4	4	4	N/A	$\left\lceil\log _{2}\left(\begin{array}{l}1 \\ M\end{array}\right.\right.$	$\left\lceil\log _{2}(1)\right.$	$\left\lceil\log _{2}\left(\begin{array}{l}1 \\ M\end{array}\right.\right.$	$\left[\log _{2}\left(\begin{array}{l}n \\ N\end{array}\right.\right.$	$3\left(K^{2}\right.$	$4\left(K^{1}\right.$	8 LM
$\begin{gathered} \text { Rank= } \\ 1 \\ N_{3} \end{gathered}$	4	N/A	${ }_{\text {A }}^{\text {N/ }}$	${ }_{\text {a }}^{\text {a }}$	$\Gamma \log _{2}$	$\left[\log _{2}(2\right.$	N/A	N/A	N/A	$3(K$	$4\left(K^{1}\right.$	$2 L M$
$\begin{gathered} \substack{\text { Rank }=\\ 2} \\ N_{3} \end{gathered}$	4	4	${ }_{\text {A }}{ }_{\text {N }}$	${ }_{\text {A }}{ }^{\text {/ }}$	$\Gamma \log _{2}$	$\left[\log _{2}(2\right.$	$\left[\log _{2}(2\right.$		N/A	$3\left(K^{2}\right.$	$4\left(K^{2}\right.$	4 LM
$\begin{gathered} \text { Rank= } \\ N_{3} \\ N_{3} \end{gathered}$	4	4	4	${ }_{\text {A }}^{\text {A }}$	$\Gamma \log _{2}$	$\left[\log _{2}(2\right.$	$\left[\log _{2}(2\right.$	$\left\lceil\log _{2}(2\right.$	N/A	$3\left(K^{2}\right.$	$4\left(K^{2}\right.$	6 LM
$\begin{gathered} \text { Rank= } \\ 4 \\ N_{3} \end{gathered}$	4	4	4	4	$\Gamma \log _{2}$	$\left[\log _{2}(2\right.$	$\left[\log _{2}(2\right.$	$\left[\log _{2}(2)\right.$	$\left[\log _{2}(2\right.$	$3\left(K^{\prime}\right.$	$4\left(K^{1}\right.$	8 LM

Note: the bitwidth for $\left\{i_{1,7, l}\right\}_{l=1, \ldots, v},\left\{i_{2,4, l}\right\}_{l=1, \ldots, v}$ and $\left\{i_{2,5, l}\right\}_{l=1, \ldots, v}$ shown in Table 6.3.2.1.2-1A is the total bitwidth of $\left\{i_{1,7, l}\right\},\left\{i_{2,4, l}\right\}$ and $\left\{i_{2,5, l}\right\} \quad$ up to Rank $=v$, respectively, and the corresponding per layer bitwidths are $2 L M_{0}, \quad 3\left(K_{l}^{N Z}-1\right)$, and $4\left(K_{l}^{N Z}-1\right)$, (i.e., 1 , 3, and 4 bits for each respective indicator elements $k_{l, i, f}^{(3)}, k_{l, i, f}^{(2)}$, and $c_{l, i, f}$, respectively), where
$K_{l}^{N Z} \quad$ as defined in Clause 5.2.2.2.5 in [6, TS 38.214] is the number of nonzero coefficients for layer l such that $K^{N Z}=\sum_{l=1}^{\nu} K_{l}^{N Z}$.

The bitwidth for PMI of codebookType = typeII-PortSelection is provided in Tables 6.3.2.1.2-2, where the values of $P_{\text {CSI-RS }}, d, L, N_{\text {PSK }}, M_{1}, M_{2}$, and $K^{(2)}$ are given by Clause 5.2.2.2.4 in [6, TS 38.214].

Table 6.3.2.1.2-2: PMI of codebookType= typell-PortSelection

	Information fields $X_{1} \quad$ for wideband PMI					Information fields$X_{2} \quad$ for wideband PMI or per subband PMI			
	$i_{1,1}$	$i_{1,3,1}$	$i_{1,4,1}$	$i_{1,3,2}$	$i_{1,4,2}$	$i_{2,1,1}$	$i_{2,1,2}$	$i_{2,2,1}$	$i_{2,2,2}$
$\begin{gathered} \text { Rank }=1 \\ \text { SBAmp } \\ \text { off } \end{gathered}$	$\left\lceil\log _{2}\left\lceil\frac{P_{\text {CSI-RS }}}{2 d}\right\rceil\right]$	$\left\lceil\log _{2}(2 L)\right]$	3(2L-1)	N/A	N/A	$\left(M_{1}-1\right) \cdot \log _{2} N_{\text {PSK }}$	N/A	N/A	N/A
$\begin{gathered} \text { Rank=2 } \\ \text { SBAmp } \\ \text { off } \end{gathered}$	$\left\lceil\log _{2}\left\lceil\frac{P_{\text {CSI-RS }}}{2 d}\right\rceil\right]$	$\left\lceil\log _{2}(2 L)\right\rceil$	3(2L-1)	$\left\lceil\log _{2}(2 L)\right]$	3(2L-1)	$M_{1}-1 \cdot \log _{2} N_{\text {PSK }}$	$\left(M_{2}-1\right) \cdot \log _{2} N_{\text {PSK }}$	N/A	N/A
$\begin{gathered} \text { Rank }=1 \\ \text { SBAmp } \\ \text { on } \end{gathered}$	$\left\lceil\log _{2}\left\lceil\frac{P_{\text {CSI-RS }}}{2 d}\right\rceil\right]$	$\left\lceil\log _{2}(2 L)\right\rceil$	3(2L-1)	N/A	N/A	$\begin{aligned} & \min \left(M_{1}, K^{(2)}\right) \cdot \log _{2} N_{\text {PSK }} \\ & -\log _{2} N_{\text {PSK }} \\ & +2 \cdot\left(M_{1}-\min \left(M_{1}, K^{(2)}\right)\right) \end{aligned}$	N/A	$\min \left(M_{1}, K^{(2)}\right)-$	N/A

$\begin{gathered} \text { Rank }=2 \\ \text { SBAmp } \\ \text { on } \end{gathered}$	$\left\lceil\log _{2}\left\lceil\frac{P_{\text {CSI-RS }}}{2 d}\right\rceil\right]$	$\left\lceil\log _{2}(2 L)\right\rceil$	3(2L-1)	$\left\lceil\log _{2}(2 L) \mid\right.$	3(2L-1)	$\begin{aligned} & \min \left(M_{1}, K^{(2)}\right) \cdot \log _{2} N_{\mathrm{PSK}} \\ & -\log _{g_{2}} N_{\text {PSK }} \\ & +2 \cdot\left(M_{1}-\min \left(M_{1}, K^{(2)}\right)\right) \end{aligned}$	$\begin{aligned} & \min \left(M_{2}, K^{(2)}\right) \cdot \log _{2} N_{\mathrm{PS}} \\ & -\log _{2} N_{\mathrm{PSK}} \\ & +2 \cdot\left(M_{2}-\min \left(M_{2}, K^{(2)}\right.\right. \end{aligned}$	$\min \left(M_{1}, K^{(2)}\right)-$	$\min \left(M_{2}, K^{(2)}\right)_{-1}$

The bitwidth for PMI of codebookType=typeII-PortSelection-r16 is provided in Tables 6.3.2.1.2-2A, where the values of $P_{C S I-R S}, d, L, K^{N Z}, N_{3}$, and $\left\{M_{l\}_{l=1, \ldots, v}}\right.$ are given by Clause 5.2.2.2.6 in [6, TS 38.214].

Table 6.3.2.1.2-2A: PMI of codebookType= typell-PortSelection-r16

				$i_{1,1}$		$i_{1,8,1}$		$i_{1,8,2}$		$i_{1,8,3}$				$i_{1,8,4}$	
			$\Gamma \log _{2} \Gamma \frac{P_{\text {CSI-R }}}{2 d}$				$\left\lceil\log _{2} K^{N Z}\right\rceil$	N/A		N/A				N/A	
	Rank		$\left\lceil\log _{2} \Gamma \frac{P_{\text {CSI-R }}}{2 d}\right.$				$\left\lceil\log _{2}(2 L)\right\rceil$	$\left\lceil\log _{2}(2 L) 7\right.$		N/A				N/A	
	ank		$\left\lceil\log _{2} \Gamma \frac{P_{\text {CSI-R }}}{2 d}\right.$				$\left\lceil\log _{2}(2 L)\right\rceil$	$\left\lceil\log _{2}(2 L)\right\rceil$		$\left\lceil\log _{2}(2 L)\right\rceil$				N/A	
			$\left\lceil\log _{2} \Gamma \frac{P_{C S I-R}}{2 d}\right.$				$\left\lceil\log _{2}(2 L)\right\rceil$	$\left\lceil\log _{2}(2 L)\right\rceil$		$\left\lceil\log _{2}(2 L) 7\right.$				$\left\lceil\log _{2}(2 L)\right\rceil$	
			$\Gamma \log _{2} \Gamma \frac{P_{\text {CSI - }}}{2 d}$				$\left\lceil\log _{2} K^{N Z}\right\rceil$	N/A		N/A				N/A	
			$\left\lceil\log _{2} \Gamma \frac{P_{\text {CSI-R }}}{2 d}\right.$				$\left\lceil\log _{2}(2 L)\right\rceil$	$\left\lceil\log _{2}(2 L)\right\rceil$		N/A				N/A	
	Rank		$\Gamma \log _{2} \Gamma \frac{P_{\text {CSI-R }}}{2 d}$				$\left\lceil\log _{2}(2 L)\right\rceil$	$\left\lceil\log _{2}(2 L)\right\rceil$		$\left\lceil\log _{2}(2 L)\right\rceil$				N/A	
$\begin{aligned} & \hline \text { Rank }=4 \\ & N_{3}>19 \end{aligned}$			$\left\lceil\log _{2} \Gamma \frac{P_{\text {CSI-R }}}{} 2 d\right.$				$\left\lceil\log _{2}(2 L)\right\rceil$	$\left\lceil\log _{2}(2 L) 7\right.$		$\left\lceil\log _{2}(2 L)\right\rceil$				$\left\lceil\log _{2}(2 L)\right\rceil$	
Information fields X_{2}															
			i_{2}	2	$i_{1,5}$		 $1,6,1$$\quad i_{1,6,2}$		$i_{1,6,3}$		1,6,4		$\left\{i_{2,4, l}\right.$	$\left\{i_{2,5, l}\right\}$	$\left\{i_{1,7, l}\right.$
Rank= N_{3}	4	${ }_{\text {A }}^{\text {N/ }}$	N/A	${ }_{\text {a }}^{\text {N }}$	N/A		$\log _{2}\binom{1}{M}^{N / A}$		N/A	N/			$3\left(K^{N}\right.$	$4(K$	2 LM
$\stackrel{\substack{\text { Rank } \\ 2}}{ }{ }_{\text {c }}$	4	4	N/A	${ }_{\text {a }}^{\text {N }}$	N/A		$\log _{2}\binom{I}{\Lambda} \quad \Gamma l o$			N/			$3\left(K^{N}\right.$	$4(K$	4 L M

$\begin{array}{\|c\|} \hline \text { Rank= } \\ 3 \\ N_{3} \end{array}$	4	4	4	${ }_{\text {A }} /$	N/A	$\left[\log _{2}\left(\begin{array}{l}1 \\ 1\end{array}\right.\right.$	$\left\lceil\log _{2}\binom{1}{1}\right.$	$\left\lceil\log _{2}\binom{1}{1}\right.$		3 (K^{N}	4 (K)	6 LM
$\begin{array}{\|c\|} \hline \text { Rank }= \\ 4 \\ N_{3} \end{array}$	4	4	4	4	N/A	$\left\lceil\log _{2}\left(\begin{array}{l}1 \\ M\end{array}\right.\right.$	$\left\lceil\log _{2}\left(\begin{array}{l}1 \\ M\end{array}\right.\right.$	$\left\lceil\log _{2}\left(\begin{array}{l}1 \\ 1\end{array}\right.\right.$	$\left\lceil\log _{2}\left(\begin{array}{l}n \\ M\end{array}\right.\right.$	$3\left(K^{N}\right.$	4 (K)	8 LM
$\left.\begin{array}{\|c\|} \hline \text { Rank } \\ 1 \\ N_{3} \end{array} \right\rvert\,$	4	${ }_{\text {A }}^{\text {N/ }}$	N/A	$\stackrel{\text { a }}{\text { A }}$	$\Gamma \log$	$\left[\log _{2}(2\right.$	N/A	N/A	N/A	$3\left(K^{N}\right.$	4 K	2 LM
$\begin{array}{\|c\|} \hline \text { Rank }= \\ 2 \\ N_{3} \end{array}$	4	4	N/A	${ }_{\text {A }}^{\text {N/ }}$	$\Gamma \log$	$\left[\log _{2}(2\right.$	$\int \log _{2}(2)$	N/A	N/A	3 (K^{N}	4 (K	4 LM
$\begin{array}{\|c\|} \hline \text { Rank } \\ 3 \\ N_{3} \end{array}$	4	4	4	${ }_{\text {A }}^{\text {N }}$	$\Gamma \log$	$\left[\log _{2}(2\right.$	$\left[\log _{2}(2)\right.$	$\left[\log _{2}(2\right.$	N/A	3 (K^{N}	4 (K	6 LM
$\left.\begin{array}{\|c\|} \hline \text { Rank }= \\ 4 \\ N_{3} \end{array} \right\rvert\,$	4	4	4	4	$\Gamma \log$	$\left[\log _{2}(2\right.$	$\left[\log _{2}(2)\right.$	$\left[\log _{2}(2\right.$	$\left\lceil\log _{2}(2\right.$	$3\left(K^{N}\right.$	4 (K)	8 LM

Note: the bitwidth for $\left\{i_{1,7, l}\right\}_{l=1, \ldots, v},\left\{i_{2,4, l}\right\}_{l=1, \ldots, v}$ and $\left\{i_{2,5, l}\right\}_{l=1, \ldots, v}$ shown in Table 6.3.2.1.2-2A is the total bitwidth of $\left\{i_{1,7, l}\right\},\left\{i_{2,4, l}\right\}$ and $\left\{i_{2,5, l}\right\} \quad$ up to Rank $=v$, respectively, and the corresponding per layer bitwidths are $2 L M_{0}, 3\left(K_{l}^{N Z}-1\right)$, and $4\left(K_{l}^{N Z}-1\right)$, (i.e., 1,3 , and 4 bits for each respective indicator elements $k_{l, i, f}^{(3)}, k_{l, i, f}^{(2)}$, and $c_{l, i, f}$, respectively), where $K_{l}^{N Z} \quad$ as defined in Clause 5.2.2.2.5 in [6, TS 38.214] is the number of nonzero coefficients for layer l such that $K^{N Z}=\sum_{l=1}^{0} K_{l}^{N Z}$.

For CSI on PUSCH, two UCI bit sequences are generated,

$$
a_{0}^{(1)}, a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, \ldots, a_{A^{(1)}-1}^{(1)} \text { and }
$$

$a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{\left.A^{2}\right)-1}^{(2)}$. The CSI fields of all CSI reports, in the order from upper part to lower part in Table
6.3.2.1.2-6, are mapped to the UCI bit sequence $a_{0}^{(1)}, a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, \ldots, a_{\left.A^{(1)}\right)-1}$ starting with $a_{0}^{(1)}$. The CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.2.1.2-7, are mapped to the UCI bit sequence $a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{A^{(2)}-1}^{(2)}$ starting with $a_{0}^{(2)}$.

The mapping order of CSI fields of one report for CRI/RSRP or SSBRI/RSRP reporting is provided in Table 6.3.1.1.2-8. The mapping order of CSI fields of one report for CRI/SINR or SSBRI/SINR reporting is provided in Table 6.3.1.1.28A. The procedure in clause 6.3.2 described for CSI part 1 is also applicable for one report for CRI/RSRP, SSBRI/RSRP, CRI/SINR, or SSBRI/SINR reporting.

Table 6.3.2.1.2-3: Mapping order of CSI fields of one CSI report, CSI part 1

CSI report number	CSI fields
CSI report \#n CSI part 1	CRI as in Tables 6.3.1.1.2-3/4/6, if reported
	Rank Indicator as in Tables 6.3.1.1.2-3/4/5 or 6.3.2.1.2-8, if reported
	Wideband CQI for the first TB as in Tables 6.3.1.1.2-3/4/5 or 6.3.2.1.2-8, if reported
	Subband differential CQI for the first TB with increasing order of subband number as in Tables $6.3 .1 .1 .2-3 / 4 / 5$ or 6.3.2.1.2-8, if reported
	Indicator of the number of non-zero wideband amplitude coefficients M_{0} for layer 0 as in Table 6.3.1.1.2-5, if reported
	Indicator of the number of non-zero wideband amplitude coefficients M_{1} for layer 1 as in Table 6.3.1.1.2-5 (if the rank according to the reported RI is equal to one, this field is set to all zeros), if 2-layer PMI reporting is allowed according to the rank restriction in Clauses 5.2.2.2.3 and 5.2.2.2.4 [6, TS 38.214] and if reported
	Indicator of the total number of non-zero coefficients summed across all layers $K^{N Z}$ as in Table 6.3.2.1.2-8, if reported
Note: $\begin{aligned} & \text { Subbands } \\ & \text { continuous }\end{aligned}$	given CSI report n indicated by the higher layer parameter csi-ReportingBand are numbered the increasing order with the lowest subband of csi-ReportingBand as subband 0.

Table 6.3.2.1.2-4: Mapping order of CSI fields of one CSI report, CSI part 2 wideband

CSI report number	CSI fields
CSI report \#n CSI part 2 wideband	Wideband CQI for the second TB as in Tables 6.3.1.1.2-3/4/5, if present and reported
	Layer Indicator as in Tables 6.3.1.1.2-3/4/5, if reported
	PMI wideband information fields X_{1}, from left to right as in Tables 6.3.1.1.2-1/2 or 6.3.2.1.2-1/2, if reported
	PMI wideband information fields X_{2}, from left to right as in Tables 6.3.1.1.2-1/2 or 6.3.2.1.2-1/2, or codebook index for 2 antenna ports according to Clause 5.2.2.2.1 in [6, TS38.214], if pmi-FormatIndicator= widebandPMI and if reported

Table 6.3.2.1.2-5: Mapping order of CSI fields of one CSI report, CSI part 2 subband

CSI report \#n Part 2 subband	Subband differential CQI for the second TB of all even subbands with increasing order of subband number, as in Tables 6.3.1.1.2-3/4/5, if cqi-Format/ndicator=subbandCQI and if reported
	PMI subband information fields X_{2} of all even subbands with increasing order of subband number, from left to right as in Tables 6.3.1.1.2-1/2 or 6.3.2.1.2-1/2, or codebook index for 2 antenna ports according to Clause 5.2.2.2.1 in [6, TS38.214] of all even subbands with increasing order of subband number, if pmi-FormatIndicator= subbandPMI and if reported
	Subband differential CQI for the second TB of all odd subbands with increasing order of subband number, as in Tables 6.3.1.1.2-3/4/5, if cqi-Format/ndicator=subbandCQI and if reported
	PMI subband information fields X_{2} of all odd subbands with increasing order of subband number, from left to right as in Tables 6.3.1.1.2-1/2 or 6.3.2.1.2-1/2, or codebook index for 2 antenna ports according to Clause 5.2.2.2.1 in [6, TS38.214] of all odd subbands with increasing order of subband number, if pmi-FormatIndicator= subbandPMI and if reported
Note:	ds for given CSI report n indicated by the higher layer parameter csi-ReportingBand are numbere ously in the increasing order with the lowest subband of csi-ReportingBand as subband 0 .

Table 6.3.2.1.2-5A: Mapping order of CSI fields of one CSI report, CSI part 2 of codebookType=typellr16 or typell-PortSelection-r16

| CSI report
 number | CSI fields |
| :---: | :---: | :---: |
| CSI report \#n
 CSI part 2, group
 0 | PMI fields $\quad X_{1} \quad$, from left to right as in Tables 6.3.2.1.2-1A/2A, if reported |

Table 6.3.2.1.2-6: Mapping order of CSI reports to UCI bit sequence $a_{0}^{(1)}, a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, \ldots, a_{A^{(1)}-1}^{(1)}$,
with two-part CSI report(s)

UCI bit sequence	CSI report number
	CSI part 1 of CSI report \#1 as in Table 6.3.2.1.2-3 or Table
$a_{1}^{(1)}$	6.3.1.1.2-8 or Table 6.3.1.1.2-8A
$a_{2}^{(1)}$	CSI part 1 of CSI report \#2 as in Table 6.3.2.1.2-3 or Table
$a_{3}^{(1)}$	$6.3 .1 .1 .2-8$ or Table 6.3.1.1.2-8A
	\ldots
$a_{A^{(1)}-1}^{(1)}$	CSI part 1 of CSI report \#n as in Table 6.3.2.1.2-3 or Table
6.3.1.1.2-8 or Table 6.3.1.1.2-8A	

where CSI report \#1, CSI report \#2, ..., CSI report \#n in Table 6.3.2.1.2-6 correspond to the CSI reports in increasing order of CSI report priority values according to Clause 5.2 .5 of [6, TS38.214].

Table 6.3.2.1.2-7: Mapping order of CSI reports to UCI bit sequence $a_{0}^{(2)}, a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}, \ldots, a_{A^{(2)}-1}^{(2)}$, with two-part CSI report(s)

UCI bit sequence	CSI report number
$\begin{gathered} a_{0}^{(2)} \\ a_{1}^{(2)} \\ a_{2}^{(2)} \\ a_{3}^{(2)} \\ \vdots \\ a_{A^{(2)}-1}^{2} \end{gathered}$	CSI report \#1, CSI part 2 wideband, as in Table 6.3.2.1.2-4, or CSI part 2 with group 0, as in Table 6.3.2.1.2-5A, if CSI part 2 exists for CSI report \#1
	CSI report \#2, CSI part 2 wideband, as in Table 6.3.2.1.2-4, or CSI part 2 with group 0, as in Table 6.3.2.1.2-5A, if CSI part 2 exists for CSI report \#2
	CSI report \#n, CSI part 2 wideband, as in Table 6.3.2.1.2-4, or CSI part 2 with group 0, as in Table 6.3.2.1.2-5A, if CSI part 2 exists for CSI report \#n
	CSI report \#1, CSI part 2 subband, as in Table 6.3.2.1.2-5, or CSI part 2 with group 1 and 2, as in Table 6.3.2.1.2-5A, if CSI part 2 exists for CSI report \#1
	CSI report \#2, CSI part 2 subband, as in Table 6.3.2.1.2-5, or CSI part 2 with group 1 and 2, as in Table 6.3.2.1.2-5A, if CSI part 2 exists for CSI report \#2
	\ldots
	CSI report \#n, CSI part 2 subband, as in Table 6.3.2.1.2-5, or CSI part 2 with group 1 and 2, as in Table 6.3.2.1.2-5A, if CSI part 2 exists for CSI report \#n

where CSI report \#1, CSI report \#2, ..., CSI report \#n in Table 6.3.2.1.2-7 correspond to the CSI reports in increasing order of CSI report priority values according to Clause 5.2 .5 of [6, TS38.214].

The bitwidth for RI/CQI of codebookType = typeII-r16 or codebookType=typeII-PortSelection-r16 is provided in Table 6.3.2.1.2-8.

Table 6.3.2.1.2-8: RI and CQI of codebookType=typell-r16 or typell-PortSelection-r16

Field	Bitwidth
Rank Indicator	$\min \left(2,\left\lceil\log _{2} n_{R I}\right\rceil\right)$
Wide-band CQI	4
Subband differential CQI	2
Indicator of the total number of non-zero coefficients summed across all layers $K^{N Z}$	$\left.\Gamma \log _{2}\left(K_{0}\right)\right\rceil$ if max allowed rank is 1; $\left.\Gamma \log _{2}\left(2 K_{0}\right)\right\rceil$ otherwise

where $\quad n_{R I}$ is the number of allowed rank indicator values according to Clauses 5.2.2.2.5 and 5.2.2.2.6 [6, TS
38.214], $\quad K_{0}=\left\lceil 2 L\left\lceil p_{1} \times \frac{N_{3}}{R}\right\rceil \beta\right\rceil$, where $\quad p_{1}, \quad N_{3}, \quad R$, and $\quad \beta$ are given by Clause 5.2.2.2.5 and 5.2.2.2.6 in [6, TS 38.214]. The values of the rank indicator field are mapped to allowed rank indicator values with increasing order, where ' 0 ' is mapped to the smallest allowed rank indicator value.

6.3.2.1.3

CG-UCI
For CG-UCI bits transmitted on a CG PUSCH, the CG-UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$ is determined as follows:

- set $a_{i}=\tilde{o}_{i}^{C G-U C I}$ for $i=0,1, \ldots, O^{C G-U C I}-1$ and $A=O^{C G-U C I}$, where the CG-UCI bit sequence $\tilde{o}_{0}^{C G-U C I}, \tilde{o}_{1}^{C G-U C I}, \ldots, \tilde{o}_{O^{C G-U C I}-1}^{C G-U C I}$ is given by Table 6.3.2.1.3-1, mapped in the order from upper part to lower part.

Table 6.3.2.1.3-1: Mapping order of CG-UCI fields

Field	Bitwidth
HARQ process number	4
Redundancy version	2
New data indicator	1
Channel Occupancy Time (COT) sharing information	$\left\lceil\log _{2} C\right\rceil$ if both higher layer parameter ul-toDL-COT- SharingED-Threshold and higher layer parameter cg-COT- SharingList are configured, where C is the number of combinations configured in cg-COT-SharingList; 1 if higher layer parameter ul-toDL-COT-SharingED-Threshold is not configured and higher layer parameter cg -COT-SharingOffset is configured; 0 otherwise; If a UE indicates COT sharing other than "no sharing" in a CG PUSCH within the UE's initiated COT, the UE should provide consistent COT sharing information in all the subsequent CG PUSCHs, if any, occurring within the same UE's initiated COT such that the same DL starting point and duration are maintained.

6.3.2.1.4 HARQ-ACK and CG-UCI

When higher layer parameter cg-UCI-Multiplexing is configured, the UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$ is determined as follows, where $A=O^{C G-U C I}+O^{A C K}$.

- The CG-UCI bits are mapped to the UCI bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{O^{\text {CG-UCI }}-1}$, where $a_{i}=\tilde{o}_{i}^{C G-U C I}$ for $i=0,1, \ldots, O^{C G-U C I}-1$. The CG-UCI bit sequence $\tilde{o}_{0}^{C G-U C I}, \tilde{o}_{1}^{C G-U C I}, \ldots, \tilde{o}_{O^{C G-U C I}-1}^{C G-U C I}$ is given by Table 6.3.2.1.3-1 mapped in the order from upper part to lower part, and $O^{C G-U C I}$ is number of CG-UCI bits;
- The HARQ-ACK bits are mapped to the UCI bit sequence $a_{O^{C G-U C I}}, a_{O^{C G-U C I}+1}, \ldots, a_{O^{C G-U C I}+O^{A C K}-1}$, where $a_{i+O^{C G-U C I}}=\widetilde{o}_{i}^{A C K}$ for $i=0,1, \ldots, O^{A C K}-1$. The HARQ-ACK bit sequence $\tilde{o}_{0}^{A C K}, \widetilde{o}_{1}^{A C K}, \ldots, \widetilde{o}_{O^{A C K}-1}^{A C K}$ is given by Clause 9.1 of [5, TS38.213], and $O^{A C K}$ is number of HARQ-ACK bits.

6.3.2.2 Code block segmentation and CRC attachment

Denote the bits of the payload by $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$, where A is the payload size. The procedure in 6.3.2.2.1 applies for $A \geq 12$ and the procedure in Clause 6.3.2.2.2 applies for $A \leq 11$.

6.3.2.2.1 UCI encoded by Polar code

Code block segmentation and CRC attachment is performed according to Clause 6.3.1.2.1.

6.3.2.2.2 UCI encoded by channel coding of small block lengths

The procedure in Clause 6.3.1.2.2 applies.

6.3.2.3 Channel coding of UCI

6.3.2.3.1 UCI encoded by Polar code

Channel coding is performed according to Clause 6.3.1.3.1, except that the rate matching output sequence length $\quad E_{r}$ is given in Clause 6.3.2.4.1.

6.3.2.3.2 UCI encoded by channel coding of small block lengths

Information bits are delivered to the channel coding block. They are denoted by $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$, where K is the number of bits.

The information bits are encoded according to Clause 5.3.3.
After encoding the bits are denoted by $d_{0}, d_{1}, d_{2}, d_{3}, \ldots, d_{N-1}$, where N is the number of coded bits.

6.3.2.4 Rate matching

6.3.2.4.1 UCI encoded by Polar code

6.3.2.4.1.1HARQ-ACK

For HARQ-ACK transmission on PUSCH not using repetition type B with UL-SCH, the number of coded modulation symbols per layer for HARQ-ACK transmission, denoted as $Q_{A C K}^{\prime}$, is determined as follows:

$$
Q_{\mathrm{ACK}}^{\prime}=\min \left\{\left[\frac{\left(O_{\mathrm{ACK}}+L_{\mathrm{ACK}}\right) \cdot \beta_{\mathrm{offset}}^{\mathrm{PUSCH}} \cdot \sum_{l=0}^{N_{\mathrm{symb}, \mathrm{all}}^{\mathrm{PUSH}}-1} M_{\mathrm{sc}}^{\mathrm{UCI}}(l)}{\sum_{r=0}^{C_{\mathrm{UL}-\mathrm{SCH}}-1} K_{r}}\right\rceil,\left\lceil\alpha \cdot \sum_{l=l_{0}}^{N_{\mathrm{symb}, \mathrm{all}}-1} M_{\mathrm{sc}}^{\mathrm{PUSC}}(l)\right\rangle\right\}
$$

where

- $0_{\text {ACK }}$ is the number of HARQ-ACK bits;
- if $O_{\text {ACK }} 360, L_{\text {ACK }}=11$; otherwise $L_{\text {ACK }}$ is the number of CRC bits for HARQ-ACK determined according to Clause 6.3.1.2.1;
$-\quad \beta_{\text {offset }}^{\mathrm{PUSCH}}=\beta_{\text {offset }}^{\mathrm{HARQ}-\mathrm{ACK}}$;
- $C_{\mathrm{UL}-\mathrm{SCH}}$ is the number of code blocks for UL-SCH of the PUSCH transmission;
- if the DCI format scheduling the PUSCH transmission includes a CBGTI field indicating that the UE shall not transmit the r-th code block, $K_{r}=0$; otherwise, K_{r} is the r-th code block size for UL-SCH of the PUSCH transmission;
- $\quad M_{\mathrm{sc}}^{\mathrm{PUSCH}} \quad$ is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$ is the number of subcarriers in OFDM symbol $\quad l$ that carries PTRS, in the PUSCH transmission;
- $\quad M_{\mathrm{sc}}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\text {PUSCH }}-1$, in the PUSCH transmission and $N_{\text {symb,all }}^{\text {PUSCH }}$ is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH, ${ }^{M_{\mathrm{sc}}^{\mathrm{UCI}}}(l)=0$;
- for any OFDM symbol that does not carry DMRS of the PUSCH, $M_{\mathrm{sc}}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$;
- $\quad \alpha$ is configured by higher layer parameter scaling;
- $\quad l_{0}$ is the symbol index of the first OFDM symbol that does not carry DMRS of the PUSCH, after the first DMRS symbol(s), in the PUSCH transmission.

For HARQ-ACK transmission on an actual repetition of a PUSCH with repetition Type B with UL-SCH, the number of coded modulation symbols per layer for HARQ-ACK transmission, denoted as $Q_{A C K}^{\prime}$, is determined as follows:
where

- $\quad M_{\text {sc,nominal }}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \cdots, N_{\text {symb,nominal }}^{\text {PUSCH }}-1$, in the PUSCH transmission assuming a nominal repetition without segmentation, and $\quad N_{\text {symb,nominal }}^{\text {PUSCH }} \quad$ is the total number of OFDM symbols in a nominal repetition of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH assuming a nominal repetition without segmentation, $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{UCI}}(l)=0 \quad ;$
- for any OFDM symbol that does not carry DMRS of the PUSCH assuming a nominal repetition without segmentation, $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}, \text { nominal }}^{\mathrm{PT}-\text { SS }}(l) \quad$ where $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{PT} \text { RS }}(l) \quad$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission assuming a nominal repetition without segmentation;
- $\quad M_{\text {sc,actual }}^{\text {UCI }}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \cdots, N_{\text {symb,actual }}^{\text {PUSCH }}-1$, in the actual repetition of the PUSCH transmission, and $N_{\text {symb,actual }}^{\text {PUSCH }}$ is the total number of OFDM symbols in the actual repetition of the PUSCH transmission, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the actual repetition of the PUSCH transmission, $M_{\mathrm{sc}, \text { actual }}^{\mathrm{UCI}}(I)=0$;
- for any OFDM symbol that does not carry DMRS of the actual repetition of the PUSCH transmission, $M_{\mathrm{sc}, \text { actual }}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}, \text { actual }}^{\text {PT-RS }}(l) \quad$ where $\quad M_{\mathrm{sc}, \text { actual }}^{\text {PT-RS }}(l)$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the actual repetition of the PUSCH transmission;
- and all the other notations in the formula are defined the same as for PUSCH not using repetition type B.

For HARQ-ACK transmission on PUSCH without UL-SCH, the number of coded modulation symbols per layer for HARQ-ACK transmission, denoted as $Q_{\text {ACK }}^{\prime}$, is determined as follows:

where

- $O_{\text {ACK }}$ is the number of HARQ-ACK bits;
- if $O_{\text {ACK }}$? $360, L_{\text {ACK }}=11$; otherwise $L_{\text {ACK }}$ is the number of CRC bits for HARQ-ACK defined according to Clause 6.3.1.2.1;;
$-\quad \beta_{\text {offset }}^{\text {PUSCH }}=\beta_{\text {offset }}^{\text {HARQ-ACK }} ;$
- $\quad M_{\mathrm{sc}}^{\mathrm{PUSCH}} \quad$ is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $\quad M_{\mathrm{sc}}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\text {PUSCH }}-1$, in the PUSCH transmission and $N_{\text {symb,all }}^{\text {PUSCH }}$ is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH, ${ }^{M_{\mathrm{sc}}^{\mathrm{UCI}}}(l)=0$;
- for any OFDM symbol that does not carry DMRS of the PUSCH, $M_{\mathrm{sc}}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$;
- I_{0} is the symbol index of the first OFDM symbol that does not carry DMRS of the PUSCH, after the first DMRS symbol(s), in the PUSCH transmission;
- $\quad R$ is the code rate of the PUSCH, determined according to Clause 6.1.4.1 of [6, TS38.214];
- Q_{m} is the modulation order of the PUSCH;
- $\quad \alpha$ is configured by higher layer parameter scaling.

The input bit sequence to rate matching is $d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left(N_{r}-1\right)}$ where r is the code block number, and N_{r} is the number of coded bits in code block number r.

Rate matching is performed according to Clause 5.4 .1 by setting $\quad I_{B I L}=1$ and the rate matching output sequence length to $E_{r}=\left\lfloor E_{\mathrm{UCI}} / C_{\mathrm{UCI}}\right\rfloor$, where

- $\quad C_{\mathrm{UCI}}$ is the number of code blocks for UCI determined according to Clause 5.2.1;
- $\quad N_{L} \quad$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH;
- $E_{\mathrm{UCI}}=N_{L} \cdot Q^{\prime}{ }_{\mathrm{ACK}} \cdot Q_{m}$.

The output bit sequence after rate matching is denoted as $f_{r 0}, f_{r 1}, f_{r 2}, \ldots, f_{r\left(E_{r}-1\right)}$ where E_{r} is the length of rate matching output sequence in code block number r.

6.3.2.4.1.2CSI part 1

For CSI part 1 transmission on PUSCH not using repetition type B with UL-SCH, the number of coded modulation symbols per layer for CSI part 1 transmission, denoted as $Q_{\text {CSI-part1 }}$, is determined as follows:
where

- $O_{\text {CSI-1 }}$ is the number of bits for CSI part 1;
- if $O_{\text {CSI-1 }} 360, L_{\text {CSI-1 }}=11$; otherwise ${ }^{L_{\text {CSI-1 }}}$ is the number of CRC bits for CSI part 1 determined according to Clause 6.3.1.2.1;
$-\quad \beta_{\text {offset }}^{\text {PUSCH }}=\beta_{\text {offset }}^{\text {CSI-part1 }}$;
- $C_{\mathrm{UL}-\mathrm{SCH}}$ is the number of code blocks for UL-SCH of the PUSCH transmission;
- if the DCI format scheduling the PUSCH transmission includes a CBGTI field indicating that the UE shall not transmit the $\quad r$-th code block, $K_{r}=0$; otherwise, K_{r} is the r-th code block size for UL-SCH of the PUSCH transmission;
- $\quad M_{\mathrm{sc}}^{\mathrm{PUSCH}}$ is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $\quad Q_{A C K / C G-U C I}^{\prime}=Q_{A C K}^{\prime} \quad$ if HARQ-ACK is present for transmission on the same PUSCH with UL-SCH and without CG-UCI, where $\quad Q_{A C K}^{\prime} \quad$ is the number of coded modulation symbols per layer for HARQ-ACK transmitted on the PUSCH as defined in clause 6.3.2.4.1.1 if number of HARQ-ACK information bits is more

$$
Q_{\mathrm{ACK}}^{\prime}=\prod_{l=0}^{\substack{N_{\mathrm{symg}}^{\mathrm{pulh}}-1}} \bar{M}_{\mathrm{sc}, \mathrm{rvd}}^{\mathrm{ACK}}(l)
$$ if the number of HARQ-ACK information bits is no more than 2 bits, than 2, and where $\bar{M}_{\text {sc, rvd }}^{\text {ACK }}(l)$ is the number of reserved resource elements for potential HARQ-ACK transmission in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\text {PUSCH }}-1$, in the PUSCH transmission, defined in Clause 6.2.7; or

- $Q_{A C K / C G-U C I}^{\prime}=Q_{A C K}^{\prime}$ if both HARQ-ACK and CG-UCI are present on the same PUSCH with UL-SCH, where $Q_{A C K}^{\prime}$ is the number of coded modulation symbols per layer for HARQ-ACK and CG-UCI transmitted on the PUSCH as defined in clause 6.3.2.4.1.5; or
- $Q_{A C K / C G-U C I}^{\prime}=Q_{C G-U C I}^{\prime} \quad$ if CG-UCI is present on the same PUSCH with UL-SCH and without HARQACK, where $Q_{C G-U C I}^{\prime}$ is the number of coded modulation symbols per layer for CG-UCI transmitted on the PUSCH as defined in clause 6.3.2.4.1.4;
- $\quad M_{\text {sc }}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\text {PUSCH }}-1$, in the PUSCH transmission and $N_{\text {symb,all }}^{\text {PUSCH }}$ is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH, ${ }^{M_{\mathrm{sc}}^{\mathrm{UCI}}}(l)=0$;
- for any OFDM symbol that does not carry DMRS of the PUSCH, $M_{\mathrm{sc}}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$;
- $\quad \alpha$ is configured by higher layer parameter scaling.

For CSI part 1 transmission on an actual repetition of a PUSCH with repetition Type B with UL-SCH, the number of coded modulation symbols per layer for CSI part 1 transmission, denoted as $Q_{\text {CSI-part } 1}^{\prime}$, is determined as follows:
where

- $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{UCI}}(l) \quad$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \cdots, N_{\text {symb,nominal }}^{\text {PUSC }}-1$, in the PUSCH transmission assuming a nominal repetition without segmentation, and $\quad N_{\text {symb,nominal }}^{\mathrm{PUSCH}} \quad$ is the total number of OFDM symbols in a nominal repetition of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH assuming a nominal repetition without segmentation, $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{UCI}}(l)=0 \quad ;$
- for any OFDM symbol that does not carry DMRS of the PUSCH assuming a nominal repetition without segmentation, $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}, \text { nominal }}^{\mathrm{PT}-\text { SS }}(l) \quad$ where $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{PT} \text { RS }}(l) \quad$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission assuming a nominal repetition without segmentation;
- $\quad M_{\mathrm{sc}, \text { actual }}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \cdots, N_{\text {symb,actual }}^{\text {PUSC }}-1$, in the actual repetition of the PUSCH transmission, and $N_{\text {symb,actual }}^{\text {PUSCH }}$ is the total number of OFDM symbols in the actual repetition of the PUSCH transmission, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the actual repetition of the PUSCH transmission,

$$
M_{\mathrm{sc}, \mathrm{actual}}^{\mathrm{UCl}}(I)=0
$$

- for any OFDM symbol that does not carry DMRS of the actual repetition of the PUSCH transmission, $M_{\mathrm{sc}, \text { actual }}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}, \text { actual }}^{\mathrm{PT}-\mathrm{RS}}(l) \quad$ where $\quad M_{\mathrm{sc}, \text { actual }}^{\mathrm{PTTRS}}(l) \quad$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the actual repetition of the PUSCH transmission;
- and all the other notations in the formula are defined the same as for PUSCH not using repetition type B.

For CSI part 1 transmission on PUSCH without UL-SCH, the number of coded modulation symbols per layer for CSI part 1 transmission, denoted as $Q_{\text {CSI-part1 }}^{\prime}$, is determined as follows:
if there is CSI part 2 to be transmitted on the PUSCH,
else
end if
where
$O_{\text {CSI-1 }}$ is the number of bits for CSI part 1;

- if $O_{\mathrm{CSI}-1}$, $L_{\mathrm{CSI}-1}=11$; otherwise ${ }^{L_{\mathrm{CSI}-1}}$ is the number of CRC bits for CSI part 1 determined according to Clause 6.3.1.2.1;
$-\quad \beta_{\text {offset }}^{\mathrm{PUSCH}}=\beta_{\text {offset }}^{\mathrm{CSI}-p a r t 1}$;
- $\quad M_{\mathrm{sc}}^{\mathrm{PUSCH}} \quad$ is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- Q^{\prime} ACK is the number of coded modulation symbols per layer for HARQ-ACK transmitted on the PUSCH if

$$
Q_{\mathrm{ACK}}^{\prime}=\varlimsup_{l=0}^{\substack{\mathrm{syym} \\ \text { PUCH }}} \bar{M}_{\mathrm{sC}, \text { rvd }}^{\mathrm{ACK}}(l) \quad \text { if the number of }
$$ number of HARQ-ACK information bits is more than 2, and

$$
\bar{M}_{\mathrm{sc}, \mathrm{rvd}}^{\mathrm{ACK}}(l)
$$ HARQ-ACK information bits is no more than 2 bits, where $\bar{M}_{\text {sc, rvd }}^{\text {ACK }}(l)$ is the number of reserved resource

elements for potential HARQ-ACK transmission in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\text {PUSC }}-1$, in the PUSCH transmission, defined in Clause 6.2.7;

- $\quad M_{\mathrm{sc}}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\text {PUSCH }}-1$, in the PUSCH transmission and $N_{\text {symb,all }}^{\text {PUSCH }}$ is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH, ${ }^{M_{\mathrm{sc}}^{\mathrm{UCI}}}(l)=0$;
- for any OFDM symbol that does not carry DMRS of the PUSCH, $M_{\mathrm{sc}}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$;
- $\quad R$ is the code rate of the PUSCH, determined according to Clause 6.1.4.1 of [6, TS38.214];
- $\quad Q_{m}$ is the modulation order of the PUSCH.

The input bit sequence to rate matching is

$$
d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left(N_{r}-1\right)}
$$

where $\quad r$ is the code block number, and N_{r} is the number of coded bits in code block number r.

Rate matching is performed according to Clause 5.4 .1 by setting $I_{B I L}=1$ and the rate matching output sequence length to $E_{r}=\left\lfloor E_{\mathrm{UCI}} / C_{\mathrm{UCI}}\right\rfloor$, where

- $\quad C_{\mathrm{UCI}}$ is the number of code blocks for UCI determined according to Clause 5.2.1;
- $\quad N_{L} \quad$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH;
- $E_{\mathrm{UCI}}=N_{L} \cdot Q^{\prime}{ }_{\mathrm{CSI}, 1} \cdot Q_{m}$.

The output bit sequence after rate matching is denoted as $f_{r 0}, f_{r 1}, f_{r 2}, \ldots, f_{r\left(E_{r}-1\right)}$ where E_{r} is the length of rate matching output sequence in code block number r.

6.3.2.4.1.3CSI part 2

For CSI part 2 transmission on PUSCH not using repetition type B with UL-SCH, the number of coded modulation symbols per layer for CSI part 2 transmission, denoted as $\quad Q_{\text {CSI-part2 }}^{\prime}$, is determined as follows:
where

- $O_{\text {CSI-2 }}$ is the number of bits for CSI part 2;
- if $O_{\text {CSI-2 }}$, $L_{\text {CSI-2 }}=11$; otherwise $L_{\text {CSI-2 }}$ is the number of CRC bits for CSI part 2 determined according to Clause 6.3.1.2.1;
$-\quad \beta_{\text {offset }}^{\mathrm{PUSCH}}=\beta_{\text {offset }}^{\mathrm{CSI}-p a r t 2}$;
- $C_{\mathrm{UL}-\mathrm{SCH}}$ is the number of code blocks for UL-SCH of the PUSCH transmission;
- if the DCI format scheduling the PUSCH transmission includes a CBGTI field indicating that the UE shall not transmit the r-th code block, $K_{r}=0$; otherwise, K_{r} is the r-th code block size for UL-SCH of the PUSCH transmission;
- $\quad M_{\mathrm{sc}}^{\mathrm{PUSCH}} \quad$ is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$ is the number of subcarriers in OFDM symbol $\quad l$ that carries PTRS, in the PUSCH transmission;
- $\quad Q_{A C K / C G-U C I}^{\prime}=Q_{A C K}^{\prime} \quad$ if HARQ-ACK is present for transmission on the same PUSCH with UL-SCH and without CG-UCI, where $\quad Q_{A C K}^{\prime} \quad$ is the number of coded modulation symbols per layer for HARQ-ACK transmitted on the PUSCH as defined in clause 6.3.2.4.1.1 if number of HARQ-ACK information bits is more than 2, and $Q^{\prime}{ }_{\text {ACK }}=0 \quad$ if the number of HARQ-ACK information bits is 1 or 2 bits; or
- $\quad Q_{A C K / C G-U C I}^{\prime}=Q_{A C K}^{\prime} \quad$ if both HARQ-ACK and CG-UCI are present on the same PUSCH with UL-SCH, where $Q_{A C K}^{\prime}$ is the number of coded modulation symbols per layer for HARQ-ACK and CG-UCI transmitted on the PUSCH as defined in clause 6.3.2.4.1.5; or
- $\quad Q_{A C K / C G-U C I}^{\prime}=Q_{C G-U C I}^{\prime} \quad$ if CG-UCI is present on the same PUSCH with UL-SCH and without HARQACK, where $Q_{C G-U C I}^{\prime}$ is the number of coded modulation symbols per layer for CG-UCI transmitted on the PUSCH as defined in clause 6.3.2.4.1.4;
- $Q^{\prime}{ }_{\text {CSI-1 }}$ is the number of coded modulation symbols per layer for CSI part 1 transmitted on the PUSCH;
- $\quad M_{\mathrm{sc}}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\text {PUSCH }}-1$, in the PUSCH transmission and $N_{\text {symb,all }}^{\text {PUSCH }}$ is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH, ${ }^{M_{\mathrm{sc}}^{\mathrm{UCI}}}(l)=0$;
- for any OFDM symbol that does not carry DMRS of the PUSCH, $M_{\mathrm{sc}}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$.
- $\quad \alpha$ is configured by higher layer parameter scaling.

For CSI part 2 transmission on an actual repetition of a PUSCH with repetition Type B with UL-SCH, the number of coded modulation symbols per layer for CSI part 2 transmission, denoted as $Q_{\text {CSI-part } 2}^{\prime}$, is determined as follows:
where

- $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \cdots, N_{\text {symb,nominal }}^{\text {PUSCH }}-1$, in the PUSCH transmission assuming a nominal repetition without segmentation, and $\quad N_{\text {symb,nominal }}^{\text {PUSCH }}$ is the total number of OFDM symbols in a nominal repetition of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH assuming a nominal repetition without segmentation, $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{UCI}}(l)=0 \quad$;
- for any OFDM symbol that does not carry DMRS of the PUSCH assuming a nominal repetition without segmentation, $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}, \text { nominal }}^{\mathrm{PT}-\text { SS }}(l) \quad$ where $\quad M_{\mathrm{sc}, \text { nominal }}^{\mathrm{PT} \text { RS }}(l) \quad$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission assuming a nominal repetition without segmentation;
- $\quad M_{\mathrm{sc}, \text { actual }}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \cdots, N_{\text {symb,actual }}^{\text {PUSCH }}-1 \quad$, in the actual repetition of the PUSCH transmission, and $N_{\text {symb,actual }}^{\text {PUSCH }}$ is the total number of OFDM symbols in the actual repetition of the PUSCH transmission, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the actual repetition of the PUSCH transmission,

$$
M_{\mathrm{sc}, \mathrm{actual}}^{\mathrm{UCI}}(I)=0 ;
$$

- for any OFDM symbol that does not carry DMRS of the actual repetition of the PUSCH transmission, $M_{\mathrm{sc}, \text { actual }}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}, \text { actual }}^{\mathrm{PT}-\mathrm{RS}}(l) \quad$ where $\quad M_{\mathrm{sc}, \text { actual }}^{\mathrm{PT}}(l) \quad$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the actual repetition of the PUSCH transmission;
- and all the other notations in the formula are defined the same as for PUSCH not using repetition type B.

For CSI part 2 transmission on PUSCH without UL-SCH, the number of coded modulation symbols per layer for CSI part 2 transmission, denoted as $Q_{\text {CSI-part2 }}^{\prime}$, is determined as follows:

where

- $\quad M_{\mathrm{sc}}^{\mathrm{PUSCH}} \quad$ is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- Q^{\prime} ACK is the number of coded modulation symbols per layer for HARQ-ACK transmitted on the PUSCH if number of HARQ-ACK information bits is more than 2, and $Q^{\prime}{ }_{\text {ACK }}=0$ if the number of HARQ-ACK information bits is 1 or 2 bits;
- Q^{\prime} CSI-1 is the number of coded modulation symbols per layer for CSI part 1 transmitted on the PUSCH;
- $\quad M_{\mathrm{sc}}^{\mathrm{UCI}}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \ldots, N_{\text {symb,all }}^{\text {PUSCH }}-1$, in the PUSCH transmission and $N_{\text {symb,all }}^{\text {PUSCH }}$ is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH, ${ }^{M_{\mathrm{sc}}^{\mathrm{UCI}}}(l)=0$;
- for any OFDM symbol that does not carry DMRS of the PUSCH, $M_{\mathrm{sc}}^{\mathrm{UCI}}(l)=M_{\mathrm{sc}}^{\mathrm{PUSCH}}-M_{\mathrm{sc}}^{\mathrm{PT}-\mathrm{RS}}(l)$.

The input bit sequence to rate matching is
$d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left(N_{r}-1\right)} \quad$ where $\quad r \quad$ is the code block number, and N_{r} is the number of coded bits in code block number r.

Rate matching is performed according to Clause 5.4 .1 by setting $\quad I_{B L L}=1$ and the rate matching output sequence length to $E_{r}=\left\langle E_{\mathrm{UCI}} / C_{\mathrm{UCI}}\right\rfloor$, where

- $\quad C_{\mathrm{UCI}}$ is the number of code blocks for UCI determined according to Clause 5.2.1;
- $\quad N_{L} \quad$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH;
- $E_{\mathrm{UCI}}=N_{L} \cdot Q^{\prime}{ }_{\mathrm{CSI}, 2} \cdot Q_{m}$.

The output bit sequence after rate matching is denoted as $f_{r 0}, f_{r 1}, f_{r 2}, \ldots, f_{r\left(E_{r}-1\right)}$ where E_{r} is the length of rate matching output sequence in code block number r.

6.3.2.4.1.4CG-UCI

For CG-UCI transmission on PUSCH with UL-SCH, the number of coded modulation symbols per layer for CG-UCI transmission, denoted as $Q_{C G-U C I}^{\prime}$, is determined as follows:
where

- $O_{C G-U C I}$ is the number of CG-UCI bits;
- $\quad L_{\text {CG-UCI }}$ is the number of CRC bits for CG-UCI determined according to Clause 6.3.1.2.1;
- $\quad \beta_{\text {offset }}^{\text {PUSH }}=\beta_{\text {offset }}^{\mathrm{CG}-U C I}$;
- $C_{U L-S C H}$ is the number of code blocks for UL-SCH of the PUSCH transmission;
- $\quad K_{r}$ is the r-th code block size for UL-SCH of the PUSCH transmission;
- $\quad M_{s c}^{\text {PUSCH }} \quad$ is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $\quad M_{s c}^{P T-R S}(l) \quad$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $\quad M_{s c}^{U C I}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \ldots, \quad N_{\text {symb, all }}^{\text {PUSCH }}-1$, in the PUSCH transmission and $N_{\text {symb, all }}^{\text {PUSH }}$ is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH, $\quad M_{s c}^{U C I}(I)=0$;
- for any OFDM symbol that does not carry DMRS of the PUSCH, $\quad M_{s c}^{U C I}(I)=M_{s c}^{P U S C H}-M_{s c}^{P T-R S}(I)$;
- $\quad \alpha$ is configured by higher layer parameter scaling;
- l_{0} is the symbol index of the first OFDM symbol that does not carry DMRS of the PUSCH, after the first DMRS symbol(s), in the PUSCH transmission.

The input bit sequence to rate matching is $d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left|N_{r}-1\right|}$ where r is the code block number, and N_{r} is the number of coded bits in code block number r.

Rate matching is performed according to Clause 5.4 .1 by setting $I_{B L L}=1$ and the rate matching output sequence length to $E_{r}=\left\lfloor E_{U C I} / C_{U C I}\right\rfloor$, where

- $C_{\text {UCI }}$ is the number of code blocks for UCI determined according to Clause 5.2.1;
- $\quad N_{L}$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH;
- $E_{U C I}=N_{L} \cdot Q_{C G-U C I}^{\prime} \cdot Q_{m}$.

The output bit sequence after rate matching is denoted as $f_{r 0}, f_{r 1}, f_{r 2}, \ldots, f_{\left.r \mid E_{-}-1\right)}$ where $\quad E_{r}$ is the length of rate matching output sequence in code block number r.

6.3.2.4.1.5HARQ-ACK and CG-UCI

For HARQ-ACK and CG-UCI transmission on PUSCH with UL-SCH, the number of coded modulation symbols per layer for HARQ-ACK and CG-UCI transmission, denoted as $Q_{A C K}^{\prime}$, is determined as follows:
where

- $O_{A C K}$ is the number of HARQ-ACK bits;
- $O_{\text {CG-UCI }}$ is the number of CG-UCI bits;
- if $O_{A C K}+O_{C G-U C I}>360, L_{A C K}=11$; otherwise $L_{A C K}$ is the number of CRC bits for HARQ-ACK and CG-UCI determined according to Clause 6.3.1.2.1;
- $\quad \beta_{\text {offset }}^{\text {PUSH }}=\beta_{\text {offset }}^{\text {HARQ-ACK }}$;
- $C_{U L-S C H}$ is the number of code blocks for UL-SCH of the PUSCH transmission;
- $\quad K_{r}$ is the r-th code block size for UL-SCH of the PUSCH transmission;
- $M_{s c}^{\text {PUSCH }}$ is the scheduled bandwidth of the PUSCH transmission, expressed as a number of subcarriers;
- $\quad M_{s c}^{P T-R S}(l) \quad$ is the number of subcarriers in OFDM symbol l that carries PTRS, in the PUSCH transmission;
- $\quad M_{s c}^{U C I}(l)$ is the number of resource elements that can be used for transmission of UCI in OFDM symbol l, for $l=0,1,2, \ldots, \quad N_{\text {symb, all }}^{\text {PUSCH }}-1$, in the PUSCH transmission and $N_{\text {symb, all }}^{\text {PUSCH }}$ is the total number of OFDM symbols of the PUSCH, including all OFDM symbols used for DMRS;
- for any OFDM symbol that carries DMRS of the PUSCH, $\quad M_{s c}^{U C I}(l)=0$;
- for any OFDM symbol that does not carry DMRS of the PUSCH, $\quad M_{\mathrm{sc}}^{U C I}(l)=M_{\mathrm{sc}}^{P U S C H}-M_{s c}^{P T-R S}(l)$;
- $\quad \alpha$ is configured by higher layer parameter scaling;
- l_{0} is the symbol index of the first OFDM symbol that does not carry DMRS of the PUSCH, after the first DMRS symbol(s), in the PUSCH transmission.

The input bit sequence to rate matching is $d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left|N_{r}-1\right|}$ where r is the code block number, and N_{r} is the number of coded bits in code block number r.

Rate matching is performed according to Clause 5.4 .1 by setting $I_{B L L}=1$ and the rate matching output sequence length to $E_{r}=\left\lfloor E_{U C I} / C_{U C I}\right\rfloor$, where

- $C_{U C I}$ is the number of code blocks for UCI determined according to Clause 5.2.1;
- $\quad N_{L}$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH;
- $E_{U C I}=N_{L} \cdot Q_{A C K}^{\prime} \cdot Q_{m}$.

The output bit sequence after rate matching is denoted as $f_{r 0}, f_{r 1}, f_{r 2}, \ldots, f_{r\left|E_{r}-1\right|}$ where $\quad E_{r}$ is the length of rate matching output sequence in code block number r.

6.3.2.4.2 UCI encoded by channel coding of small block lengths

6.3.2.4.2.1HARQ-ACK

For HARQ-ACK transmission on PUSCH, the number of coded modulation symbols per layer for HARQ-ACK transmission, denoted as $Q_{A C K}^{\prime}$, is determined according to Clause 6.3.2.4.1.1, by setting the number of CRC bits $L=0$

The input bit sequence to rate matching is $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$.
Rate matching is performed according to Clause 5.4.3, by setting the rate matching output sequence length $E=N_{L} \cdot Q^{\prime}{ }_{\text {ACK }} \cdot Q_{m}$, where

- $\quad N_{L}$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH.

The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$.
6.3.2.4.2.2CSI part 1

For CSI part 1 transmission on PUSCH, the number of coded modulation symbols per layer for CSI part 1 transmission, denoted as $Q_{\text {CSI,1 }}^{\prime} \quad$, is determined according to Clause 6.3.2.4.1.2, by setting the number of CRC bits $\quad L=0$.

Rate matching is performed according to Clause 5.4.3, by setting the rate matching output sequence length
$E=N_{L} \cdot Q^{\prime}{ }_{\mathrm{CSI}, 1} \cdot Q_{m}$, where

- $\quad N_{L} \quad$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH.

The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$.
6.3.2.4.2.3CSI part 2

For CSI part 2 transmission on PUSCH, the number of coded modulation symbols per layer for CSI part 2 transmission, denoted as $Q_{C S I, 2}^{\prime}$, is determined according to Clause 6.3.2.4.1.3, by setting the number of CRC bits $L=0$.

Rate matching is performed according to Clause 5.4.3, by setting the rate matching output sequence length $E=N_{L} \cdot Q^{\prime}{ }_{\mathrm{CSI}, 2} \cdot Q_{m}$, where

- $\quad N_{L}$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH.

The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$.

6.3.2.4.2.4CG-UCI

For CG-UCI transmission on PUSCH, the number of coded modulation symbols per layer for CG-UCI transmission, denoted as $Q_{C G-U C I}^{\prime}$, is determined according to Clause 6.3.2.4.1.4, by setting the number of CRC bits $L_{C G-U C I}=0$.

The input bit sequence to rate matching is

$$
d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}
$$

Rate matching is performed according to Clause 5.4.3, by setting the rate matching output sequence length
$E=N_{L} \cdot Q_{C G-U C I}^{\prime} \cdot Q_{m}$, where

- $\quad N_{L}$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH.

The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$.

6.3.2.4.2.5HARQ-ACK and CG-UCI

For HARQ-ACK and CG-UCI transmission on PUSCH, the number of coded modulation symbols per layer for HARQACK and CG-UCI transmission, denoted as $Q_{A C K}^{\prime}$, is determined according to Clause 6.3.2.4.1.5, by setting the number of CRC bits $\quad L_{A C K}=0$.

The input bit sequence to rate matching is $\quad d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$.
Rate matching is performed according to Clause 5.4.3, by setting the rate matching output sequence length $E=N_{L} \cdot Q_{A C K}^{\prime} \cdot Q_{m}$, where

- $\quad N_{L}$ is the number of transmission layers of the PUSCH;
- Q_{m} is the modulation order of the PUSCH.

The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$.

6.3.2.5 Code block concatenation

Code block concatenation is performed according to Clause 6.3.1.5, except that the values of $\quad E_{\text {UCI }} \quad$ and $\quad C_{\text {UCI }}$ given in Clause 6.3.2.4.1.

6.3.2.6 Multiplexing of coded UCI bits to PUSCH

The coded UCI bits are multiplexed onto PUSCH according to the procedures in Clause 6.2.7.

7 Downlink transport channels and control information
 7.1 Broadcast channel

Data arrives to the coding unit in the form of a maximum of one transport block every 80ms. The following coding steps can be identified:

- Payload generation
- Scrambling
- Transport block CRC attachment
- Channel coding
- Rate matching

7.1.1 PBCH payload generation

Denote the bits in a transport block delivered to layer 1 by $\bar{a}_{0}, \bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}, \ldots, \bar{a}_{\bar{A}-1}$, where \bar{A} is the payload size generated by higher layers. The lowest order information bit \bar{a}_{0} is mapped to the most significant bit of the transport block as defined in Clause 6.1.1 of [8, TS 38.321].

Generate the following additional timing related PBCH payload bits $\bar{a}_{\bar{A}}, \bar{a}_{\bar{A}+1}, \bar{a}_{\bar{A}+2}, \bar{a}_{\bar{A}+3}, \ldots, \bar{a}_{\bar{A}+7}$, where:

- $\bar{a}_{\bar{A}}, \bar{a}_{\bar{A}+1}, \bar{a}_{\bar{A}+2}, \bar{a}_{\bar{A}+3}$ are the $4^{\text {th }}, 3^{\text {rd }}, 2^{\text {nd }}$, and $1^{\text {st }}$ LSB of SFN, respectively;
- $\bar{a}_{\bar{A}+4}$ is the half frame bit $\bar{a}_{\text {HRF }}$;
- if $\bar{L}_{\max }=10$ as defined in Clause 4.1 of [5, TS38.213],
$\dot{a}_{\dot{A}+5} \quad$ is the MSB of $\quad k_{\text {SSB }} \quad$ as defined in Clause 7.4.3.1 of [4, TS 38.211].
\dot{a}_{A+6} is reserved.
$\dot{a}_{\dot{A}+7}$ is the MSB of candidate SS/PBCH block index.
- else if $\bar{L}_{\max }=20$ as defined in Clause 4.1 of [5, TS38.213],
$\dot{a}_{A+5} \quad$ is the MSB of $\quad k_{\text {SSB }} \quad$ as defined in Clause 7.4.3.1 of [4, TS 38.211].
$\dot{a}_{\dot{A}+6}, \dot{a}_{\dot{A}+7} \quad$ are the $5^{\text {th }}$ and $4^{\text {th }}$ bits of the candidate SS/PBCH block index, respectively.
- else if $\bar{L}_{\max }=64$ as defined in Clause 4.1 of [5, TS38.213],
$\dot{a}_{\dot{A}+5}, \quad \dot{a}_{\dot{A}+6}, \quad \dot{a}_{\dot{A}+7} \quad$ are the $6^{\text {th }}, 5^{\text {th }}$, and $4^{\text {th }}$ bits of the candidate SS/PBCH block index, respectively.
- else
\dot{a}_{A+5} is the MSB of $\quad k_{\text {SSB }} \quad$ as defined in Clause 7.4.3.1 of [4, TS 38.211].
$\dot{a}_{\dot{A}+6}, \quad \dot{a}_{\dot{A}+7}$ are reserved.
- end if

Let $A=\bar{A}+8 ; j_{\mathrm{SFN}}=0 ; j_{\mathrm{HRF}}=10 ; j_{\mathrm{SSB}}=11 ; j_{\text {other }}=14$;
for $i=0$ to $A-1$
if \bar{a}_{i} is an SFN bit

$$
\begin{aligned}
& a_{G\left(j_{\mathrm{SFN}}\right)}=\bar{a}_{i} \\
& j_{\mathrm{SFN}}=j_{\mathrm{SFN}}+1
\end{aligned}
$$

elseif \bar{a}_{i}

$$
a_{G\left(j_{\mathrm{HRF}}\right)}=\bar{a}_{i}
$$

elseif

$$
\bar{A}+5 \leq i \leq \bar{A}+7
$$

$$
\begin{aligned}
& a_{G\left(j_{S S B}\right)}=\bar{a}_{i} \\
& j_{\mathrm{SSB}}=j_{\mathrm{SSB}}+1
\end{aligned}
$$

else

$$
\begin{aligned}
& a_{G\left(j_{\text {Other }}\right.}=\bar{a}_{i} \\
& j_{\text {Other }}=j_{\text {Other }}+1
\end{aligned}
$$

end if
end for
where $\bar{L}_{\text {max }}$ is the number of candidate SS/PBCH blocks in a half frame according to Clause 4.1 of [5, TS38.213], and the value of $G(j)$ is given by Table 7.1.1-1.

Table 7.1.1-1: Value of PBCH payload interleaver pattern $G(j)$

| j | $G\|j\|$ | j | $G \mid j$ | j | $G \mid j$ | j | $G(j)$ | j | $G \mid j)$ | j | $G(j)$ | j | $G \mid j)$ | j | $G(j)$ |
| :---: |
| 0 | 16 | 4 | 8 | 8 | 24 | 12 | 3 | 16 | 9 | 20 | 14 | 24 | 21 | 28 | 27 |
| 1 | 23 | 5 | 30 | 9 | 7 | 13 | 2 | 17 | 11 | 21 | 15 | 25 | 22 | 29 | 28 |
| 2 | 18 | 6 | 10 | 10 | 0 | 14 | 1 | 18 | 12 | 22 | 19 | 26 | 25 | 30 | 29 |
| 3 | 17 | 7 | 6 | 11 | 5 | 15 | 4 | 19 | 13 | 23 | 20 | 27 | 26 | 31 | 31 |

7.1.2 Scrambling

For PBCH transmission in a frame, the bit sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$ is scrambled into a bit sequence $a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{A-1}^{\prime}$, where $a_{i}^{\prime}=\left(a_{i}+s_{i}\right) \bmod 2$ for $i=0,1, \ldots, A-1$ and $s_{0}, s_{1}, s_{2}, s_{3}, \ldots, s_{A-1}$ is generated according to the following:

$$
\begin{aligned}
& i=0 ; \\
& j=0 ;
\end{aligned}
$$

while $i<A$
if $\quad a_{i}$ corresponds to any one of the bits belonging to the candidate SS/PBCH block index, the half frame index, and $2^{\text {nd }}$ and $3^{\text {rd }}$ least significant bits of the system frame number

$$
s_{i}=0 ;
$$

else

$$
\begin{aligned}
& s_{i}=c(j+v M) \\
& j=j+1
\end{aligned}
$$

end if

$$
i=i+1 ;
$$

end while

The scrambling sequence $c(i)$ is given by Clause 5.2.1of [4, TS38.211] and initialized with $c_{\text {init }}=N_{\text {ID }}^{\text {cell }}$ at the start of each SFN satisfying $\bmod (S F N, 8)=0 \quad ; \quad M=A-3$ for $L_{\max }=4$ or $L_{\max }=8, \quad M=A-4$ for $\bar{L}_{\max }=10, M=A-5$ for $\bar{L}_{\max }=20$, and $M=A-6$ for $\bar{L}_{\max }=64$, where $\bar{L}_{\max }$ is the number of candidate SS/PBCH blocks in a half frame according to Clause 4.1 of [5, TS38.213]; and v is determined according to Table 7.1.2-1 using the $3^{\text {rd }}$ and $2^{\text {nd }}$ LSB of the SFN in which the PBCH is transmitted.

Table 7.1.2-1: Value of v for PBCH scrambling

${\text { (} \mathbf{3}^{\text {rd }}}^{\text {LSB }}$ of SFN, $\mathbf{2}^{\text {nd }}$ LSB of SFN $)$	Value of v
$(0,0)$	0
$(0,1)$	1
$(1,0)$	2
$(1,1)$	3

7.1.3 Transport block CRC attachment

Error detection is provided on BCH transport blocks through a Cyclic Redundancy Check (CRC).
The entire transport block is used to calculate the CRC parity bits. The input bit sequence is denoted by $a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a^{\prime}{ }_{A-1}$, and the parity bits by $p_{0}, p_{1}, p_{2}, p_{3}, \ldots, p_{L-1}$, where A is the payload size and L is the number of parity bits.
The parity bits are computed and attached to the BCH transport block according to Clause 5.1 by setting L to 24 bits and using the generator polynomial $g_{\text {CRC24C }}(D)$, resulting in the sequence $b_{0}, b_{1}, b_{2}, b_{3}, \ldots, b_{B-1}$, where $B=A+L$.

The bit sequence $b_{0}, b_{1}, b_{2}, b_{3}, \ldots, b_{B-1}$ is the input bit sequence $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$ to the channel encoder, where $c_{i}=b_{i} \quad$ for $i=0,1, \ldots, B-1$ and $K=B$.

7.1.4 Channel coding

Information bits are delivered to the channel coding block. They are denoted by $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$, where K is the number of bits, and they are encoded via Polar coding according to Clause 5.3.1, by setting $n_{\max }=9, I_{I L}=1$,

$$
n_{P C}=0 \text {, and } n_{P C}^{w m}=0 \text {. }
$$

After encoding the bits are denoted by

$$
d_{0}, d_{1}, d_{2}, d_{3}, \ldots, d_{N-1} \text {, where } N \text { is the number of coded bits. }
$$

7.1.5 Rate matching

The input bit sequence to rate matching is

$$
d_{0}, d_{1}, d_{2}, \ldots, d_{N-1} .
$$

The rate matching output sequence length

$$
E=864
$$

Rate matching is performed according to Clause 5.4 .1 by setting $I_{B L}=0$.
The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{\mathrm{E}-1}$.

7.2 Downlink shared channel and paging channel

7.2.1 Transport block CRC attachment

Error detection is provided on each transport block through a Cyclic Redundancy Check (CRC).

The entire transport block is used to calculate the CRC parity bits. Denote the bits in a transport block delivered to layer 1 by $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$, and the parity bits by $p_{0}, p_{1}, p_{2}, p_{3}, \ldots, p_{L-1}$, where A is the payload size and
L is the number of parity bits. The lowest order information bit a_{0} is mapped to the most significant bit of the transport block as defined in Clause 6.1.1 of [TS38.321].

The parity bits are computed and attached to the DL-SCH transport block according to Clause 5.1, by setting L to 24 bits and using the generator polynomial $\quad g_{\text {CRC24A }}(D) \quad$ if $\quad A>3824$; and by setting $L \quad$ to 16 bits and using the generator polynomial $g_{\mathrm{CRC16}}(D)$ otherwise.

The bits after CRC attachment are denoted by $b_{0}, b_{1}, b_{2}, b_{3}, \ldots, b_{B-1}$, where $B=A+L$.

7.2.2 LDPC base graph selection

For initial transmission of a transport block with coding rate $\quad R \quad$ indicated by the MCS index according to Clause 5.1.3.1 in [6, TS 38.214] and subsequent re-transmission of the same transport block, each code block of the transport block is encoded with either LDPC base graph 1 or 2 according to the following:

- if $A \leq 292$, or if $A \leq 3824$ and $R \leq 0.67$, or if $R \leq 0.25$, LDPC base graph 2 is used;
- otherwise, LDPC base graph 1 is used,
where A is the payload size in Clause 7.2.1.

7.2.3 Code block segmentation and code block CRC attachment

The bits input to the code block segmentation are denoted by $b_{0}, b_{1}, b_{2}, b_{3}, \ldots, b_{B-1}$ where B is the number of bits in the transport block (including CRC).

Code block segmentation and code block CRC attachment are performed according to Clause 5.2.2.
The bits after code block segmentation are denoted by

$$
c_{r 0}, c_{r 1}, c_{r 2}, c_{r 3}, \ldots, c_{r\left|K_{r}-1\right|} \text {, where } r \quad \text { is the code block }
$$ number and K_{r} is the number of bits for code block number $\quad r \quad$ according to Clause 5.2.2.

7.2.4 Channel coding

Code blocks are delivered to the channel coding block. The bits in a code block are denoted by $c_{r 0}, c_{r 1}, c_{r 2}, c_{r 3}, \ldots, c_{r\left(K_{r}-1\right)}$, where r is the code block number, and K_{r} is the number of bits in code block number $\quad r$. The total number of code blocks is denoted by C and each code block is individually LDPC encoded according to Clause 5.3.2.

After encoding the bits are denoted by
$d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left(N_{r}-1\right)}$, where the values of $\quad N_{r} \quad$ is given in Clause 5.3.2.

7.2.5 Rate matching

Coded bits for each code block, denoted as $d_{r 0}, d_{r 1}, d_{r 2}, d_{r 3}, \ldots, d_{r\left|N_{r}-1\right\rangle}$, are delivered to the rate match block, where
r is the code block number, and N_{r} is the number of encoded bits in code block number r. The total number of code blocks is denoted by C and each code block is individually rate matched according to Clause 5.4.2 by setting $I_{\text {LBRM }}=1$.

After rate matching, the bits are denoted by $f_{r 0}, f_{r 1}, f_{r 2}, f_{r 3}, \ldots, f_{r\left|E_{r}-1\right|}$, where E_{r} is the number of rate matched bits for code block number r.

7.2.6 Code block concatenation

The input bit sequence for the code block concatenation block are the sequences

$$
f_{r 0}, f_{r 1}, f_{r 2}, f_{r 3}, \ldots, f_{r\left|E_{r}-1\right|} \text {, for }
$$ $r=0, \ldots, C-1$ and where E_{r} is the number of rate matched bits for the r-th code block.

Code block concatenation is performed according to Clause 5.5.
The bits after code block concatenation are denoted by $g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{G-1}$, where G is the total number of coded bits for transmission.

7.3 Downlink control information

A DCI transports downlink control information for one or more cells with one RNTI.
The following coding steps can be identified:

- Information element multiplexing
- CRC attachment
- Channel coding
- Rate matching

7.3.1 DCI formats

The DCI formats defined in table 7.3.1-1 are supported.
Table 7.3.1-1: DCI formats

DCI format	
$0 _0$	Scheduling of PUSCH in one cell
$0 _1$	Scheduling of one or multiple PUSCH in one cell, or indicating downlink feedback information for configured grant PUSCH (CG-DFI)
$0 _2$	Scheduling of PUSCH in one cell
$1 _0$	Scheduling of PDSCH in one cell
$1 _1$	Scheduling of PDSCH in one cell, and/or triggering one shot HARQ-ACK codebook feedback
$1 _2$	Scheduling of PDSCH in one cell
$2 _0$	Notifying a group of UEs of the slot format, available RB sets, COT duration and search space set group switching
$2 _1$	Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
$2 _2$	Transmission of TPC commands for PUCCH and PUSCH
$2 _3$	Transmission of a group of TPC commands for SRS transmissions by one or more UEs
$2 _4$	Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE cancels the corresponding UL transmission from the UE
$2 _5$	Notifying the availability of soft resources as defined in Clause 9.3.1 of [10, TS 38.473]
$2 _6$	Notifying the power saving information outside DRX Active Time for one or more UEs
$3 _0$	Scheduling of NR sidelink in one cell
$3 _1$	Scheduling of LTE sidelink in one cell
2	

The fields defined in the DCI formats below are mapped to the information bits a_{0} to a_{A-1} as follows.

Each field is mapped in the order in which it appears in the description, including the zero-padding bit(s), if any, with the first field mapped to the lowest order information bit a_{0} and each successive field mapped to higher order information bits. The most significant bit of each field is mapped to the lowest order information bit for that field, e.g. the most significant bit of the first field is mapped to a_{0}

If the number of information bits in a DCI format is less than 12 bits, zeros shall be appended to the DCI format until the payload size equals 12 .

The size of each DCI format is determined by the configuration of the corresponding active bandwidth part of the scheduled cell and shall be adjusted as described in clause 7.3.1.0 if necessary.

7.3.1.0 DCI size alignment

If necessary, padding or truncation shall be applied to the DCI formats according to the following steps executed in the order below:

Step 0:

- Determine DCI format $0 _0$ monitored in a common search space according to clause 7.3.1.1.1 where $N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}$ is the size of the initial UL bandwidth part.
- Determine DCI format $1 _0$ monitored in a common search space according to clause 7.3.1.2.1 where $N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}$ is given by
- the size of CORESET 0 if CORESET 0 is configured for the cell; and
- the size of initial DL bandwidth part if CORESET 0 is not configured for the cell.
- If DCI format $0 _0$ is monitored in common search space and if the number of information bits in the DCI format $0 _0$ prior to padding is less than the payload size of the DCI format $1 _0$ monitored in common search space for scheduling the same serving cell, a number of zero padding bits are generated for the DCI format $0 _0$ until the payload size equals that of the DCI format 1_0.
- If DCI format $0 _0$ is monitored in common search space and if the number of information bits in the DCI format $0 _0$ prior to truncation is larger than the payload size of the DCI format $1 _0$ monitored in common search space for scheduling the same serving cell, the bitwidth of the frequency domain resource assignment field in the DCI format $0 _0$ is reduced by truncating the first few most significant bits such that the size of DCI format $0 _0$ equals the size of the DCI format $1 _0$.

Step 1:

- Determine DCI format 0_0 monitored in a UE-specific search space according to clause 7.3.1.1.1 where $N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}} \quad$ is the size of the active UL bandwidth part.
- Determine DCI format 1_0 monitored in a UE-specific search space according to clause 7.3.1.2.1 where $N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}$ is the size of the active DL bandwidth part.
- For a UE configured with supplementaryUplink in ServingCellConfig in a cell, if PUSCH is configured to be transmitted on both the SUL and the non-SUL of the cell and if the number of information bits in DCI format $0 _0$ in UE-specific search space for the SUL is not equal to the number of information bits in DCI format $0 _0$ in UE-specific search space for the non-SUL, a number of zero padding bits are generated for the smaller DCI format $0 _0$ until the payload size equals that of the larger DCI format $0 _0$.
- If DCI format $0 _0$ is monitored in UE-specific search space and if the number of information bits in the DCI format $0 _0$ prior to padding is less than the payload size of the DCI format $1 _0$ monitored in UE-specific search space for scheduling the same serving cell, a number of zero padding bits are generated for the DCI format $0 _0$ until the payload size equals that of the DCI format $1 _0$.
- If DCI format $1 _0$ is monitored in UE-specific search space and if the number of information bits in the DCI format $1 _0$ prior to padding is less than the payload size of the DCI format $0 _0$ monitored in UE-specific search
space for scheduling the same serving cell, zeros shall be appended to the DCI format $1 _0$ until the payload size equals that of the DCI format 0_0

Step 2:

- Determine DCI format 0_1 monitored in a UE-specific search space according to clause 7.3.1.1.2.
- Determine DCI format 1_1 monitored in a UE-specific search space according to clause 7.3.1.2.2.
- For a UE configured with supplementaryUplink in ServingCellConfig in a cell, if PUSCH is configured to be transmitted on both the SUL and the non-SUL of the cell and if the number of information bits in format $0 _1$ for the SUL is not equal to the number of information bits in format $0 _1$ for the non-SUL, zeros shall be appended to smaller format $0 _1$ until the payload size equals that of the larger format $0 _1$.
- If the size of DCI format $0 _1$ monitored in a UE-specific search space equals that of a DCI format $0 _0 / 1 _0$ monitored in another UE-specific search space, one bit of zero padding shall be appended to DCI format $0 _1$.
- If the size of DCI format $1 _1$ monitored in a UE-specific search space equals that of a DCI format $0 _0 / 1 _0$ monitored in another UE-specific search space, one bit of zero padding shall be appended to DCI format $1 _1$.

Step 2A:

- Determine DCI format $0 _2$ monitored in a UE-specific search space according to clause 7.3.1.1.3.
- Determine DCI format $1 _2$ monitored in a UE-specific search space according to clause 7.3.1.2.3.
- For a UE configured with supplementaryUplink in ServingCellConfig in a cell, if PUSCH is configured to be transmitted on both the SUL and the non-SUL of the cell and if the number of information bits in format $0 _2$ for the SUL is not equal to the number of information bits in format $0 _2$ for the non-SUL, zeros shall be appended to smaller format $0 _2$ until the payload size equals that of the larger format $0 _2$.

Step 3:

- If both of the following conditions are fulfilled the size alignment procedure is complete
- the total number of different DCI sizes configured to monitor is no more than 4 for the cell
- the total number of different DCI sizes with C-RNTI configured to monitor is no more than 3 for the cell

Step 4:

- Otherwise

Step 4A:

- Remove the padding bit (if any) introduced in step 2 above.
- Determine DCI format 1_0 monitored in a UE-specific search space according to clause 7.3.1.2.1 where $N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}$ is given by
- the size of CORESET 0 if CORESET 0 is configured for the cell; and
- the size of initial DL bandwidth part if CORESET 0 is not configured for the cell.
- Determine DCI format 0_0 monitored in a UE-specific search space according to clause 7.3.1.1.1 where $N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}$ is the size of the initial UL bandwidth part.
- If the number of information bits in the DCI format 0_0 monitored in a UE-specific search space prior to padding is less than the payload size of the DCI format $1 _0$ monitored in UE-specific search space for scheduling the same serving cell, a number of zero padding bits are generated for the DCI format 0_0 monitored in a UE-specific search space until the payload size equals that of the DCI format $1 _0$ monitored in a UE-specific search space.
- If the number of information bits in the DCI format $0 _0$ monitored in a UE-specific search space prior to truncation is larger than the payload size of the DCI format 1_0 monitored in UE-specific search space for scheduling the same serving cell, the bitwidth of the frequency domain resource assignment field in the DCI
format $0 _0$ is reduced by truncating the first few most significant bits such that the size of DCI format $0 _0$ monitored in a UE-specific search space equals the size of the DCI format 1_0 monitored in a UE-specific search space.

Step 4B:

- If the total number of different DCI sizes configured to monitor is more than 4 for the cell after applying the above steps, or if the total number of different DCI sizes with C-RNTI configured to monitor is more than 3 for the cell after applying the above steps
- If the number of information bits in the DCI format $0 _2$ prior to padding is less than the payload size of the DCI format $1 _2$ for scheduling the same serving cell, a number of zero padding bits are generated for the DCI format $0 _2$ until the payload size equals that of the DCI format $1 _2$.
- If the number of information bits in the DCI format $1 _2$ prior to padding is less than the payload size of the DCI format $0 _2$ for scheduling the same serving cell, zeros shall be appended to the DCI format $1 _2$ until the payload size equals that of the DCI format $0 _2$.

Step 4C:

- If the total number of different DCI sizes configured to monitor is more than 4 for the cell after applying the above steps, or if the total number of different DCI sizes with C-RNTI configured to monitor is more than 3 for the cell after applying the above steps
- If the number of information bits in the DCI format $0 _1$ prior to padding is less than the payload size of the DCI format $1 _1$ for scheduling the same serving cell, a number of zero padding bits are generated for the DCI format $0 _1$ until the payload size equals that of the DCI format $1 _1$.
- If the number of information bits in the DCI format $1 _1$ prior to padding is less than the payload size of the DCI format $0 _1$ for scheduling the same serving cell, zeros shall be appended to the DCI format $1 _1$ until the payload size equals that of the DCI format $0 _1$.

The UE is not expected to handle a configuration that, after applying the above steps, results in

- the total number of different DCI sizes configured to monitor is more than 4 for the cell; or
- the total number of different DCI sizes with C-RNTI configured to monitor is more than 3 for the cell; or
- the size of DCI format $0 _0$ in a UE-specific search space is equal to DCI format $0 _1$ in another UE-specific search space; or
- the size of DCI format $1 _0$ in a UE-specific search space is equal to DCI format $1 _1$ in another UE-specific search space; or
- the size of DCI format $0 _0$ in a UE-specific search space is equal to DCI format $0 _2$ in another UE-specific search space when at least one pair of the corresponding PDCCH candidates of DCI formats $0 _0$ and $0 _2$ are mapped to the same resource; or
- the size of DCI format $1 _0$ in a UE-specific search space is equal to DCI format $1 _2$ in another UE-specific search space when at least one pair of the corresponding PDCCH candidates of DCI formats $1 _0$ and $1 _2$ are mapped to the same resource; or
- the size of DCI format $0 _1$ in a UE-specific search space is equal to DCI format $0 _2$ in the same or another UEspecific search space when at least one pair of the corresponding PDCCH candidates of DCI formats $0 _1$ and $0 _2$ are mapped to the same resource; or
- the size of DCI format $1 _1$ in a UE-specific search space is equal to DCI format $1 _2$ in the same or another UEspecific search space when at least one pair of the corresponding PDCCH candidates of DCI formats 1_1 and $1 _2$ are mapped to the same resource.

7.3.1.0.1 $\quad \mathrm{DCI}$ size alignment for DCI formats for scheduling of sidelink

If DCI format 3_0 or DCI format 3_1 is monitored on a cell, DCI size alignment for DCI format 3_0 and DCI format $3 _1$ is performed as described in this clause after performing the DCI size alignment described in Clause 7.3.1.0. The
size(s) of the DCI formats configured to monitor for a cell in this clause refers to that after performing the DCI size alignment described in Clause 7.3.1.0.

If DCI format 3_0 or DCI format 3_1 is monitored on a cell and the total number of DCI sizes of the DCI formats configured to monitor for the cell and DCI format $3 _0$ or DCI format $3 _1$ is more than 4 , zeros shall be appended to DCI format 3_0 if configured and DCI format 3_1 if configured, until the payload size of DCI format 3_0 or DCI format 3_1 equals that of the smallest DCI format configured to monitor for the cell that is larger than DCI format 3_0 or DCI format 3_1.

The UE is not expected to handle a configuration that results in:

- the total number of different DCI sizes configured to monitor for the cell and DCI format 3_0 or DCI format 3_1 is more than 4 ; and
- the payload size of DCI format 3_0 or DCI format 3_1 is larger than the payload size of all other DCI formats configured to monitor for the cell.

7.3.1.1 DCI formats for scheduling of PUSCH

7.3.1.1.1 Format 0_0

DCI format $0 _0$ is used for the scheduling of PUSCH in one cell.
The following information is transmitted by means of the DCI format $0 _0$ with CRC scrambled by C-RNTI or CSRNTI or MCS-C-RNTI:

- Identifier for DCI formats - 1 bit
- The value of this bit field is always set to 0 , indicating an UL DCI format
- Frequency domain resource assignment - $\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits if neither of the higher layer parameters useInterlacePUCCH-PUSCH in BWP-UplinkCommon and useInterlacePUCCH-PUSCH in BWPUplinkDedicated is configured, where $N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}$ is defined in clause 7.3.1.0
- For PUSCH hopping with resource allocation type 1:
- $\quad N_{\text {UL_hop }} \quad$ MSB bits are used to indicate the frequency offset according to Clause 6.3 of [6, TS 38.214], where $N_{\text {UL_hop }}=1$ if the higher layer parameter frequencyHoppingOffsetLists contains two offset values and $\quad N_{\text {UL_hop }}=2$ if the higher layer parameter frequencyHoppingOffsetLists contains four offset values
- $\quad\left[\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right]-N_{\mathrm{UL} _ \text {hop }} \quad$ bits provides the frequency domain resource allocation according to Clause 6.1.2.2.2 of [6, TS 38.214]
- For non-PUSCH hopping with resource allocation type 1:
- $\quad\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits provides the frequency domain resource allocation according to Clause 6.1.2.2.2 of [6, TS 38.214]
- if any of the higher layer parameters useInterlacePUCCH-PUSCH in BWP-UplinkCommon and useInterlacePUCCH-PUSCH in BWP-UplinkDedicated is configured
- 5+Y bits provide the frequency domain resource allocation according to Clause 6.1.2.2.3 of [6, TS 38.214] if the subcarrier spacing for the active UL bandwidth part is 30 kHz .
- 6+Y bits provide the frequency domain resource allocation according to Clause 6.1.2.2.3 of [6, TS 38.214] if the subcarrier spacing for the active UL bandwidth part is 15 kHz .

If the DCI format $0 _0$ is monitored in a UE-specific search space, the value of Y is determined by
$\left\lceil\log _{2}\left(\frac{N_{\mathrm{RB} \text {-set,UL }}^{\mathrm{BWP}}\left(N_{\mathrm{RB}-\text { set,UL }}^{\mathrm{BWP}}+1\right)}{2}\right)\right\rceil \quad$ where $\quad N_{\mathrm{RB}-\text { set,UL }}^{\mathrm{BWP}} \quad$ is the number of RB sets contained in the active UL BWP as defined in clause 7 of [6, TS38.214]. If the DCI $0 _0$ is monitored in a common search space $\mathrm{Y}=0$.

- Time domain resource assignment - 4 bits as defined in Clause 6.1.2.1 of [6, TS 38.214]
- Frequency hopping flag - 1 bit according to Table 7.3.1.1.1-3, as defined in Clause 6.3 of [6, TS 38.214]
- Modulation and coding scheme - 5 bits as defined in Clause 6.1.4.1 of [6, TS 38.214]
- New data indicator - 1 bit
- Redundancy version - 2 bits as defined in Table 7.3.1.1.1-2
- HARQ process number -4 bits
- TPC command for scheduled PUSCH - 2 bits as defined in Clause 7.1.1 of [5, TS 38.213]
- ChannelAccess-CPext - 2 bits indicating combinations of channel access type and CP extension as defined in Table 7.3.1.1.1-4 for operation in a cell with shared spectrum channel access; 0 bit otherwise.
- Padding bits, if required.
- UL/SUL indicator - 1 bit for UEs configured with supplementaryUplink in ServingCellConfig in the cell as defined in Table 7.3.1.1.1-1 and the number of bits for DCI format $1 _0$ before padding is larger than the number of bits for DCI format $0 _0$ before padding; 0 bit otherwise. The UL/SUL indicator, if present, locates in the last bit position of DCI format $0 _0$, after the padding bit(s).
- If the UL/SUL indicator is present in DCI format $0 _0$ and the higher layer parameter pusch-Config is not configured on both UL and SUL the UE ignores the UL/SUL indicator field in DCI format 0_0, and the corresponding PUSCH scheduled by the DCI format $0 _0$ is for the UL or SUL for which high layer parameter pucch-Config is configured;
- If the UL/SUL indicator is not present in DCI format $0 _0$ and pucch-Config is configured, the corresponding PUSCH scheduled by the DCI format $0 _0$ is for the UL or SUL for which high layer parameter pucch-Config is configured.
- If the UL/SUL indicator is not present in DCI format 0_0 and pucch-Config is not configured, the corresponding PUSCH scheduled by the DCI format $0 _0$ is for the uplink on which the latest PRACH is transmitted.

The following information is transmitted by means of the DCI format $0 _0$ with CRC scrambled by TC-RNTI:

- Identifier for DCI formats - 1 bit
- The value of this bit field is always set to 0 , indicating an UL DCI format
- Frequency domain resource assignment - number of bits determined by the following:
- $\quad\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits if the higher layer parameter useInterlacePUCCH-PUSCH in BWP-

UplinkCommon is not configured, where

- $\quad N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}} \quad$ is the size of the initial UL bandwidth part.
- For PUSCH hopping with resource allocation type 1:
- $\quad N_{\text {UL_hop }} \quad$ MSB bits are used to indicate the frequency offset according to Table 8.3-1 in Clause 8.3 of [5, TS 38.213], where $N_{\text {UL_hop }}=1$ if $N_{\text {RB }}^{\mathrm{UL}, \mathrm{BWP}}<50$ and $N_{\text {UL_hop }}=2$ otherwise

$$
\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil-N_{\mathrm{UL} L \text { hop }} \quad \text { bits provides the frequency domain resource allocation }
$$ according to Clause 6.1.2.2.2 of [6, TS 38.214]

- For non-PUSCH hopping with resource allocation type 1:
- $\quad\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits provides the frequency domain resource allocation according to Clause 6.1.2.2.2 of [6, TS 38.214]
- if the higher layer parameter useInterlacePUCCH-PUSCH in BWP-UplinkCommon is configured
- 5 bits provide the frequency domain resource allocation according to Clause 6.1.2.2.3 of [6, TS 38.214] if the subcarrier spacing for the active UL bandwidth part is 30 kHz
- 6 bits provide the frequency domain resource allocation according to Clause 6.1.2.2.3 of [6, TS 38.214] if the subcarrier spacing for the active UL bandwidth part is 15 kHz
- Time domain resource assignment - 4 bits as defined in Clause 6.1.2.1 of [6, TS 38.214]
- Frequency hopping flag - 1 bit according to Table 7.3.1.1.1-3, as defined in Clause 6.3 of [6, TS 38.214]
- Modulation and coding scheme - 5 bits as defined in Clause 6.1.4.1 of [6, TS 38.214]
- New data indicator - 1 bit, reserved
- Redundancy version - 2 bits as defined in Table 7.3.1.1.1-2
- HARQ process number -4 bits, reserved
- TPC command for scheduled PUSCH - 2 bits as defined in Clause 7.1.1 of [5, TS 38.213]
- ChannelAccess-CPext - 2 bits indicating combinations of channel access type and CP extension as defined in Table 7.3.1.1.1-4 for operation in a cell with shared spectrum channel access; 0 bit otherwise
- Padding bits, if required.
- UL/SUL indicator - 1 bit if the cell has two ULs and the number of bits for DCI format $1 _0$ before padding is larger than the number of bits for DCI format $0 _0$ before padding; 0 bit otherwise. The UL/SUL indicator, if present, locates in the last bit position of DCI format 0_0, after the padding bit(s).
- If 1 bit, reserved, and the corresponding PUSCH is always on the same UL carrier as the previous transmission of the same TB

Table 7.3.1.1.1-1: UL/SUL indicator

Value of UL/SUL indicator	Uplink
0	The non-supplementary uplink
1	The supplementary uplink

Table 7.3.1.1.1-2: Redundancy version

Value of the Redundancy version field	Value of $r v_{i d}$ to be applied
00	0
01	1
10	2
11	3

Table 7.3.1.1.1-3: Frequency hopping indication

Bit field mapped to index	PUSCH frequency hopping
0	Disabled
1	Enabled

Table 7.3.1.1.1-4: Channel access type \& CP extension for DCI format 0_0 and DCI format 1_0

Bit field mapped to index	Channel Access Type	The CP extension T_"ext" index defined in Clause 5.3.1 of [4, TS 38.211]
0	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2
1	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	3
2	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	1
3	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	0

7.3.1.1.2 Format 0_1

DCI format $0 _1$ is used for the scheduling of one or multiple PUSCH in one cell, or indicating CG downlink feedback information (CG-DFI) to a UE.

The following information is transmitted by means of the DCI format $0 _1$ with CRC scrambled by C-RNTI or CSRNTI or SP-CSI-RNTI or MCS-C-RNTI:

- Identifier for DCI formats - 1 bit
- The value of this bit field is always set to 0 , indicating an UL DCI format
- Carrier indicator - 0 or 3 bits, as defined in Clause 10.1 of [5, TS38.213].
- DFI flag - 0 or 1 bit
- 1 bit if the UE is configured to monitor DCI format $0 _1$ with CRC scrambled by CS-RNTI and for operation in a cell with shared spectrum channel access. For a DCI format $0 _1$ with CRC scrambled by CS-RNTI, the bit value of 0 indicates activating type 2 CG transmission and the bit value of 1 indicates CG-DFI. For a DCI format $0 _1$ with CRC scrambled by C-RNTI/SP-CSI-RNTI/MCS-C-RNTI and for operation in a cell with shared specrum channel access, the bit is reserved.
- 0 bit otherwise;

If DCI format $0 _1$ is used for indicating CG-DFI, all the remaining fields are set as follows:

- HARQ-ACK bitmap - 16 bits, where the order of the bitmap to HARQ process index mapping is such that HARQ process indices are mapped in ascending order from MSB to LSB of the bitmap. For each bit of the bitmap, value 1 indicates ACK, and value 0 indicates NACK.
- TPC command for scheduled PUSCH - 2 bits as defined in Clause 7.1.1 of [5, TS38.213]
- All the remaining bits in format $0 _1$ are set to zero.

Otherwise, all the remaining fields are set as follows:

- UL/SUL indicator - 0 bit for UEs not configured with supplementaryUplink in ServingCellConfig in the cell or UEs configured with supplementaryUplink in ServingCellConfig in the cell but only one carrier in the cell is configured for PUSCH transmission; otherwise, 1 bit as defined in Table 7.3.1.1.1-1.
- Bandwidth part indicator -0 , 1 or 2 bits as determined by the number of UL BWPs $n_{\text {BWP,RRC }}$ configured by higher layers, excluding the initial UL bandwidth part. The bitwidth for this field is determined as $\left\lceil\log _{2}\left(n_{\text {BWP }}\right)\right\rceil$ bits, where
- $\quad n_{B W P}=n_{B W P, R R C}+1$ if $n_{\text {BWP,RRC }}$, in which case the bandwidth part indicator is equivalent to the ascending order of the higher layer parameter BWP-Id;
- otherwise $n_{B W P}=n_{B W P, R R C}$, in which case the bandwidth part indicator is defined in Table 7.3.1.1.2-1;

If a UE does not support active BWP change via DCI, the UE ignores this bit field.

- Frequency domain resource assignment - number of bits determined by the following, where $N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}$ is the size of the active UL bandwidth part:
- If higher layer parameter useInterlacePUCCH-PUSCH in BWP-UplinkDedicated is not configured
- $\quad N_{\text {RBG }}$ bits if only resource allocation type 0 is configured, where $\quad N_{\text {RBG }}$ is defined in Clause 6.1.2.2.1 of [6, TS 38.214],
- $\quad\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits if only resource allocation type 1 is configured, or
$\max \left(\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil, N_{\mathrm{RBG}}\right)+1 \quad$ bits if resourceAllocation is configured as 'dynamicSwitch'.
- If resourceAllocation is configured as 'dynamicSwitch', the MSB bit is used to indicate resource allocation type 0 or resource allocation type 1 , where the bit value of 0 indicates resource allocation type 0 and the bit value of 1 indicates resource allocation type 1 .
- For resource allocation type 0, the $\quad N_{\text {RBG }} \quad$ LSBs provide the resource allocation as defined in Clause 6.1.2.2.1 of [6, TS 38.214].
- For resource allocation type 1, the $\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil \quad$ LSBs provide the resource allocation as follows:
- For PUSCH hopping with resource allocation type 1:
- $\quad N_{\text {UL_hop }} \quad$ MSB bits are used to indicate the frequency offset according to Clause 6.3 of [6, TS 38.214], where $N_{\text {UL_hop }}=1$ if the higher layer parameter frequencyHoppingOffsetLists contains two offset values and $\quad N_{\text {UL_hop }}=2$ if the higher layer parameter frequencyHoppingOffsetLists contains four offset values
- $\quad\left[\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right]-N_{\mathrm{UL} \text { _hop }} \quad$ bits provides the frequency domain resource allocation according to Clause 6.1.2.2.2 of [6, TS 38.214]
- For non-PUSCH hopping with resource allocation type 1:
- $\quad\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{UL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits provides the frequency domain resource allocation according to Clause 6.1.2.2.2 of [6, TS 38.214]
- If the higher layer parameter useInterlacePUCCH-PUSCH in BWP-UplinkDedicated is configured
- $5+\mathrm{Y}$ bits provide the frequency domain resource allocation according to Clause 6.1.2.2.3 of [6, TS 38.214] if the subcarrier spacing for the active UL bandwidth part is 30 kHz . The 5 MSBs provide the interlace allocation and the Y LSBs provide the RB set allocation.
- $6+$ Y bits provide the frequency domain resource allocation according to Clause 6.1.2.2.3 of [6, TS 38.214] if the subcarrier spacing for the active UL bandwidth part is 15 kHz . The 6 MSBs provide the interlace allocation and the Y LSBs provide the RB set allocation.

The value of Y is determined by $\left.\quad \Gamma \log _{2}\left(\frac{N_{R B-\text { set }, U L}^{B W P}\left(N_{R B-\text { set }, U L}^{B W P}+1\right)}{2}\right)\right] \quad$ where $\quad N_{\mathrm{RB}-\mathrm{set}, \mathrm{UL}}^{\mathrm{BWP}} \quad$ is the number of RB sets contained in the active UL BWP as defined in clause 7 of [6, TS38.214].

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and if resourceAllocation is configured as 'dynamicSwitch' for the indicated bandwidth part, the UE assumes resource allocation type 0 for the indicated bandwidth part if the bitwidth of the "Frequency domain resource assignment" field of the active bandwidth part is smaller than the bitwidth of the "Frequency domain resource assignment" field of the indicated bandwidth part.

- Time domain resource assignment $-0,1,2,3,4,5$, or 6 bits
- If the higher layer parameter pusch-TimeDomainAllocationListDCI-0-1 is not configured and if the higher layer parameter pusch-TimeDomainAllocationListForMultiPUSCH is not configured and if the higher layer parameter pusch-TimeDomainAllocationList is configured, $0,1,2,3$, or 4 bits as defined in Clause 6.1.2.1 of [6, TS38.214]. The bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the higher layer parameter pusch-TimeDomainAllocationList;
- If the higher layer parameter pusch-TimeDomainAllocationListDCI-0-1 is configured or if the higher layer parameter pusch-TimeDomainAllocationListForMultiPUSCH is configured, $0,1,2,3,4,5$ or 6 bits as defined in Clause 6.1.2.1 of [6, TS38.214]. The bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the higher layer parameter pusch-TimeDomainAllocationListDCI-0-1 or pusch-TimeDomainAllocationListForMultiPUSCH;
- otherwise the bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the default table.
- Frequency hopping flag - 0 or 1 bit:
- 0 bit if only resource allocation type 0 is configured, or if the higher layer parameter frequencyHopping is not configured and the higher layer parameter pusch-RepTypeIndicatorDCI-0-1 is not configured to puschRepTypeB, or if the higher layer parameter frequencyHoppingDCI-0-1 is not configured and pusch-RepTypeIndicatorDCI-0-1 is configured to pusch-RepTypeB, or if only resource allocation type 2 is configured;
- 1 bit according to Table 7.3.1.1.1-3 otherwise, only applicable to resource allocation type 1 , as defined in Clause 6.3 of [6, TS 38.214].
- Modulation and coding scheme - 5 bits as defined in Clause 6.1.4.1 of [6, TS 38.214]
- New data indicator - 1 bit if the number of scheduled PUSCH indicated by the Time domain resource assignment field is 1 ; otherwise $2,3,4,5,6,7$ or 8 bits determined based on the maximum number of schedulable PUSCH among all entries in the higher layer parameter pusch-
TimeDomainAllocationListForMultiPUSCH, where each bit corresponds to one scheduled PUSCH as defined in clause 6.1.4 in [6, TS 38.214].
- Redundancy version - - number of bits determined by the following:
- $\quad 2$ bits as defined in Table 7.3.1.1.1-2 if the number of scheduled PUSCH indicated by the Time domain resource assignment field is 1 ;
- otherwise 2, 3, 4, 5, 6, 7 or 8 bits determined by the maximum number of schedulable PUSCHs among all entries in the higher layer parameter pusch-TimeDomainAllocationListForMultiPUSCH, where each bit corresponds to one scheduled PUSCH as defined in clause 6.1.4 in [6, TS 38.214] and redundancy version is determined according to Table 7.3.1.1.2-34.
- HARQ process number - 4 bits
- $1^{\text {st }}$ downlink assignment index $-1,2$ or 4 bits:
- 1 bit for semi-static HARQ-ACK codebook;
- 2 bits for dynamic HARQ-ACK codebook, or for enhanced dynamic HARQ-ACK codebook without UL-TotalDAI-Included configured;
- 4 bits for enhanced dynamic HARQ-ACK codebook and with UL-TotalDAI-Included $=$ true.

When two HARQ-ACK codebooks are configured for the same serving cell and if higher layer parameter priorityIndicatorDCI-0-1 is configured, if the bit width of the $1^{\text {st }}$ downlink assignment index in DCI format $0 _1$ for one HARQ-ACK codebook is not equal to that of the $1^{\text {st }}$ downlink assignment index in DCI format $0 _1$ for the other HARQ-ACK codebook, a number of most significant bits with value set to '0' are inserted to smaller $1^{\text {st }}$ downlink assignment index until the bit width of the $1^{\text {st }}$ downlink assignment index in DCI format $0 _1$ for the two HARQ-ACK codebooks are the same.

- $\quad 2^{\text {nd }}$ downlink assignment index $-0,2$ or 4 bits:
- 2 bits for dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks, or for enhanced dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks and without UL-TotalDAI-Included configured;
- 4 bits for enhanced dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks and with UL-TotalDAI-Included $=$ true;
- 0 bit otherwise.

When two HARQ-ACK codebooks are configured for the same serving cell and if higher layer parameter priorityIndicatorDCI-0-1 is configured, if the bit width of the $2^{\text {nd }}$ downlink assignment index in DCI format $0 _1$ for one HARQ-ACK codebook is not equal to that of the $2^{\text {nd }}$ downlink assignment index in DCI format $0 _1$ for the other HARQ-ACK codebook, a number of most significant bits with value set to '0' are inserted to smaller $2^{\text {nd }}$ downlink assignment index until the bit width of the $2^{\text {nd }}$ downlink assignment index in DCI format $0 _1$ for the two HARQ-ACK codebooks are the same.

- TPC command for scheduled PUSCH - 2 bits as defined in Clause 7.1.1 of [5, TS38.213]
- SRS resource indicator -

$$
\left\lceil\log _{2}\left(\sum_{k=1}^{\min \left(L_{\max }, N_{\mathrm{SRS}}\right)}\binom{N_{\mathrm{SRS}}}{k}\right)\right\rceil
$$

of configured SRS resources in the SRS resource set configured by higher layer parameter srs-
ResourceSetToAddModList, and associated with the higher layer parameter usage of value 'codeBook' or 'nonCodeBook',

$$
\left\lceil\log _{2}\left(\sum_{k=1}^{\left.\min \mid L_{\max }, N_{\mathrm{SRS}}\right\}}\binom{N_{\mathrm{SRS}}}{k}\right)\right\rceil
$$

bits according to Tables 7.3.1.1.2-28/29/30/31 if the higher layer parameter txConfig = nonCodebook, where $\quad N_{\text {SRS }}$ is the number of configured SRS resources in the SRS resource set configured by higher layer parameter srs-ResourceSetToAddModList, and associated with the higher layer parameter usage of value 'nonCodeBook' and

- if UE supports operation with maxMIMO-Layers and the higher layer parameter maxMIMO-Layers of PUSCH-ServingCellConfig of the serving cell is configured, $L_{\text {max }}$ is given by that parameter
- otherwise, $L_{\max }$ is given by the maximum number of layers for PUSCH supported by the UE for the serving cell for non-codebook based operation.
- $\quad\left\lceil\log _{2}\left(N_{\mathrm{SRS}}\right)\right\rceil$ bits according to Tables 7.3.1.1.2-32, 7.3.1.1.2-32A and 7.3.1.1.2-32B if the higher layer parameter txConfig = codebook, where $N_{\text {SRS }}$ is the number of configured SRS resources in the SRS resource set configured by higher layer parameter srs-ResourceSetToAddModList, and associated with the higher layer parameter usage of value 'codeBook'.
- Precoding information and number of layers - number of bits determined by the following:
- 0 bits if the higher layer parameter $t x$ Config = nonCodeBook;
- 0 bits for 1 antenna port and if the higher layer parameter txConfig = codebook;
- 4, 5, or 6 bits according to Table 7.3.1.1.2-2 for 4 antenna ports, if $t x$ Config $=$ codebook, ulFullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and codebookSubset;
- 4 or 5 bits according to Table 7.3.1.1.2-2A for 4 antenna ports, if $t x$ Config $=$ codebook, ulFullPowerTransmission = fullpowerMode1, maxRank=2, transform precoder is disabled, and according to the values of higher layer parameter codebookSubset;
- 4 or 6 bits according to Table 7.3.1.1.2-2B for 4 antenna ports, if $t x$ Config = codebook, ulFullPowerTransmission = fullpowerMode1, maxRank=3 or 4, transform precoder is disabled, and according to the values of higher layer parameter codebookSubset;
- 2, 4, or 5 bits according to Table 7.3.1.1.2-3 for 4 antenna ports, if $t x$ Config $=$ codebook, ulFullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and codebookSubset;
- 3 or 4 bits according to Table 7.3.1.1.2-3A for 4 antenna ports, if $t x$ Config = codebook, ulFullPowerTransmission = fullpowerMode1, maxRank=1, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameter codebookSubset;
- 2 or 4 bits according to Table7.3.1.1.2-4 for 2 antenna ports, if $t x$ Config = codebook, ulFullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank and codebookSubset;
- 2 bits according to Table 7.3.1.1.2-4A for 2 antenna ports, if $t x$ Config $=$ codebook, ulFullPowerTransmission = fullpowerMode1, transform precoder is disabled, maxRank=2, and codebookSubset=nonCoherent;
- 1 or 3 bits according to Table7.3.1.1.2-5 for 2 antenna ports, if $t x$ Config = codebook, ulFullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank and codebookSubset;
- 2 bits according to Table 7.3.1.1.2-5A for 2 antenna ports, if $t x$ Config $=$ codebook, ulFullPowerTransmission = fullpowerMode1, maxRank=1, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameter codebookSubset;

For the higher layer parameter txConfig=codebook, if ul-FullPowerTransmission is configured to fullpowerMode2, maxRank is configured to be larger than 2, and at least one SRS resource with 4 antenna ports is configured in an SRS resource set with usage set to 'codebook' and an SRS resource with 2 antenna ports is indicated via SRI in the same SRS resource set, then Table 7.3.1.1.2-4 is used.

For the higher layer parameter txConfig = codebook, if different SRS resources with different number of antenna ports are configured, the bitwidth is determined according to the maximum number of ports in an SRS resource among the configured SRS resources in an SRS resource set with usage set to 'codebook'. If the number of ports for a configured SRS resource in the set is less than the maximum number of ports in an SRS resource among the configured SRS resources, a number of most significant bits with value set to '0' are inserted to the field.

- Antenna ports - number of bits determined by the following
- $\quad 2$ bits as defined by Tables 7.3.1.1.2-6, if transform precoder is enabled, dmrs-Type=1, and maxLength=1, except that dmrs-UplinkTransformPrecoding and tp-pi2BPSK are both configured and $\pi / 2$ BPSK modulation is used;
- 2 bits as defined by Tables 7.3.1.1.2-6A, if transform precoder is enabled and dmrs-

UplinkTransformPrecoding and tp-pi2BPSK are both configured, $\pi / 2$ BPSK modulation is used, dmrsType $=1$, and maxLength $=1$, where $\mathrm{n}_{\text {SCID }}$ is the scrambling identity for antenna ports defined in [Clause 6.4.1.1.1.2, TS38.211];

- 4 bits as defined by Tables 7.3.1.1.2-7, if transform precoder is enabled, dmrs-Type=1, and maxLength=2, except that dmrs-UplinkTransformPrecoding and tp-pi2BPSK are both configured and $\pi / 2$ BPSK modulation is used;
- 4 bits as defined by Tables 7.3.1.1.2-7A, if transform precoder is enabled and dmrsUplinkTransformPrecoding and tp-pi2BPSK are both configured, $\pi / 2$ BPSK modulation is used, dmrsType $=1$, and maxLength $=2$, where $\mathrm{n}_{\text {SCID }}$ is the scrambling identity for antenna ports defined in [Clause 6.4.1.1.1.2, TS38.211];
- 3 bits as defined by Tables 7.3.1.1.2-8/9/10/11, if transform precoder is disabled, dmrs-Type=1, and maxLength $=1$, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter txConfig = nonCodebook and according to the Precoding information and number of layers field if the higher layer parameter txConfig = codebook;
- 4 bits as defined by Tables 7.3.1.1.2-12/13/14/15, if transform precoder is disabled, dmrs-Type=1, and maxLength $=2$, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter txConfig = nonCodebook and according to the Precoding information and number of layers field if the higher layer parameter $t x$ Config = codebook;
- 4 bits as defined by Tables 7.3.1.1.2-16/17/18/19, if transform precoder is disabled, dmrs-Type=2, and maxLength $=1$, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter txConfig = nonCodebook and according to the Precoding information and number of layers field if the higher layer parameter $t x$ Config = codebook;
- 5 bits as defined by Tables 7.3.1.1.2-20/21/22/23, if transform precoder is disabled, dmrs-Type=2, and maxLength $=2$, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter txConfig = nonCodebook and according to the Precoding information and number of layers field if the higher layer parameter $t x$ Config = codebook.
where the number of CDM groups without data of values 1, 2, and 3 in Tables 7.3.1.1.2-6 to 7.3.1.1.2-23 refers to CDM groups $\{0\},\{0,1\}$, and $\{0,1,2\}$ respectively.

If a UE is configured with both dmrs-UplinkForPUSCH-MappingTypeA and dmrs-UplinkForPUSCHMappingTypeB, the bitwidth of this field equals $\max \left\{x_{A}, x_{B}\right\}$, where x_{A} is the "Antenna ports" bitwidth derived according to dmrs-UplinkForPUSCH-MappingTypeA and ${ }^{X_{B}}$ is the "Antenna ports" bitwidth derived according to dmrs-UplinkForPUSCH-MappingTypeB. A number of $\left|x_{A}-x_{B}\right|$ zeros are padded in the MSB of this field, if the mapping type of the PUSCH corresponds to the smaller value of X_{A} and X_{B}.

- \quad SRS request - 2 bits as defined by Table 7.3.1.1.2-24 for UEs not configured with supplementaryUplink in ServingCellConfig in the cell; 3 bits for UEs configured with supplementaryUplink in ServingCellConfig in the cell where the first bit is the non-SUL/SUL indicator as defined in Table 7.3.1.1.1-1 and the second and third bits are defined by Table 7.3.1.1.2-24. This bit field may also indicate the associated CSI-RS according to Clause 6.1.1.2 of [6, TS 38.214].
- CSI request $-0,1,2,3,4,5$, or 6 bits determined by higher layer parameter reportTriggerSize.
- CBG transmission information (CBGTI) - 0 bit if higher layer parameter codeBlockGroupTransmission for PUSCH is not configured or if the number of scheduled PUSCH indicated by the Time domain resource assignment field is larger than 1 ; otherwise, $2,4,6$, or 8 bits determined by higher layer parameter maxCodeBlockGroupsPerTransportBlock for PUSCH.
- PTRS-DMRS association - number of bits determined as follows
- 0 bit if PTRS-UplinkConfig is not configured in either dmrs-UplinkForPUSCH-MappingTypeA or dmrs-UplinkForPUSCH-MappingTypeB and transform precoder is disabled, or if transform precoder is enabled, or if maxRank=1;
- 2 bits otherwise, where Table 7.3.1.1.2-25 and 7.3.1.1.2-26 are used to indicate the association between PTRS port(s) and DMRS port(s) when one PT-RS port and two PT-RS ports are configured by maxNrofPorts in PTRS-UplinkConfig respectively, and the DMRS ports are indicated by the Antenna ports field.

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and the "PTRS-DMRS association" field is present for the indicated bandwidth part but not present for the active bandwidth part, the UE assumes the "PTRS-DMRS association" field is not present for the indicated bandwidth part.

- beta_offset indicator - 0 if the higher layer parameter betaOffsets = semiStatic; otherwise 2 bits as defined by Table 9.3-3 in [5, TS 38.213].

When two HARQ-ACK codebooks are configured for the same serving cell and if higher layer parameter priorityIndicatorDCI-0-1 is configured, if the bit width of the beta_offset indicator in DCI format $0 _1$ for one HARQ-ACK codebook is not equal to that of the beta_offset indicator in DCI format $0 _1$ for the other HARQACK codebook, a number of most significant bits with value set to ' 0 ' are inserted to smaller beta_offset indicator until the bit width of the beta_offset indicator in DCI format $0 _1$ for the two HARQ-ACK codebooks are the same.

- DMRS sequence initialization - 0 bit if transform precoder is enabled; 1 bit if transform precoder is disabled.
- UL-SCH indicator - 0 or 1 bit as follows
- 0 bit if the number of scheduled PUSCH indicated by the Time domain resource assignment field is larger than 1;
- 1 bit otherwise. A value of " 1 " indicates UL-SCH shall be transmitted on the PUSCH and a value of " 0 " indicates UL-SCH shall not be transmitted on the PUSCH. Except for DCI format 0_1 with CRC scrambled by SP-CSI-RNTI, a UE is not expected to receive a DCI format $0 _1$ with UL-SCH indicator of " 0 " and CSI request of all zero(s).
- ChannelAccess-CPext-CAPC - 0, 1, 2, 3, 4, 5 or 6 bits. The bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the higher layer parameter ul-AccessConfigListDCI-0-1 for operation in a cell with shared spectrum channel access; otherwise 0 bit. One or more entries from Table 7.3.1.1.2-35 are configured by the higher layer parameter ul-AccessConfigListDCI-0-1.
- Open-loop power control parameter set indication - 0 or 1 or 2 bits.
- 0 bit if the higher layer parameter p0-PUSCH-SetList is not configured;
- 1 or 2 bits otherwise,
- 1 bit if SRS resource indicator is present in the DCI format $0 _1$;
- 1 or 2 bits as determined by higher layer parameter olpc-ParameterSetDCI-0-1 if SRS resource indicator is not present in the DCI format $0 _1$.
- Priority indicator - 0 bit if higher layer parameter priorityIndicatorDCI-0-1 is not configured; otherwise 1 bit as defined in Clause 9 in [5, TS 38.213].
- Invalid symbol pattern indicator - 0 bit if higher layer parameter invalidSymbolPatternIndicatorDCI-0-1 is not configured; otherwise 1 bit as defined in Clause 6.1.2.1 in [6, TS 38.214].
- Minimum applicable scheduling offset indicator - 0 or 1 bit
- 0 bit if higher layer parameter minimumSchedulingOffsetK2 is not configured;
- 1 bit if higher layer parameter minimumSchedulingOffsetK2 is configured. The 1 bit indication is used to determine the minimum applicable K2 for the active UL BWP and the minimum applicable K0 value for the active DL BWP, if configured respectively, according to Table 7.3.1.1.2-33. If the minimum applicable K0 is indicated, the minimum applicable value of the aperiodic CSI-RS triggering offset for an active DL BWP shall be the same as the minimum applicable K0 value.
- SCell dormancy indication - 0 bit if higher layer parameter dormancyGroupWithinActiveTime is not configured; otherwise 1, 2, 3, 4 or 5 bits bitmap determined according to higher layer parameter dormancyGroupWithinActiveTime, where each bit corresponds to one of the SCell group(s) configured by higher layers parameter dormancyGroupWithinActiveTime, with MSB to LSB of the bitmap corresponding to the first to last configured SCell group. The field is only present when this format is carried by PDCCH on the primary cell within DRX Active Time and the UE is configured with at least two DL BWPs for an SCell.
- Sidelink assignment index $-0,1$ or 2 bits:
- 1 bit if the UE is configured with pdsch-HARQ-ACK-Codebook = semi-static and, in addition, the UE is configured with a SL configured grant type 1 or to monitor DCI format 3_0 with CRC scrambled by SLRNTI or SL-CS-RNTI;
- 2 bits if the UE is configured with pdsch-HARQ-ACK-Codebook = dynamic and, in addition, the UE is configured with a SL configured grant type 1 or to monitor DCI format 3_0 with CRC scrambled by SLRNTI or SL-CS-RNTI;
- 0 bit otherwise.

A UE does not expect that the bit width of a field in DCI format $0 _1$ with CRC scrambled by CS-RNTI is larger than corresponding bit width of same field in DCI format $0 _1$ with CRC scrambled by C-RNTI for the same serving cell. If the bit width of a field in the DCI format $0 _1$ with CRC scrambled by CS-RNTI is not equal to that of the corresponding field in the DCI format $0 _1$ with CRC scrambled by C-RNTI for the same serving cell, a number of most significant bits with value set to ' 0 ' are inserted to the field in DCI format $0 _1$ with CRC scrambled by CS-RNTI until the bit width equals that of the corresponding field in the DCI format $0 _1$ with CRC scrambled by C-RNTI for the same serving cell.

If the number of information bits in DCI format $0 _1$ scheduling a single PUSCH prior to padding is not equal to the number of information bits in DCI format $0 _1$ scheduling multiple PUSCHs for the same serving cell, zeros shall be appended to the DCI format 0_1 with smaller size until the payload size is the same for scheduling a single PUSCH and multiple PUSCHs.

Table 7.3.1.1.2-1: Bandwidth part indicator

Value of BWP indicator field	Bandwidth part
2 bits	
00	Configured BWP with BWP-Id $=2$
01	Configured BWP with BWP-Id $=3$
10	Configured BWP with BWP-Id $=4$
11	

Table 7.3.1.1.2-2: Precoding information and number of layers, for 4 antenna ports, if transform precoder is disabled, maxRank $=2$ or 3 or 4, and ul-FullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower

Bit field mapped to index	codebookSubset = fullyAndPartialAndNonCoheren t	Bit field mapped to index	codebookSubset = partialAndNonCoheren t	Bit field mapped to index	codebookSubset= nonCoherent
0	1 layer: TPMI=0	0	1 layer: TPMI=0	0	1 layer: TPMI=0
1	1 layer: TPMI=1	1	1 layer: TPMI=1	1	1 layer: TPMI=1
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
3	1 layer: TPMI=3	3	1 layer: TPMI=3	3	1 layer: TPMI=3
4	2 layers: TPMI=0	4	2 layers: TPMI=0	4	2 layers: TPMI=0
\ldots	..	\ldots	\ldots	\ldots	\ldots
9	2 layers: TPMI=5	9	2 layers: TPMI=5	9	2 layers: TPMI=5
10	3 layers: TPMI=0	10	3 layers: TPMI=0	10	3 layers: TPMI=0
11	4 layers: TPMI=0	11	4 layers: TPMI=0	11	4 layers: TPMI=0
12	1 layer: TPMI=4	12	1 layer: TPMI=4	12-15	reserved
\ldots	\ldots	\ldots	\ldots		
19	1 layer: TPMI=11	19	1 layer: TPMI=11		
20	2 layers: TPMI=6	20	2 layers: TPMI=6		
\ldots	\ldots	\ldots	\ldots		
27	2 layers: TPMI=13	27	2 layers: TPMI=13		
28	3 layers: TPMI=1	28	3 layers: TPMI=1		
29	3 layers: TPMI=2	29	3 layers: TPMI=2		
30	4 layers: TPMI=1	30	4 layers: TPMI=1		
31	4 layers: TPMI=2	31	4 layers: TPMI=2		
32	1 layers: TPMI=12				
\ldots	\ldots				
47	1 layers: TPMI=27				
48	2 layers: TPMI=14				
...	\ldots				
55	2 layers: TPMI=21				
56	3 layers: TPMI=3				
\ldots	\ldots				
59	3 layers: TPMI=6				
60	4 layers: TPMI=3				
61	4 layers: TPMI=4				
62-63	reserved				

Table 7.3.1.1.2-2A: Precoding information and number of layers for 4 antenna ports, if transform precoder is disabled, maxRank $=2$, and ul-FullPowerTransmission $=$ fullpowerMode1

Bit field mapped to index	codebookSubset = partialAndNonCoheren t	Bit field mapped to index	codebookSubset= nonCoherent
0	1 layer: TPMI=0	0	1 layer: TPMI=0
1	1 layer: TPMI=1	1	1 layer: TPMI=1
\ldots	\ldots	\ldots	...
3	1 layer: TPMI=3	3	1 layer: TPMI=3
4	2 layers: TPMI=0	4	2 layers: TPMI=0
\ldots		\ldots	\ldots
9	2 layers: TPMI=5	9	2 layers: TPMI=5
10	1 layer: TPMI=13	10	1 layer: TPMI=13
11	2 layer: TPMI=6	11	2 layer: TPMI=6
12	1 layer: TPMI=4	12-15	Reserved
\ldots	\ldots		
20	1 layer: TPMI=12		
21	1 layer: TPMI=14		
22	1 layer: TPMI=15		
23	2 layers: TPMI=7		
...	...		
29	2 layers: TPMI=13		
30-31	Reserved		

Table 7.3.1.1.2-2B: Precoding information and number of layers for 4 antenna ports, if transform precoder is disabled, maxRank = 3 or 4, and ul-FullPowerTransmission = fullpowerMode1

Bit field mapped to index	codebookSubset = partialAndNonCoheren t	Bit field mapped to index	codebookSubset= nonCoherent
0	1 layer: TPMI=0	0	1 layer: TPMI=0
1	1 layer: TPMI=1	1	1 layer: TPMI=1
\ldots	...	\ldots	...
3	1 layer: TPMI=3	3	1 layer: TPMI=3
4	2 layers: TPMI=0	4	2 layers: TPMI=0
\ldots	\ldots	\ldots	...
9	2 layers: TPMI=5	9	2 layers: TPMI=5
10	3 layers: TPMI=0	10	3 layers: TPMI=0
11	4 layers: TPMI=0	11	4 layers: TPMI=0
12	1 layer: TPMI=13	12	1 layer: TPMI=13
13	2 layer: TPMI=6	13	2 layer: TPMI=6
14	3 layer: TPMI=1	14	3 layer: TPMI=1
15	1 layer: TPMI=4	15	Reserved
\ldots	\ldots		
23	1 layer: TPMI=12		
24	1 layer: TPMI=14		
25	1 layer: TPMI=15		
26	2 layers: TPMI=7		
\ldots	\ldots		
32	2 layers: TPMI=13		
33	3 layers: TPMI=2		
34	4 layers: TPMI=1		
35	4 layers: TPMI=2		
36-63	Reserved		

Table 7.3.1.1.2-3: Precoding information and number of layers for 4 antenna ports, if transform precoder is enabled and ul-FullPowerTransmission is either not configured or configured to fullpowerMode2, or if transform precoder is disabled, maxRank =1, and ul-FullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower

Bit field mapped to index	codebookSubset $=$ fullyAndPartialAndNonCoheren t	Bit field mapped to index	codebookSubset= partialAndNonCoheren t	Bit field mapped to index	codebookSubset= nonCoherent
0	1 layer: TPMI=0	0	1 layer: TPMI=0	0	1 layer: TPMI=0
1	1 layer: TPMI=1	1	1 layer: TPMI=1	1	1 layer: TPMI=1
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
3	1 layer: TPMI=3	3	1 layer: TPMI=3	3	1 layer: TPMI=3
4	1 layer: TPMI=4	4	1 layer: TPMI=4		
\ldots	...	\ldots	...		
11	1 layer: TPMI=11	11	1 layer: TPMI=11		
12	1 layers: TPMI=12	12-15	reserved		
\ldots	\ldots				
27	1 layers: TPMI=27				
28-31	reserved				

Table 7.3.1.1.2-3A: Precoding information and number of layers for 4 antenna ports, if transform precoder is enabled and ul-FullPowerTransmission = fullpowerMode1, or if transform precoder is disabled, maxRank = 1, and ul-FullPowerTransmission = fullpowerMode1

Bit field mapped to index	codebookSubset= partialAndNonCoheren t	Bit field mapped to index	codebookSubset= nonCoherent
0	1 layer: TPMI=0	0	1 layer: TPMI=0
1	1 layer: TPMI=1	1	1 layer: TPMI=1
\ldots	\ldots	\ldots	\ldots
3	1 layer: TPMI=3	3	1 layer: TPMI=3
4	1 layer: TPMI=13	4	1 layer: TPMI=13
5	1 layer: TPMI=4	$5-7$	Reserved
\ldots	\ldots		
13	1 layer: TPMI=12		
14	1 layer: TPMI=14		
15	1 layer: TPMI=15		

Table 7.3.1.1.2-4: Precoding information and number of layers, for 2 antenna ports, if transform precoder is disabled, maxRank $=2$, and ul-FullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower

Bit field mappe d to index	codebookSubset = fullyAndPartialAndNonCoheren t	Bit field mappe d to index	codebookSubset = nonCoherent
0	1 layer: TPMI=0	0	1 layer: TPMI=0
1	1 layer: TPMI=1	1	1 layer: TPMI=1
2	2 layers: TPMI=0	2	2 layers: TPMI=0
3	1 layer: TPMI=2	3	reserved
4	1 layer: TPMI=3		
5	1 layer: TPMI=4		
6	1 layer: TPMI=5		
7	2 layers: TPMI=1		
8	2 layers: TPMI=2		
$9-15$	reserved		

Table 7.3.1.1.2-4A: Precoding information and number of layers, for 2 antenna ports, if transform precoder is disabled, maxRank $=2$, and ul-FullPowerTransmission = fullpowerMode1

Bit field mapped to index	codebookSubset= nonCoherent
0	1 layer: TPMI=0
1	1 layer: TPMI=1
2	2 layers: TPMI=0
3	1 layer: TPMI=2

Table 7.3.1.1.2-5: Precoding information and number of layers, for 2 antenna ports, if transform precoder is enabled and ul-FullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower, or if transform precoder is disabled, $\operatorname{maxRank}=1$, and and ul-FullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower

Bit field mapped to index	codebookSubset = fullyAndPartialAndNonCoheren t	Bit field mapped to index	codebookSubset $=$ nonCoherent
0	1 layer: TPMI=0	0	1 layer: TPMI=0
1	1 layer: TPMI=1	1	1 layer: TPMI=1
2	1 layer: TPMI=2		
3	1 layer: TPMI=3		
4	1 layer: TPMI=4		
5	1 layer: TPMI=5		
$6-7$	reserved		

Table 7.3.1.1.2-5A: Precoding information and number of layers, for 2 antenna ports, if transform precoder is enabled and ul-FullPowerTransmission = fullpowerMode1, or if transform precoder is disabled, maxRank = 1, and ul-FullPowerTransmission = fullpowerMode1

Bit field mapped to index	codebookSubset= nonCoherent
0	1 layer: TPMI=0
1	1 layer: TPMI=1
2	1 layer: TPMI=2
3	Reserved

Table 7.3.1.1.2-6: Antenna port(s), transform precoder is enabled, dmrs-Type=1, maxLength=1, except that dmrs-UplinkTransformPrecoding and tp-pi2BPSK are both configured and $\pi / 2-B P S K$ modulation is used

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	2	0
1	2	1
2	2	2
3	2	3

Table 7.3.1.1.2-6A: Antenna port(s), transform precoder is enabled, dmrs-UplinkTransformPrecoding and tp-pi2BPSK are both configured, $\pi / 2$-BPSK modulation is used, dmrs-Type=1, maxLength=1

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	2	$0, \mathrm{n}_{\mathrm{SCID}}=0$
1	2	$0, \mathrm{n}_{\mathrm{SCID}}=1$
2	2	$2, \mathrm{n}_{\mathrm{SCID}}=0$
3	2	$2, \mathrm{n}_{\mathrm{SCID}}=1$

Table 7.3.1.1.2-7: Antenna port(s), transform precoder is enabled, dmrs-Type=1, maxLength=2, except that dmrs-UplinkTransformPrecoding and tp-pi2BPSK are both configured and $\pi / 2$-BPSK modulation is used

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	2	0	1
1	2	1	1
2	2	2	1
3	2	3	1
4	2	0	2
5	2	1	2
6	2	2	2
7	2	3	2
8	2	4	2
9	2	5	2
10	2	6	2
11	2	7	2
$12-15$	Reserved	Reserved	Reserved

Table 7.3.1.1.2-7A: Antenna port(s), transform precoder is enabled, dmrs-UplinkTransformPrecoding and tp-pi2BPSK are both configured, $\pi / 2-$ BPSK modulation is used, dmrs-Type=1, maxLength=2

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	2	$0, \mathrm{n}_{\text {SCID }}=0$	1
1	2	$0, \mathrm{n}_{\text {SCID }}=1$	1
2	2	$2, \mathrm{n}_{\text {SCID }}=0$	1
3	2	$2, \mathrm{n}_{\text {SCID }}=1$	1
4	2	$0, \mathrm{n}_{\text {SCID }}=0$	2
5	2	$0, \mathrm{n}_{\text {SCID }}=1$	2
6	2	$2, \mathrm{n}_{\text {SCID }}=0$	2
7	2	$2, \mathrm{n}_{\text {SCID }}=1$	2
8	2	$4, \mathrm{n}_{\text {SCID }}=0$	2
9	2	$4, \mathrm{n}_{\text {SCID }}=1$	2
10	2	$6, \mathrm{n}_{\text {SCID }}=0$	2
11	2	$6, \mathrm{n}_{\text {SCID }}=1$	2
$12-15$	Reserved	$R e \mathrm{served}$	Reserved

Table 7.3.1.1.2-8: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=1, rank = 1

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	1	0
1	1	1
2	2	0
3	2	1
4	2	2
5	2	3
$6-7$	Reserved	Reserved

Table 7.3.1.1.2-9: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=1, rank = 2

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	1	0,1
1	2	0,1
2	2	2,3
3	2	0,2
$4-7$	Reserved	Reserved

Table 7.3.1.1.2-10: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=1, rank $=3$

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	2	$0-2$
$2-7$	Reserved	Reserved

Table 7.3.1.1.2-11: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=1, rank $=4$

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	2	$0-3$
$2-7$	Reserved	Reserved

Table 7.3.1.1.2-12: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=2, rank $=1$

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	1	0	1
1	1	1	1
2	2	0	1
3	2	1	1
4	2	2	1
5	2	3	1
6	2	0	2
7	2	1	2
8	2	2	2
9	2	3	2
10	2	4	2
11	2	5	2
12	2	6	2
13	2	7	2
$14-15$	Reserved	Reserved	Reserved

Table 7.3.1.1.2-13: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=2, rank $=2$

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	1	0,1	1
1	2	0,1	1
2	2	2,3	1
3	2	0,2	1
4	2	0,1	2
5	2	2,3	2
6	2	4,5	2
7	2	6,7	2
8	2	0,4	2
9	2	2,6	2
$10-15$	Reserved	Reserved	Reserved

Table 7.3.1.1.2-14: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=2, rank $=3$

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	2	$0-2$	1
1	2	$0,1,4$	2
2	2	$2,3,6$	2
$3-15$	Reserved	Reserved	Reserved

Table 7.3.1.1.2-15: Antenna port(s), transform precoder is disabled, dmrs-Type=1, maxLength=2, rank $=4$

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	2	$0-3$	1
1	2	$0,1,4,5$	2
2	2	$2,3,6,7$	2
3	2	$0,2,4,6$	2
$4-15$	Reserved	Reserved	Reserved

Table 7.3.1.1.2-16: Antenna port(s), transform precoder is disabled, dmrs-Type=2, maxLength=1, rank=1

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	1	0
1	1	1
2	2	0
3	2	1
4	2	2
5	2	3
6	3	0
7	3	1
8	3	2
9	3	3
10	3	4
11	3	5
$12-15$	Reserved	Reserved

Table 7.3.1.1.2-17: Antenna port(s), transform precoder is disabled, dmrs-Type=2, maxLength=1, rank=2

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	1	0,1
1	2	0,1
2	2	2,3
3	3	0,1
4	3	2,3
5	3	4,5
6	2	0,2
$7-15$	Reserved	Reserved

Table 7.3.1.1.2-18: Antenna port(s), transform precoder is disabled, dmrs-Type=2, maxLength=1, rank $=3$

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	2	$0-2$
1	3	$0-2$
2	3	$3-5$
$3-15$	Reserved	Reserved

Table 7.3.1.1.2-19: Antenna port(s), transform precoder is disabled, dmrs-Type=2, maxLength=1, rank $=4$

Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	2	$0-3$
1	3	$0-3$
$2-15$	Reserved	Reserved

Table 7.3.1.1.2-20: Antenna port(s), transform precoder is disabled, dmrs-Type=2, maxLength=2, rank=1

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	1	0	1
1	1	1	1
2	2	0	1
3	2	1	1
4	2	2	1
5	2	3	1
6	3	0	1
7	3	1	1
8	3	2	1
9	3	3	1
10	3	4	1
11	3	5	1
12	3	0	2
13	3	1	2
14	3	2	2
15	3	3	2
16	3	4	2
17	3	5	2
18	3	6	2
19	3	7	2
20	3	8	2
21	3	9	2
22	3	10	2
23	3	11	2
24	1	0	2
25	1	1	2
26	1	6	2
27	1	7	2
28-31	Reserved	Reserved	Reserved

Table 7.3.1.1.2-21: Antenna port(s), transform precoder is disabled, dmrs-Type=2, maxLength=2, rank=2

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	1	0,1	1
1	2	0,1	1
2	2	2,3	1
3	3	0,1	1
4	3	2,3	1
5	3	4,5	1
6	2	0,2	1
7	3	0,1	2
8	3	2,3	2
9	3	4,5	2
10	3	6,7	2
11	3	8,9	2
12	3	10,11	2
13	1	0,1	2
14	1	6,7	2
15	2	0,1	2
16	2	2,3	2
17	2	6,7	2
18	2	8,9	2
$19-31$	2	Reserved	Reserved

Table 7.3.1.1.2-22: Antenna port(s), transform precoder is disabled, dmrs-Type=2, maxLength=2, rank=3

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	2	$0-2$	1
1	3	$0-2$	1
2	3	$3-5$	1
3	3	$0,1,6$	2
4	3	$2,3,8$	2
5	3	$4,5,10$	2
$6-31$	Reserved	Reserved	Reserved

Table 7.3.1.1.2-23: Antenna port(s), transform precoder is disabled, dmrs-Type=2, maxLength=2, rank=4

Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	2	$0-3$	1
1	3	$0-3$	1
2	3	$0,1,6,7$	2
3	3	$2,3,8,9$	2
4	3	$4,5,10,11$	2
$5-31$	Reserved	Reserved	Reserved

Table 7.3.1.1.2-24: SRS request

Value of SRS request field	Triggered aperiodic SRS resource set(s) for DCI format 0_1, 0_2, 1_1, 1_2, and 2_3 configured with higher layer parameter srs-TPC-PDCCHGroup set to 'typeB'	Triggered aperiodic SRS resource set(s) for DCI format 2_3 configured with higher layer parameter srs-TPC-PDCCH-Group set to 'typeA'
00	No aperiodic SRS resource set triggered	No aperiodic SRS resource set triggered
01	SRS resource set(s) configured by SRS-ResourceSet with higher layer parameter aperiodicSRS- ResourceTrigger set to 1 or an entry in aperiodicSRS-ResourceTriggerList set to 1 SRS resource set(s) configured by SRS-PosResourceSet with an entry in aperiodicSRS-ResourceTriggerList set to 1 when triggered by DCI formats 0_1, 0_2, 1_1, and 1_2	SRS resource set(s) configured with higher layer parameter usage in SRS-ResourceSet set to 'antennaSwitching' and resourceType in SRSResourceSet set to 'aperiodic' for a $1^{\text {st }}$ set of serving cells configured by higher layers
10	SRS resource set(s) configured by SRS-ResourceSet with higher layer parameter aperiodicSRS- ResourceTrigger set to 2 or an entry in aperiodicSRS-ResourceTriggerList set to 2 SRS resource set(s) configured by SRS-PosResourceSet with an entry in aperiodicSRS-ResourceTriggerList set to 2 when triggered by DCI formats 0_1, 0 2, 1 1, and 12	SRS resource set(s) configured with higher layer parameter usage in SRS-ResourceSet set to 'antennaSwitching' and resourceType in SRSResourceSet set to 'aperiodic' for a $2^{\text {nd }}$ set of serving cells configured by higher layers
11	SRS resource set(s) configured by SRS-ResourceSet with higher layer parameter aperiodicSRS- ResourceTrigger set to 3 or an entry in aperiodicSRS-ResourceTriggerList set to 3 SRS resource set(s) configured by SRS-PosResourceSet with an entry in aperiodicSRS-ResourceTriggerList set to 3 when triggered by DCI formats 0_1, 0_2, 1_1, and 1_2	SRS resource set(s) configured with higher layer parameter usage in SRS-ResourceSet set to 'antennaSwitching' and resourceType in SRSResourceSet set to 'aperiodic' for a $3^{\text {rd }}$ set of serving cells configured by higher layers

Table 7.3.1.1.2-25: PTRS-DMRS association for UL PTRS port 0

Value	DMRS port
0	$1^{\text {st }}$ scheduled DMRS port
1	$2^{\text {nd }}$ scheduled DMRS port
2	$3^{\text {rd }}$ scheduled DMRS port
3	$4^{\text {th }}$ scheduled DMRS port

Table 7.3.1.1.2-26: PTRS-DMRS association for UL PTRS ports 0 and 1

Value of MSB	DMRS port	Value of LSB	DMRS port
0	$1^{\text {st }}$ DMRS port which shares PTRS port 0	0	$1^{1^{\text {st }} \text { DMRS port which shares }}$PTRS port 1
1	$2^{\text {nd }}$ DMRS port which shares PTRS port 0	1	$2^{\text {nd }}$ DMRS port which shares PTRS port 1

Table 7.3.1.1.2-27: void

Table 7.3.1.1.2-28: SRI indication for non-codebook based PUSCH transmission, $\quad L_{\max }=1$

Bit field mapped to index	SRI(s), $N_{\text {SRS }}=2$	Bit field mapped to index	SRI(s), $N_{\text {SRS }}=3$	Bit field mapped to index	SRI(s), $N_{\text {SRS }}=4$
0	0	0	0	0	0
1	1	1	1	1	1
		2	2	2	2
		3	reserved	3	3

Table 7.3.1.1.2-29: SRI indication for non-codebook based PUSCH transmission, $\quad L_{\max }=2$

Bit field mapped to index	SRI(s), $N_{\text {SRS }}=2$	Bit field mapped to index	SRI(s), $N_{\text {SRS }}=3$	Bit field mapped to index	SRI(s), $N_{\text {SRS }}=4$
0	0	0	0	0	0
1	1	1	1	1	1
2	0,1	2	2	2	2
3		3	0,1	3	3
		4	0,2	4	0,1
		5	1,2	5	0,2
		$6-7$	reserved	6	0,3
				7	1,2
				8	1,3
				$10-15$	reserved

Table 7.3.1.1.2-30: SRI indication for non-codebook based PUSCH transmission, $\quad L_{\max }=3$

Bit field mapped to index	SRI(s), $N_{\text {SRS }}=2$	Bit field mapped to index	SRI(s), $N_{\text {SRS }}=3$	Bit field mapped to index	SRI(s), $N_{\text {SRS }}=4$
0	0	0	0	0	0
1	1	1	1	1	1
2	0,1	2	2	2	2
3	reserved	3	0,1	3	3
		4	0,2	4	0,1
		5	1,2	5	0,2
		7	$0,1,2$	6	0,3
			reserved	7	1,2
				8	1,3
				9	2,3
				10	$0,1,2$
				11	$0,1,3$
				12	$0,2,3$
				13	$1,2,3$
					reserved

Table 7.3.1.1.2-31: SRI indication for non-codebook based PUSCH transmission, $\quad L_{\max }=4$

Bit field mapped to index	SRI(s), $N_{\text {SRS }}=2$	Bit field mapped to index	SRI(s), $N_{\text {SRS }}=3$	Bit field mapped to index	SRI(s), $N_{\text {SRS }}=4$
0	0	0	0	0	0
1	1	1	1	1	1
2	0,1	2	2	2	2
3		3	0,1	3	3
		4	0,2	4	0,1
		5	1,2	5	0,2
		6	$0,1,2$	6	0,3
					7
				8	1,2
				9	1,3
				10	2,3
				11	$0,1,2$
				$12,1,3$	
				14	$0,2,3$
				$1,2,3$	
					$0,1,2,3$
					15

Table 7.3.1.1.2-32: SRI indication for codebook based PUSCH transmission, if ul-
FullPowerTransmission is not configured, or ul-FullPowerTransmission = fullpowerMode1, or ulFullPowerTransmission = fullpowerMode2, or ul-FullPowerTransmission = fullpower and $\quad N_{S R S}=2$

Bit field mapped to index	SRI(s),
0	$N_{\text {SRS }}=2$
0	0
1	1

Table 7.3.1.1.2-32A: SRI indication for codebook based PUSCH transmission, if ulFullPowerTransmission $=$ fullpowerMode2 and $\quad N_{S R S}=3$

Bit field mapped to index	SRI(s), $N_{S R S}=3$
0	0
1	1
2	2
3	Reserved

Table 7.3.1.1.2-32B: SRI indication for codebook based PUSCH transmission, if ul-
FullPowerTransmission $=$ fullpowerMode2 and $\quad N_{S R S}=4$

Bit field mapped to index	$\mathrm{SRI}(\mathrm{s}), \quad N_{S R S}=4$
0	0
1	1
2	2
3	3

Table 7.3.1.1.2-33: Joint indication of minimum applicable scheduling offset K0/K2

Bit field mapped to index	Minimum applicable K0 for the active DL BWP, if minimumSchedulingOffsetK0 is configured for the DL BWP	Minimum applicable K2 for the active UL BWP, if minimumSchedulingOffsetK2 is configured for the UL BWP
0	The first value configured by minimumSchedulingOffsetKO for the active DL BWP	The first value configured by minimumSchedulingOffsetK2 for the active UL BWP
1	The second value configured by minimumSchedulingOffsetKO for the active DL BWP if the second value is configured; 0 otherwise	The second value configured by minimumSchedulingOffsetK2 for the active UL BWP if the second value is configured; 0 otherwise

Table 7.3.1.1.2-34: Redundancy version

Value of the Redundancy version field	Value of $r v_{\text {id }}$ to be applied	
0	0	
1	2	

Table 7.3.1.1.2-35: Allowed entries for DCI format 0_1, configured by higher layer parameter ul-AccessConfigListDCI-0-1

Entry index	Channel Access Type	The CP extension T_"ext" index defined in Clause 5.3.1 of $[4,38.211]$	CAPC
0	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0	1
1	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0	2
2	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0	3
3	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0	4
4	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2	1
5	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2	2
6	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2	3
7	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2	4
8	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0	1
9	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0	2
10	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0	3
11	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0	4
12	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2	1
13	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2	2
14	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2	3
15	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2	4
16	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	0	1
17	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	0	2
18	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	0	3
19	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	0	4
20	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	1	1
21	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	1	2
22	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	1	3
23	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	1	4
24	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	3	1
25	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	3	2
26	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	3	3
27	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	3	4
28	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	0	1
29	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	0	2
30	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	0	3
31	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	0	4
32	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	1	1
33	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	1	2
34	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	1	3
35	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	1	4
36	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	2	1
37	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	2	2
38	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	2	3
39	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	2	4
40	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	3	1
41	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	3	2
42	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	3	3
43	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	3	4

7.3.1.1.3 Format 0_2

DCI format $0 _2$ is used for the scheduling of PUSCH in one cell.
The following information is transmitted by means of the DCI format $0 _2$ with CRC scrambled by C-RNTI or CSRNTI or SP-CSI-RNTI or MCS-C-RNTI:

- Identifier for DCI formats - 1 bit
- The value of this bit field is always set to 0 , indicating an UL DCI format
- Carrier indicator $-0,1$, 2 or 3 bits determined by higher layer parameter carrierIndicatorSizeDCI-0-2, as defined in Clause 10.1 of [5, TS38.213].
- UL/SUL indicator - 0 bit for UEs not configured with supplementaryUplink in ServingCellConfig in the cell or UEs configured with supplementaryUplink in ServingCellConfig in the cell but only one carrier in the cell is configured for PUSCH transmission; otherwise, 1 bit as defined in Table 7.3.1.1.1-1.
- Bandwidth part indicator -0 , 1 or 2 bits as determined by the number of UL BWPs $n_{B W P, R R C}$ configured by higher layers, excluding the initial UL bandwidth part. The bitwidth for this field is determined as
$\left\lceil\log _{2}\left(n_{B W P}\right)\right\rceil$ bits, where
- $\quad n_{B W P}=n_{B W P, R R C}+1$ if $n_{B W P, R R C} \leq 3$, in which case the bandwidth part indicator is equivalent to the ascending order of the higher layer parameter BWP-Id;
- otherwise $n_{B W P}=n_{B W P, R R C}$, in which case the bandwidth part indicator is defined in Table 7.3.1.1.2-1;

If a UE does not support active BWP change via DCI, the UE ignores this bit field.

- Frequency domain resource assignment - number of bits determined by the following:
- $\quad N_{R B G}$ bits if only resource allocation type 0 is configured, where $N_{R B G}$ is defined in Clause 6.1.2.2.1 of [6, TS 38.214]
- $\quad\left\lceil\log _{2}\left(N_{R B G, K 1}\left(N_{R B G, K 1}+1\right) / 2\right)\right\rceil$ bits if only resource allocation type 1 is configured, or $\left.\max \left(\Gamma \log _{2}\left(N_{R B G, K 1}\left(N_{R B G, K 1}+1\right) / 2\right)\right\rceil, N_{\text {RBG }}\right)+1$ bits if resourceAllocationDCI-0-2-r16 is configured as 'dynamicSwitch', where $\left.\quad N_{R B G, K 1}=\Gamma\left(N_{R B}^{U L, B W P}+\left(N_{U L, B W P}^{\text {start }} \bmod K 1\right)\right) / K 1\right\rceil$,
$N_{R B}^{U L, B W P} \quad$ is the size of the active UL bandwidth part, $\quad N_{U L, B W P}^{\text {start }} \quad$ is defined as in clause 4.4.4.4 of [4, TS 38.211] and $K 1$ is given by higher layer parameter resourceAllocationType1GranularityDCI-0-2. If the higher layer parameter resourceAllocationType1GranularityDCI-0-2 is not configured, K 1 is equal to 1 .
- If resourceAllocationDCI-0-2-r16 is configured as 'dynamicSwitch', the MSB bit is used to indicate resource allocation type 0 or resource allocation type 1 , where the bit value of 0 indicates resource allocation type 0 and the bit value of 1 indicates resource allocation type 1.
- For resource allocation type 0 , the $\quad N_{\text {RBG }} \quad$ LSBs provide the resource allocation as defined in Clause 6.1.2.2.1 of [6, TS 38.214].
- For resource allocation type 1, the $\quad\left\lceil\log _{2}\left(N_{R B G, K 1}\left(N_{R B G, K 1}+1\right) / 2\right)\right\rceil \quad$ LSBs provide the resource allocation as follows:
- For PUSCH hopping with resource allocation type 1:
- $\quad N_{U L_{\text {hop }}}$ MSB bits are used to indicate the frequency offset according to Clause 6.3 of [6, TS 38.214], where $\quad N_{U L_{\text {bop }}}=1$ if the higher layer parameter frequencyHoppingOffsetListsDCI-0-2 contains two offset values and $\quad N_{U L_{\text {hop }}}=2$ if the higher layer parameter frequencyHoppingOffsetListsDCI-0-2 contains four offset values
- $\quad\left[\log _{2}\left(N_{R B G, K 1}\left(N_{R B G, K 1}+1\right) / 2\right)\right]-N_{U L_{\text {hop }}}$ bits provides the frequency domain resource allocation according to Clause 6.1.2.2.2 of [6, TS 38.214]
- For non-PUSCH hopping with resource allocation type 1:
- $\quad\left\lceil\log _{2}\left(N_{R B G, K 1}\left(N_{R B G, K 1}+1\right) / 2\right)\right\rceil$ bits provides the frequency domain resource allocation according to Clause 6.1.2.2.2 of [6, TS 38.214]

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and if resourceAllocationDCI-0-2-r16 is configured as 'dynamicSwitch' for the indicated bandwidth part, the UE assumes resource allocation type 0 for the indicated bandwidth part if the bitwidth of the "Frequency domain resource assignment" field of the active bandwidth part is smaller than the bitwidth of the "Frequency domain resource assignment" field of the indicated bandwidth part.

- Time domain resource assignment $-0,1,2,3,4,5$ or 6 bits as defined in Clause 6.1.2.1 of [6, TS38.214]. The bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the higher layer
parameter pusch-TimeDomainAllocationListDCI-0-2 if the higher layer parameter is configured, or I is the number of entries in the higher layer parameter PUSCH-TimeDomainResourceAllocationList if the higher layer parameter PUSCH-TimeDomainResourceAllocationList is configured and the higher layer parameter pusch-TimeDomainAllocationListDCI-0-2 is not configured; otherwise I is the number of entries in the default table.
- Frequency hopping flag - 0 or 1 bit:
- 0 bit if the higher layer parameter frequencyHoppingDCI-0-2 is not configured;
- 1 bit according to Table 7.3.1.1.1-3 otherwise, only applicable to resource allocation type 1, as defined in Clause 6.3 of [6, TS 38.214].
- Modulation and coding scheme -5 bits as defined in Clause 6.1.4.1 of [6, TS 38.214]
- New data indicator -1 bit
- Redundancy version -0 , 1 or 2 bits determined by higher layer parameter numberOfBitsForRV-DCI-0-2
- If 0 bit is configured, $r v_{i d}$ to be applied is 0 ;
- 1 bit according to Table 7.3.1.2.3-1;
- 2 bits according to Table 7.3.1.1.1-2.
- HARQ process number $-0,1,2,3$ or 4 bits determined by higher layer parameter harq-ProcessNumberSizeDCI-0-2
- Downlink assignment index - 0, 1, 2 or 4 bits
- 0 bit if the higher layer parameter downlinkAssignmentIndexDCI-0-2 is not configured;
- 1, 2 or 4 bits otherwise,
- $1^{\text {st }}$ downlink assignment index -1 or 2 bits:
- 1 bit for semi-static HARQ-ACK codebook;
- 2 bits for dynamic HARQ-ACK codebook.
- $2^{\text {nd }}$ downlink assignment index -0 or 2 bits
- 2 bits for dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks;
- 0 bit otherwise.

When two HARQ-ACK codebooks are configured for the same serving cell and if higher layer parameter priorityIndicatorDCI-0-2 is configured, if the bit width of the Downlink assignment index in DCI format $0 _2$ for one HARQ-ACK codebook is not equal to that of the Downlink assignment index in DCI format $0 _2$ for the other HARQ-ACK codebook, a number of most significant bits with value set to ' 0 ' are inserted to smaller Downlink assignment index until the bit width of the Downlink assignment index in DCI format $0 _2$ for the two HARQ-ACK codebooks are the same.

- TPC command for scheduled PUSCH - 2 bits as defined in Clause 7.1.1 of [5, TS38.213]

$$
\left\lceil\log _{2}\left(\sum_{k=1}^{\min \left(L_{\max }, N_{\mathrm{SRS}}\right)}\binom{N_{\mathrm{SRS}}}{k}\right)\right\rceil_{\text {or }}\left\lceil\log _{2} N_{\text {SRS }}\right\rceil{ }_{\text {bits, where }} N_{\text {SRS }} \quad \text { is the }
$$

- SRS resource indicator number of configured SRS resources in the SRS resource set configured by higher layer parameter srs-ResourceSetToAddModListDCI-0-2, and associated with the higher layer parameter usage of value 'codeBook' or 'nonCodeBook',
$\left\lceil\log _{2}\left(\sum_{k=1}^{\min \left(L_{\max }, N_{\mathrm{SRS}}\right\}}\binom{N_{\mathrm{SRS}}}{k}\right)\right\rceil$
bits according to Tables 7.3.1.1.2-28/29/30/31 if the higher layer parameter $t x$ Config $=$ nonCodebook, where $\quad N_{S R S} \quad$ is the number of configured SRS resources in the SRS resource
set configured by higher layer parameter srs-ResourceSetToAddModListDCI-0-2, and associated with the higher layer parameter usage of value 'nonCodeBook' and
- if UE supports operation with maxMIMO-LayersDCI-0-2 and the higher layer parameter maxMIMO-LayersDCI-0-2 of PUSCH-ServingCellConfig of the serving cell is configured, $L_{\text {max }}$ is given by that parameter
- otherwise, $L_{\max }$ is given by the maximum number of layers for PUSCH supported by the UE for the serving cell for non-codebook based operation.
- $\quad\left\lceil\log _{2} N_{S R S}\right\rceil$ bits according to Tables 7.3.1.1.2-32 if the higher layer parameter txConfig = codebook, where $\quad N_{S R S}$ is the number of configured SRS resources in the SRS resource set configured by higher layer parameter srs-ResourceSetToAddModListDCI-0-2, and associated with the higher layer parameter usage of value 'codeBook'.
- Precoding information and number of layers - number of bits determined by the following:
- 0 bits if the higher layer parameter $t x$ Config = nonCodeBook;
- 0 bits for 1 antenna port and if the higher layer parameter txConfig = codebook;
- 4, 5, or 6 bits according to Table 7.3.1.1.2-2 for 4 antenna ports, if txConfig $=$ codebook, ulFullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRankDCI-0-2, and codebookSubsetDCI-0-2;
- 4 or 5 bits according to Table 7.3.1.1.2-2A for 4 antenna ports, if $t x C o n f i g=$ codebook, ulFullPowerTransmission =fullpowerMode1, the values of higher layer parameters maxRankDCI-0-2=2, transform precoder is disabled, and according to the value of higher layer parameter codebookSubsetDCI-0-2;
- 4 or 6 bits according to Table 7.3.1.1.2-2B for 4 antenna ports, if $t x$ Config = codebook, ulFullPowerTransmission =fullpowerMode1, the values of higher layer parameters maxRankDCI-0-2=3 or 4, transform precoder is disabled, and according to the value of higher layer parameter codebookSubsetDCI-0-2;
- 2, 4, or 5 bits according to Table 7.3.1.1.2-3 for 4 antenna ports, if txConfig = codebook, ulFullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRankDCI-0-2 and codebookSubsetDCI-0-2;
- 3 or 4 bits according to Table 7.3.1.1.2-3A for 4 antenna ports, if $t x C o n f i g=c o d e b o o k, ~ u l-~$ FullPowerTransmission =fullpowerMode1, maxRankDCI-0-2=1, and according to whether transform precoder is enabled or disabled, and the value of higher layer parameter codebookSubsetDCI-0-2;
- 2 or 4 bits according to Table7.3.1.1.2-4 for 2 antenna ports, if $t x$ Config = codebook, ulFullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRankDCI-0-2 and codebookSubsetDCI-0-2;
- 2 bits according to Table 7.3.1.1.2-4A for 2 antenna ports, if $t x$ Config $=$ codebook, ulFullPowerTransmission =fullpowerMode1, transform precoder is disabled, the maxRankDCI-0-2=2, and codebookSubsetDCI-0-2 = nonCoherent;
- 1 or 3 bits according to Table7.3.1.1.2-5 for 2 antenna ports, if $t x$ Config = codebook, ulFullPowerTransmission is not configured or configured to fullpowerMode2 or configured to fullpower, and according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRankDCI-0-2 and codebookSubsetDCI-0-2;
- 2 bits according to Table 7.3.1.1.2-5A for 2 antenna ports, if $t x$ Config $=$ codebook, ulFullPowerTransmission =fullpowerMode1, maxRankDCI-0-2=1, and according to whether transform precoder is enabled or disabled, and the value of higher layer parameter codebookSubsetDCI-0-2.

For the higher layer parameter txConfig=codebook, if ul-FullPowerTransmission is configured to fullpowerMode2, the values of higher layer parameters maxRankDCI-0-2 is configured to be larger than 2 , and at least one SRS
resource with 4 antenna ports is configured in an SRS resource set with usage set to 'codebook' and an SRS resource with 2 antenna ports is indicated via SRI in the same SRS resource set, then Table 7.3.1.1.2-4 is used.

For the higher layer parameter $t x$ Config = codebook, if different SRS resources with different number of antenna ports are configured, the bitwidth is determined according to the maximum number of ports in an SRS resource among the configured SRS resources in an SRS resource set with usage set to 'codebook'. If the number of ports for a configured SRS resource in the set is less than the maximum number of ports in an SRS resource among the configured SRS resources, a number of most significant bits with value set to ' 0 ' are inserted to the field.

- Antenna ports - number of bits determined by the following:
- 0 bit if higher layer parameter antennaPortsFieldPresenceDCI-0-2 is not configured;
- $2,3,4$, or 5 bits otherwise,
- $\quad 2$ bits as defined by Tables 7.3.1.1.2-6, if transform precoder is enabled, dmrs-Type=1, and maxLength=12 except that dmrs-UplinkTransformPrecoding and tp-pi2BPSK are both configured and $\pi / 2$ BPSK modulation is used;
- 2 bits as defined by 7.3.1.1.2-6A, if transform precoder is enabled, and dmrs-UplinkTransformPrecoding and $t p-p i 2 B P S K$ are both configured, $\pi / 2$ BPSK modulation is used, dmrs-Type $=1$, and maxLength=1, where $\mathrm{n}_{\text {SCID }}$ is the scrambling identity for antenna ports defined in Clause 6.4.1.1.1.2, in [4, TS38.211];
- 4 bits as defined by Tables 7.3.1.1.2-7, if transform precoder is enabled, dmrs-Type=1, and maxLength=2, except that dmrs-UplinkTransformPrecoding and tp-pi2BPSK are both configured and $\pi / 2$ BPSK modulation is used;
- 4 bits as defined by Tables 7.3.1.1.2-7A, if transform precoder is enabled, and dmrsUplinkTransformPrecoding and tp-pi2BPSK are both configured, $\pi / 2$ BPSK modulation is used, dmrsType $=1$, and maxLength=2, where $n_{\text {SCID }}$ is the scrambling identity for antenna ports defined in Clause 6.4.1.1.1.2, in [4, TS38.211];
- 3 bits as defined by Tables 7.3.1.1.2-8/9/10/11, if transform precoder is disabled, dmrs-Type=1, and maxLength $=1$, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter txConfig = nonCodebook and according to the Precoding information and number of layers field if the higher layer parameter txConfig = codebook;
- 4 bits as defined by Tables 7.3.1.1.2-12/13/14/15, if transform precoder is disabled, dmrs-Type=1, and maxLength $=2$, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter $t x$ Config $=$ nonCodebook and according to the Precoding information and number of layers field if the higher layer parameter txConfig = codebook;
- 4 bits as defined by Tables 7.3.1.1.2-16/17/18/19, if transform precoder is disabled, dmrs-Type=2, and maxLength $=1$, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter txConfig = nonCodebook and according to the Precoding information and number of layers field if the higher layer parameter txConfig = codebook;
- 5 bits as defined by Tables 7.3.1.1.2-20/21/22/23, if transform precoder is disabled, dmrs-Type=2, and maxLength=2, and the value of rank is determined according to the SRS resource indicator field if the higher layer parameter txConfig = nonCodebook and according to the Precoding information and number of layers field if the higher layer parameter txConfig = codebook.
where the number of CDM groups without data of values 1, 2, and 3 in Tables 7.3.1.1.2-6 to 7.3.1.1.2-23 refers to CDM groups $\{0\},\{0,1\}$, and $\{0,1,2\}$ respectively.

If a UE is configured with both dmrs-UplinkForPUSCH-MappingTypeA-DCI-0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCI-0-2 and is configured with antennaPortsFieldPresenceDCI-0-2, the bitwidth of this field equals $\max \left\{x_{A}, x_{B}\right\}$, where x_{A} is the "Antenna ports" bitwidth derived according to dmrs-UplinkForPUSCH-MappingTypeA-DCI-0-2 and $\quad x_{B}$ is the "Antenna ports" bitwidth derived according to dmrs-UplinkForPUSCH-MappingTypeB-DCI-0-2. A number of $\left|x_{A}-x_{B}\right|$ zeros are padded in the MSB of this field, if the mapping type of the PUSCH corresponds to the smaller value of X_{A} and X_{B}.

If a UE is not configured with higher layer parameter antennaPortsFieldPresenceDCI-0-2, antenna port(s) are defined assuming bit field index value 0 in Tables 7.3.1.1.2-6 to 7.3.1.1.2-23.

- SRS request $-0,1$, 2 or 3 bits
- 0 bit if the higher layer parameter srs-RequestDCI-0-2 is not configured;
- 1 bit as defined by Table 7.3.1.1.3-1 if higher layer parameter srs-RequestDCI-0-2 $=1$ and for UEs not configured with supplementaryUplink in ServingCellConfig in the cell;
- 2 bits if higher layer parameter srs-RequestDCI-0-2 $=1$ and for UEs configured with supplementaryUplink in ServingCellConfig in the cell, where the first bit is the non-SUL/SUL indicator as defined in Table 7.3.1.1.1-1 and the second bit is defined by Table 7.3.1.1.3-1;
- 2 bits as defined by Table 7.3.1.1.2-24 if higher layer parameter srs-RequestDCI-0-2 $=2$ and for UEs not configured with supplementaryUplink in ServingCellConfig in the cell;
- 3 bits if higher layer parameter srs-RequestDCI-0-2 $=2$ and for UEs configured with supplementaryUplink in ServingCellConfig in the cell, where the first bit is the non-SUL/SUL indicator as defined in Table 7.3.1.1.1-1 and the second and third bits are defined by Table 7.3.1.1.2-24;
- CSI request $-0,1,2,3,4,5$, or 6 bits determined by higher layer parameter reportTriggerSizeDCI-0-2.
- PTRS-DMRS association - number of bits determined as follows
- 0 bit if PTRS-UplinkConfig is not configured in either dmrs-UplinkForPUSCH-MappingTypeA or dmrs-UplinkForPUSCH-MappingTypeB and transform precoder is disabled, or if transform precoder is enabled, or if maxRankDCI-0-2=1;
- 2 bits otherwise, where Table 7.3.1.1.2-25 and 7.3.1.1.2-26 are used to indicate the association between PTRS port(s) and DMRS port(s) when one PT-RS port and two PT-RS ports are configured by maxNrofPorts in PTRS-UplinkConfig respectively, and the DMRS ports are indicated by the Antenna ports field.

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and the "PTRS-DMRS association" field is present for the indicated bandwidth part but not present for the active bandwidth part, the UE assumes the "PTRS-DMRS association" field is not present for the indicated bandwidth part.

- beta_offset indicator - 0 bit if the higher layer parameter betaOffsets = semiStatic; otherwise 1 bit if 2 offset indexes are configured by higher layer parameter dynamicDCI-0-2 as defined by Table 9.3-3A in [5, TS 38.213], and 2 bits if 4 offset indexes are configured by higher layer parameter dynamicDCI-0-2 as defined by Table 9.3-3 in [5, TS 38.213].

When two HARQ-ACK codebooks are configured for the same serving cell and if higher layer parameter priorityIndicatorDCI-0-2 is configured, if the bit width of the beta_offset indicator in DCI format $0 _2$ for one HARQ-ACK codebook is not equal to that of the beta_offset indicator in DCI format $0 _2$ for the other HARQACK codebook, a number of most significant bits with value set to ' 0 ' are inserted to smaller beta_offset indicator until the bit width of the beta_offset indicator in DCI format $0 _2$ for the two HARQ-ACK codebooks are the same.

- DMRS sequence initialization -0 or 1 bit
- 0 bit if the higher layer parameter dmrs-SequenceInitializationDCI-0-2 is not configured or if transform precoder is enabled;
- 1 bit if transform precoder is disabled and the higher layer parameter dmrs-SequenceInitializationDCI-0-2 is configured.
- UL-SCH indicator - 1 bit. A value of "1" indicates UL-SCH shall be transmitted on the PUSCH and a value of " 0 " indicates UL-SCH shall not be transmitted on the PUSCH. Except for DCI format 0_2 with CRC scrambled by SP-CSI-RNTI, a UE is not expected to receive a DCI format $0 _2$ with UL-SCH indicator of " 0 " and CSI request of all zero(s).
- Open-loop power control parameter set indication - 0 or 1 or 2 bits.
- 0 bit if the higher layer parameter p0-PUSCH-SetList is not configured;
- 1 or 2 bits otherwise,
- 1 bit if SRS resource indicator is present in the DCI format $0 _2$;
- 1 or 2 bits as determined by higher layer parameter olpc-ParameterSetDCI-0-2 if SRS resource indicator is not present in the DCI format $0 _2$;
- Priority indicator - 0 bit if higher layer parameter priorityIndicatorDCI-0-2 is not configured; otherwise 1 bit as defined in Clause 9 in [5, TS 38.213].
- Invalid symbol pattern indicator - 0 bit if higher layer parameter invalidSymbolPatternIndicatorDCI-0-2 is not configured; otherwise 1 bit as defined in Clause 6.1.2.1 in [6, TS 38.214].

A UE does not expect that the bit width of a field in DCI format $0 _2$ with CRC scrambled by CS-RNTI is larger than corresponding bit width of same field in DCI format $0 _2$ with CRC scrambled by C-RNTI for the same serving cell. If the bit width of a field in the DCI format $0 _2$ with CRC scrambled by CS-RNTI is not equal to that of the corresponding field in the DCI format $0 _2$ with CRC scrambled by C-RNTI for the same serving cell, a number of most significant bits with value set to ' 0 ' are inserted to the field in DCI format $0 _2$ with CRC scrambled by CS-RNTI until the bit width equals that of the corresponding field in the DCI format $0 _2$ with CRC scrambled by C-RNTI for the same serving cell.

Table 7.3.1.1.3-1: 1 bit SRS request in DCI format $0 _2$ and DCI format 1_2

Value of SRS request field	Triggered aperiodic SRS resource set(s) for DCI format 0_2 and 1_2
0	No aperiodic SRS resource set triggered
1	SRS resource set(s) configured with higher layer parameter aperiodicSRS- ResourceTrigger set to 1 or an entry in aperiodicSRS-ResourceTriggerList set to 1

7.3.1.2 $\quad \mathrm{DCI}$ formats for scheduling of PDSCH

7.3.1.2.1 Format 1_0

DCI format $1 _0$ is used for the scheduling of PDSCH in one DL cell.
The following information is transmitted by means of the DCI format $1 _0$ with CRC scrambled by C-RNTI or CSRNTI or MCS-C-RNTI:

- Identifier for DCI formats - 1 bits
- The value of this bit field is always set to 1 , indicating a DL DCI format
- Frequency domain resource assignment - $\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits where $N_{\mathrm{RB}}^{\mathrm{DLLBWP}}$ is given by clause 7.3.1.0

If the CRC of the DCI format $1 _0$ is scrambled by C-RNTI and the "Frequency domain resource assignment" field are of all ones, the DCI format $1 _0$ is for random access procedure initiated by a PDCCH order, with all remaining fields set as follows:

- Random Access Preamble index - 6 bits according to ra-PreambleIndex in Clause 5.1.2 of [8, TS38.321]
- UL/SUL indicator - 1 bit. If the value of the "Random Access Preamble index" is not all zeros and if the UE is configured with supplementaryUplink in ServingCellConfig in the cell, this field indicates which UL carrier in the cell to transmit the PRACH according to Table 7.3.1.1.1-1; otherwise, this field is reserved
- SS/PBCH index - 6 bits. If the value of the "Random Access Preamble index" is not all zeros, this field indicates the SS/PBCH that shall be used to determine the RACH occasion for the PRACH transmission; otherwise, this field is reserved.
- PRACH Mask index - 4 bits. If the value of the "Random Access Preamble index" is not all zeros, this field indicates the RACH occasion associated with the SS/PBCH indicated by "SS/PBCH index" for the PRACH transmission, according to Clause 5.1.1 of [8, TS38.321]; otherwise, this field is reserved
- Reserved bits - 12 bits for operation in a cell with shared spectrum channel access; otherwise 10 bits

Otherwise, all remaining fields are set as follows:

- Time domain resource assignment - 4 bits as defined in Clause 5.1.2.1 of [6, TS 38.214]
- VRB-to-PRB mapping - 1 bit according to Table 7.3.1.2.2-5
- Modulation and coding scheme - 5 bits as defined in Clause 5.1.3 of [6, TS 38.214]
- New data indicator - 1 bit
- Redundancy version - 2 bits as defined in Table 7.3.1.1.1-2
- HARQ process number - 4 bits
- Downlink assignment index - 2 bits as defined in Clause 9.1.3 of [5, TS 38.213], as counter DAI
- TPC command for scheduled PUCCH - 2 bits as defined in Clause 7.2.1 of [5, TS 38.213]
- PUCCH resource indicator - 3 bits as defined in Clause 9.2.3 of [5, TS 38.213]
- PDSCH-to-HARQ_feedback timing indicator - 3 bits as defined in Clause 9.2.3 of [5, TS38.213]
- ChannelAccess-CPext - 2 bits indicating combinations of channel access type and CP extension as defined in Table 7.3.1.1.1-4 for operation in a cell with shared spectrum channel access; 0 bits otherwise

The following information is transmitted by means of the DCI format $1 _0$ with CRC scrambled by P-RNTI:

- \quad Short Messages Indicator - 2 bits according to Table 7.3.1.2.1-1.
- Short Messages - 8 bits, according to Clause 6.5 of [9, TS38.331]. If only the scheduling information for Paging is carried, this bit field is reserved.
- Frequency domain resource assignment - $\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits. If only the short message is carried, this bit field is reserved.
- $\quad N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}$ is the size of CORESET 0
- Time domain resource assignment - 4 bits as defined in Clause 5.1.2.1 of [6, TS38.214]. If only the short message is carried, this bit field is reserved.
- VRB-to-PRB mapping - 1 bit according to Table 7.3.1.2.2-5. If only the short message is carried, this bit field is reserved.
- Modulation and coding scheme - 5 bits as defined in Clause 5.1.3 of [6, TS38.214], using Table 5.1.3.1-1. If only the short message is carried, this bit field is reserved.
- TB scaling - 2 bits as defined in Clause 5.1.3.2 of [6, TS38.214]. If only the short message is carried, this bit field is reserved.
- Reserved bits - 8 bits for operation in a cell with shared spectrum channel access; otherwise 6 bits

The following information is transmitted by means of the DCI format $1 _0$ with CRC scrambled by SI-RNTI:

- Frequency domain resource assignment - $\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits
- $\quad N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}$ is the size of CORESET 0
- Time domain resource assignment - 4 bits as defined in Clause 5.1.2.1 of [6, TS38.214]
- VRB-to-PRB mapping - 1 bit according to Table 7.3.1.2.2-5
- Modulation and coding scheme - 5 bits as defined in Clause 5.1.3 of [6, TS38.214], using Table 5.1.3.1-1
- Redundancy version - 2 bits as defined in Table 7.3.1.1.1-2
- System information indicator - 1 bit as defined in Table 7.3.1.2.1-2
- Reserved bits - 17 bits for operation in a cell with shared spectrum channel access; otherwise 15 bits

The following information is transmitted by means of the DCI format $1 _0$ with CRC scrambled by RA-RNTI or MsgBRNTI:

- Frequency domain resource assignment - $\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits
- $\quad N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}$ is the size of CORESET 0 if CORESET 0 is configured for the cell and $N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}$ is the size of initial DL bandwidth part if CORESET 0 is not configured for the cell
- Time domain resource assignment - 4 bits as defined in Clause 5.1.2.1 of [6, TS38.214]
- VRB-to-PRB mapping - 1 bit according to Table 7.3.1.2.2-5
- Modulation and coding scheme - 5 bits as defined in Clause 5.1.3 of [6, TS38.214], using Table 5.1.3.1-1
- TB scaling - 2 bits as defined in Clause 5.1.3.2 of [6, TS38.214]
- LSBs of SFN - 2 bits for the DCI format $1 _0$ with CRC scrambled by MsgB-RNTI as defined in Clause 8.2A of [5, TS 38.213] if msgB-responseWindow is configured to be larger than 10 ms ; or 2 bits for the DCI format $1 _0$ with CRC scrambled by RA-RNTI as defined in Clause 8.2 of [5, TS 38.213] for operation in a cell with shared spectrum channel access if ra-ResponseWindow or ra-ResponseWindow-v1610 is configured to be larger than 10 ms; 0 bit otherwise
- Reserved bits - $(16-A)$ bits for operation in a cell without shared spectrum access, $(18-A)$ for operation in a cell with shared spectrum access, where the value of A is the number of bits for the field of 'LSBs of SFN' as defined above

The following information is transmitted by means of the DCI format $1 _0$ with CRC scrambled by TC-RNTI:

- Identifier for DCI formats - 1 bit
- The value of this bit field is always set to 1 , indicating a DL DCI format
- Frequency domain resource assignment - $\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits
- $\quad N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}$ is the size of CORESET 0
- Time domain resource assignment - 4 bits as defined in Clause 5.1.2.1 of [6, TS38.214]
- VRB-to-PRB mapping - 1 bit according to Table 7.3.1.2.2-5
- Modulation and coding scheme - 5 bits as defined in Clause 5.1.3 of [6, TS38.214], using Table 5.1.3.1-1
- New data indicator - 1 bit
- Redundancy version - 2 bits as defined in Table 7.3.1.1.1-2
- HARQ process number - 4 bits
- Downlink assignment index - 2 bits, reserved
- TPC command for scheduled PUCCH - 2 bits as defined in Clause 7.2.1 of [5, TS38.213]
- PUCCH resource indicator - 3 bits as defined in Clause 9.2.3 of [5, TS38.213]
- PDSCH-to-HARQ_feedback timing indicator - 3 bits as defined in Clause 9.2.3 of [5, TS38.213]
- ChannelAccess-CPext - 2 bits indicating combinations of channel access type and CP extension as defined in Table 7.3.1.1.1-4 for operation in a cell with shared spectrum channel access; otherwise 0 bit

Table 7.3.1.2.1-1: Short Message indicator

Bit field	Short Message indicator
00	Reserved
01	Only scheduling information for Paging is present in the DCI
10	Only short message is present in the DCl
11	Both scheduling information for Paging and short message are present in the DCI

Table 7.3.1.2.1-2: System information indicator

Bit field	System information indicator
0	SIB1 [9, TS38.331, Clause 5.2.1]
1	SI message [9, TS38.331, Clause 5.2.1]

7.3.1.2.2 Format 1_1

DCI format $1 _1$ is used for the scheduling of PDSCH in one cell.
The following information is transmitted by means of the DCI format $1 _1$ with CRC scrambled by C-RNTI or CSRNTI or MCS-C-RNTI:

- Identifier for DCI formats - 1 bits
- The value of this bit field is always set to 1 , indicating a DL DCI format
- Carrier indicator -0 or 3 bits as defined in Clause 10.1 of [5, TS 38.213].
- Bandwidth part indicator $-0,1$ or 2 bits as determined by the number of DL BWPs $n_{\text {BWP,RRC }}$ configured by higher layers, excluding the initial DL bandwidth part. The bitwidth for this field is determined as $\left\lceil\log _{2}\left(n_{\mathrm{BWP}}\right)\right\rceil$ bits, where
- $\quad n_{\mathrm{BWP}}=n_{\mathrm{BWP}, \mathrm{RRC}}+1$ if $n_{\mathrm{BWP}, \mathrm{RRC}}$, in which case the bandwidth part indicator is equivalent to the ascending order of the higher layer parameter BWP-Id;
- otherwise $n_{B W P}=n_{B W P, R R C}$, in which case the bandwidth part indicator is defined in Table 7.3.1.1.2-1;

If a UE does not support active BWP change via DCI, the UE ignores this bit field.

- Frequency domain resource assignment - number of bits determined by the following, where $N_{R B}^{\mathrm{DL}, \mathrm{BWP}}$ is the size of the active DL bandwidth part:
- $\quad N_{\text {RBG }} \quad$ bits if only resource allocation type 0 is configured, where $\quad N_{\text {RBG }} \quad$ is defined in Clause 5.1.2.2.1 of [6, TS38.214],
- $\quad\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ bits if only resource allocation type 1 is configured, or
- $\quad \max \left(\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil, N_{\mathrm{RBG}}\right)+1 \quad$ bits if resourceAllocation is configured as 'dynamicSwitch'.
- If resourceAllocation is configured as 'dynamicSwitch', the MSB bit is used to indicate resource allocation type 0 or resource allocation type 1 , where the bit value of 0 indicates resource allocation type 0 and the bit value of 1 indicates resource allocation type 1.
- For resource allocation type 0 , the $N_{\text {RBG }}$ LSBs provide the resource allocation as defined in Clause 5.1.2.2.1 of [6, TS 38.214].
- For resource allocation type 1, the $\quad\left\lceil\log _{2}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}\left(N_{\mathrm{RB}}^{\mathrm{DL}, \mathrm{BWP}}+1\right) / 2\right)\right\rceil$ LSBs provide the resource allocation as defined in Clause 5.1.2.2.2 of [6, TS 38.214]

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and if resourceAllocation is configured as 'dynamicSwitch' for the indicated bandwidth part, the UE assumes resource allocation type 0 for the indicated bandwidth part if the bitwidth of the "Frequency domain resource assignment" field of the active bandwidth part is smaller than the bitwidth of the "Frequency domain resource assignment" field of the indicated bandwidth part.

- Time domain resource assignment $-0,1,2,3$, or 4 bits as defined in Clause 5.1.2.1 of [6, TS 38.214]. The bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the higher layer parameter pdsch-TimeDomainAllocationList if the higher layer parameter is configured; otherwise I is the number of entries in the default table.
- VRB-to-PRB mapping -0 or 1 bit:
- 0 bit if only resource allocation type 0 is configured or if interleaved VRB-to-PRB mapping is not configured by high layers;
- 1 bit according to Table 7.3.1.2.2-5 otherwise, only applicable to resource allocation type 1 , as defined in Clause 7.3.1.6 of [4, TS 38.211].
- PRB bundling size indicator - 0 bit if the higher layer parameter prb-BundlingType is not configured or is set to 'staticBundling', or 1 bit if the higher layer parameter prb-BundlingType is set to 'dynamicBundling' according to Clause 5.1.2.3 of [6, TS 38.214].
- Rate matching indicator $-0,1$, or 2 bits according to higher layer parameters rateMatchPatternGroup1 and rateMatchPatternGroup2, where the MSB is used to indicate rateMatchPatternGroup1 and the LSB is used to indicate rateMatchPatternGroup2 when there are two groups.
- ZP CSI-RS trigger -0 , 1 , or 2 bits as defined in Clause 5.1.4.2 of [6, TS 38.214]. The bitwidth for this field is determined as $\left\lceil\log _{2}\left(n_{\mathrm{ZP}}+1\right)\right\rceil$ bits, where $\quad n_{\mathrm{ZP}} \quad$ is the number of aperiodic ZP CSI-RS resource sets configured by higher layer.

For transport block 1:

- Modulation and coding scheme - 5 bits as defined in Clause 5.1.3.1 of [6, TS 38.214]
- New data indicator - 1 bit
- Redundancy version - 2 bits as defined in Table 7.3.1.1.1-2

For transport block 2 (only present if maxNrofCodeWordsScheduledByDCI equals 2):

- Modulation and coding scheme - 5 bits as defined in Clause 5.1.3.1 of [6, TS 38.214]
- New data indicator - 1 bit
- Redundancy version - 2 bits as defined in Table 7.3.1.1.1-2

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and the value of maxNrofCodeWordsScheduledByDCI for the indicated bandwidth part equals 2 and the value of maxNrofCodeWordsScheduledByDCI for the active bandwidth part equals 1, the UE assumes zeros are padded when interpreting the "Modulation and coding scheme", "New data indicator", and "Redundancy version" fields of transport block 2 according to Clause 12 of [5, TS38.213], and the UE ignores the "Modulation and coding scheme", "New data indicator", and "Redundancy version" fields of transport block 2 for the indicated bandwidth part.

- HARQ process number - 4 bits
- Downlink assignment index - number of bits as defined in the following
- 6 bits if more than one serving cell are configured in the DL and the higher layer parameter nfi-TotalDAIIncluded=true = enable. The 4 MSB bits are the counter DAI and the total DAI for the scheduled PDSCH group, and the 2 LSB bits are the total DAI for the non-scheduled PDSCH group.
- 4 bits if only one serving cell are configured in the DL and the higher layer parameter nfi-TotalDAIIncluded=true $=$ enable. The 2 MSB bits are the counter DAI for the scheduled PDSCH group, and the 2 LSB bits are the total DAI for the non-scheduled PDSCH group;
- 4 bits if more than one serving cell are configured in the DL, the higher layer parameter pdsch-HARQ-ACKCodebook=dynamic or pdsch-HARQ-ACK-Codebook-r16= enhancedDynamic, and nfi-TotalDAIIncluded=true is not configured, where the 2 MSB bits are the counter DAI and the 2 LSB bits are the total DAI;
- 4 bits if one serving cell is configured in the DL, and the higher layer parameter pdsch-HARQ-ACKCodebook=dynamic, and the UE is not provided coresetPoolIndex or is provided coresetPoolIndex with value 0 for one or more first CORESETs and is provided coresetPoolIndex with value 1 for one or more second CORESETs, and is provided ackNackFeedbackMode $=$ joint, where the 2 MSB bits are the counter DAI and the 2 LSB bits are the total DAI;
- 2 bits if only one serving cell is configured in the DL, the higher layer parameter $p d s c h-H A R Q-A C K-$ Codebook=dynamic or pdsch-HARQ-ACK-Codebook-r16=enhancedDynamic, and nfi-TotalDAIIncluded=true is not configured, when the UE is not configured with coresetPoolIndex or the value of coresetPoolIndex is the same for all CORESETs if coresetPoolIndex is provided or the UE is not configured with ackNackFeedbackMode = joint, where the 2 bits are the counter DAI;
- 0 bits otherwise.

If higher layer parameter priorityIndicatorDCI-1-1 is configured, if the bit width of the Downlink assignment index in DCI format 1_1 for one HARQ-ACK codebook is not equal to that of the Downlink assignment index in DCI format 1_1 for the other HARQ-ACK codebook, a number of most significant bits with value set to ' 0 ' are inserted to smaller Downlink assignment index until the bit width of the Downlink assignment index in DCI format $1 _1$ for the two HARQ-ACK codebooks are the same.

- TPC command for scheduled PUCCH - 2 bits as defined in Clause 7.2 .1 of [5, TS 38.213]
- PUCCH resource indicator - 3 bits as defined in Clause 9.2.3 of [5, TS 38.213]
- PDSCH-to-HARQ_feedback timing indicator - 0 , 1 , 2 , or 3 bits as defined in Clause 9.2.3 of [5, TS 38.213]. The bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the higher layer parameter dl-DataToUL-ACK.

If higher layer parameter priorityIndicatorDCI-1-1 is configured, if the bit width of the PDSCH-toHARQ_feedback timing indicator in DCI format 1_1 for one HARQ-ACK codebook is not equal to that of the PDSCH-to-HARQ_feedback timing indicator in DCI format 1_1 for the other HARQ-ACK codebook, a number of most significant bits with value set to '0' are inserted to smaller PDSCH-to-HARQ_feedback timing indicator until the bit width of the PDSCH-to-HARQ_feedback timing indicator in DCI format $1 _1$ for the two HARQACK codebooks are the same.

- One-shot HARQ-ACK request - 0 or 1 bit.
- 1 bit if higher layer parameter pdsch-HARQ-ACK-OneShotFeedback-r16 is configured;
- 0 bit otherwise.
- PDSCH group index - 0 or 1 bit.
- 1 bit if the higher layer parameter pdsch-HARQ-ACK-Codebook-r16= enhancedDynamic;
- 0 bit otherwise.
- New feedback indicator -0 , 1 or 2 bits.
- 1 bit if the higher layer parameter pdsch-HARQ-ACK-Codebook-r16= enhancedDynamic and the higher layer parameter nfi-TotalDAI-Included is not configured;
- 2 bits if the higher layer parameter pdsch-HARQ-ACK-Codebook-r16= enhancedDynamic and the higher layer parameter nfi-TotalDAI-Included=true; the MSB corresponds to the scheduled PDSCH group, and the LSB corresponds to the non-scheduled PDSCH group, as defined in [TS38.213] clause 9.1.3.3
- 0 bit otherwise.
- Number of requested PDSCH group(s) - 0 or 1 bit.
- 1 bit if the higher layer parameter pdsch-HARQ-ACK-Codebook-r16= enhancedDynamic;
- 0 bit otherwise.
- Antenna port(s) - 4, 5 , or 6 bits as defined by Tables 7.3.1.2.2-1/2/3/4 and Tables 7.3.1.2.2-1A/2A/3A/4A, where the number of CDM groups without data of values 1,2 , and 3 refers to CDM groups $\{0\},\{0,1\}$, and $\{0,1,2\}$ respectively. The antenna ports $\left\{p_{0, \ldots,}, p_{v-1}\right\} \quad$ shall be determined according to the ordering of DMRS port(s) given by Tables 7.3.1.2.2-1/2/3/4 or Tables 7.3.1.2.2-1A/2A/3A/4A. When a UE receives an activation command that maps at least one codepoint of DCI field 'Transmission Configuration Indication' to two TCI states, the UE shall use Table 7.3.1.2.2-1A/2A/3A/4A; otherwise, it shall use Tables 7.3.1.2.2-1/2/3/4. The UE can receive an entry with DMRS ports equals to 1000, 1002, 1003 when two TCI states are indicated in a codepoint of DCI field 'Transmission Configuration Indication' [and subject to UE capability].

If a UE is configured with both dmrs-DownlinkForPDSCH-MappingTypeA and dmrs-DownlinkForPDSCHMappingTypeB, the bitwidth of this field equals $\max \left\{x_{A}, x_{B}\right\}$, where X_{A} is the "Antenna ports" bitwidth derived according to dmrs-DownlinkForPDSCH-MappingTypeA and X_{B} is the "Antenna ports" bitwidth derived according to dmrs-DownlinkForPDSCH-MappingTypeB. A number of $\left|x_{A}-x_{B}\right|$ zeros are padded in the MSB of this field, if the mapping type of the PDSCH corresponds to the smaller value of X_{A} and X_{B}.

- Transmission configuration indication - 0 bit if higher layer parameter tci-PresentInDCI is not enabled; otherwise 3 bits as defined in Clause 5.1.5 of [6, TS38.214].

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part,

- if the higher layer parameter tci-PresentInDCI is not enabled for the CORESET used for the PDCCH carrying the DCI format 1_1,
- the UE assumes tci-PresentInDCI is not enabled for all CORESETs in the indicated bandwidth part;
- otherwise,
- the UE assumes tci-PresentInDCI is enabled for all CORESETs in the indicated bandwidth part.
- \quad SRS request - 2 bits as defined by Table 7.3.1.1.2-24 for UEs not configured with supplementaryUplink in ServingCellConfig in the cell; 3 bits for UEs configured with supplementaryUplink in ServingCellConfig in the cell where the first bit is the non-SUL/SUL indicator as defined in Table 7.3.1.1.1-1 and the second and third bits
are defined by Table 7.3.1.1.2-24. This bit field may also indicate the associated CSI-RS according to Clause 6.1.1.2 of [6, TS 38.214].
- CBG transmission information (CBGTI) - 0 bit if higher layer parameter codeBlockGroupTransmission for PDSCH is not configured, otherwise, 2, 4, 6, or 8 bits as defined in Clause 5.1.7 of [6, TS38.214], determined by the higher layer parameters maxCodeBlockGroupsPerTransportBlock and maxNrofCodeWordsScheduledByDCI for the PDSCH.

If higher layer parameter priorityIndicatorDCI-1-1 is configured, if the bit width of the CBG transmission information in DCI format 1_1 for one HARQ-ACK codebook is not equal to that of the CBG transmission information in DCI format 1_1 for the other HARQ-ACK codebook, a number of most significant bits with value set to ' 0 ' are inserted to smaller CBG transmission information until the bit width of the CBG transmission information in DCI format 1_1 for the two HARQ-ACK codebooks are the same.

- CBG flushing out information (CBGFI) - 1 bit if higher layer parameter codeBlockGroupFlushIndicator is configured as "TRUE", 0 bit otherwise.

If higher layer parameter priorityIndicatorDCI-1-1 is configured, if the bit width of the CBG flushing out information in DCI format 1_1 for one HARQ-ACK codebook is not equal to that of the CBG flushing out information in DCI format 1_1 for the other HARQ-ACK codebook, a number of most significant bits with value set to ' 0 ' are inserted to smaller CBG flushing out information until the bit width of the CBG flushing out information in DCI format 1_1 for the two HARQ-ACK codebooks are the same.

- DMRS sequence initialization - 1 bit.
- Priority indicator - 0 bit if higher layer parameter priorityIndicatorDCI-1-1 is not configured; otherwise 1 bit as defined in Clause 9 in [5, TS 38.213].
- ChannelAccess-CPext $-0,1,2,3$ or 4 bits. The bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the higher layer parameter ul-AccessConfigListDCI-1-1 for operation in a cell with shared spectrum channel access; otherwise 0 bit. One or more entries from Table 7.3.1.2.2-6 are configured by the higher layer parameter ul-AccessConfigListDCI-1-1.
- Minimum applicable scheduling offset indicator - 0 or 1 bit
- 0 bit if higher layer parameter minimumSchedulingOffsetK0 is not configured;
- 1 bit if higher layer parameter minimumSchedulingOffsetK0 is configured. The 1 bit indication is used to determine the minimum applicable K0 for the active DL BWP and the minimum applicable K2 value for the active UL BWP, if configured respectively, according to Table 7.3.1.1.2-33. If the minimum applicable K0 is indicated, the minimum applicable value of the aperiodic CSI-RS triggering offset for an active DL BWP shall be the same as the minimum applicable K0 value.
- SCell dormancy indication - 0 bit if higher layer parameter dormancyGroupWithinActiveTime is not configured; otherwise 1, 2, 3, 4 or 5 bits bitmap determined according to higher layer parameter
dormancyGroupWithinActiveTime, where each bit corresponds to one of the SCell group(s) configured by higher layers parameter dormancyGroupWithinActiveTime, with MSB to LSB of the bitmap corresponding to the first to last configured SCell group. The field is only present when this format is carried by PDCCH on the primary cell within DRX Active Time and the UE is configured with at least two DL BWPs for an SCell.

If one-shot HARQ-ACK request is not present or set to ' 0 ', and all bits of frequency domain resource assignment are set to 0 for resource allocation type 0 or set to 1 for resource allocation type 1 or set to 0 or 1 for dynamic switch resource allocation type, this field is reserved and the following fields among the fields above are used for SCell dormancy indication, where each bit corresponds to one of the configured SCell(s), with MSB to LSB of the following fields concatenated in the order below corresponding to the SCell with lowest to highest SCell index

- Modulation and coding scheme of transport block 1
- New data indicator of transport block 1
- Redundancy version of transport block 1
- HARQ process number
- Antenna port(s)
- DMRS sequence initialization

If DCI formats $1 _1$ are monitored in multiple search spaces associated with multiple CORESETs in a BWP for scheduling the same serving cell, zeros shall be appended until the payload size of the DCI formats 1_1 monitored in the multiple search spaces equal to the maximum payload size of the DCI format 1_1 monitored in the multiple search spaces.

Table 7.3.1.2.2-1: Antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=1

One Codeword: Codeword 0 enabled, Codeword 1 disabled		
Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	1	0
1	1	1
2	1	0,1
3	2	0
4	2	1
5	2	2
6	2	3
7	2	0,1
8	2	2,3
9	2	$0-2$
10	2	$0-3$
11	2	0,2
$12-15$	Reserved	Reserved

Table 7.3.1.2.2-1A: Antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=1

One Codeword: Codeword 0 enabled, Codeword 1 disabled		
Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	1	0
1	1	1
2	1	0,1
3	2	0
4	2	1
5	2	2
6	2	3
7	2	0,1
8	2	2,3
9	2	$0-2$
10	2	$0-3$
11	2	0,2
12	2	$0,2,3$
$13-15$	Reserved	Reserved

Table 7.3.1.2.2-2: Antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=2

One Codeword: Codeword 0 enabled, Codeword 1 disabled				Two Codewords: Codeword 0 enabled, Codeword 1 enabled			
Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols	Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	1	0	1	0	2	0-4	2
1	1	1	1	1	2	0,1,2,3,4,6	2
2	1	0,1	1	2	2	0,1,2,3,4,5,6	2
3	2	0	1	3	2	0,1,2,3,4,5,6,7	2
4	2	1	1	4-31	reserved	reserved	reserved
5	2	2	1				
6	2	3	1				
7	2	0,1	1				
8	2	2,3	1				
9	2	0-2	1				
10	2	0-3	1				
11	2	0,2	1				
12	2	0	2				
13	2	1	2				
14	2	2	2				
15	2	3	2				
16	2	4	2				
17	2	5	2				
18	2	6	2				
19	2	7	2				
20	2	0,1	2				
21	2	2,3	2				
22	2	4,5	2				
23	2	6,7	2				
24	2	0,4	2				
25	2	2,6	2				
26	2	0,1,4	2				
27	2	2,3,6	2				
28	2	0,1,4,5	2				
29	2	2,3,6,7	2				
30	2	0,2,4,6	2				
31	Reserved	$\begin{gathered} \hline \text { Reserve } \\ \mathrm{d} \end{gathered}$	Reserved				

Table 7.3.1.2.2-2A: Antenna port(s) (1000 + DMRS port), dmrs-Type=1, maxLength=2

One Codeword: Codeword 0 enabled, Codeword 1 disabled				Two Codewords: Codeword 0 enabled, Codeword 1 enabled			
Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols	Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	1	0	1	0	2	0-4	2
1	1	1	1	1	2	0,1,2,3,4,6	2
2	1	0,1	1	2	2	0,1,2,3,4,5,6	2
3	2	0	1	3	2	0,1,2,3,4,5,6,7	2
4	2	1	1	4-31	reserved	reserved	reserved
5	2	2	1				
6	2	3	1				
7	2	0,1	1				
8	2	2,3	1				
9	2	0-2	1				
10	2	0-3	1				
11	2	0,2	1				
12	2	0	2				
13	2	1	2				
14	2	2	2				
15	2	3	2				
16	2	4	2				
17	2	5	2				
18	2	6	2				
19	2	7	2				
20	2	0,1	2				
21	2	2,3	2				
22	2	4.5	2				
23	2	6,7	2				
24	2	0,4	2				
25	2	2,6	2				
26	2	0,1,4	2				
27	2	2,3,6	2				
28	2	0,1,4,5	2				
29	2	2,3,6,7	2				
30	2	0,2,4,6	2				
31	2	0,2,3	1				

Table 7.3.1.2.2-3: Antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=1

One codeword: Codeword 0 enabled, Codeword 1 disabled			Two codewords: Codeword 0 enabled, Codeword 1 enabled		
Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	1	0	0	3	0-4
1	1	1	1	3	0-5
2	1	0,1	2-31	reserved	reserved
3	2	0			
4	2	1			
5	2	2			
6	2	3			
7	2	0,1			
8	2	2,3			
9	2	0-2			
10	2	0-3			
11	3	0			
12	3	1			
13	3	2			
14	3	3			
15	3	4			
16	3	5			
17	3	0,1			
18	3	2,3			
19	3	4,5			
20	3	0-2			
21	3	3-5			
22	3	0-3			
23	2	0,2			
24-31	Reserved	Reserved			

Table 7.3.1.2.2-3A: Antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=1

One codeword: Codeword 0 enabled, Codeword 1 disabled			Two codewords: Codeword 0 enabled, Codeword 1 enabled		
Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Value	Number of DMRS CDM group(s) without data	DMRS port(s)
0	1	0	0	3	0-4
1	1	1	1	3	0-5
2	1	0,1	2-31	reserved	reserved
3	2	0			
4	2	1			
5	2	2			
6	2	3			
7	2	0,1			
8	2	2,3			
9	2	0-2			
10	2	0-3			
11	3	0			
12	3	1			
13	3	2			
14	3	3			
15	3	4			
16	3	5			
17	3	0,1			
18	3	2,3			
19	3	4,5			
20	3	0-2			
21	3	3-5			
22	3	0-3			
23	2	0,2			
24	2	0,2,3			
25-31	Reserved	Reserved			

Table 7.3.1.2.2-4: Antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=2

One codeword: Codeword 0 enabled, Codeword 1 disabled				Two Codewords: Codeword 0 enabled, Codeword 1 enabled			
Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols	Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	1	0	1	0	3	0-4	1
1	1	1	1	1	3	0-5	1
2	1	0,1	1	2	2	0,1,2,3,6	2
3	2	0	1	3	2	0,1,2,3,6,8	2
4	2	1	1	4	2	0,1,2,3,6,7,8	2
5	2	2	1	5	2	0,1,2,3,6,7,8,9	2
6	2	3	1	6-63	Reserved	Reserved	Reserved
7	2	0,1	1				
8	2	2,3	1				
9	2	0-2	1				
10	2	0-3	1				
11	3	0	1				
12	3	1	1				
13	3	2	1				
14	3	3	1				
15	3	4	1				
16	3	5	1				
17	3	0,1	1				
18	3	2,3	1				
19	3	4,5	1				
20	3	0-2	1				
21	3	3-5	1				
22	3	0-3	1				
23	2	0,2	1				
24	3	0	2				
25	3	1	2				
26	3	2	2				
27	3	3	2				
28	3	4	2				
29	3	5	2				
30	3	6	2				
31	3	7	2				
32	3	8	2				
33	3	9	2				
34	3	10	2				
35	3	11	2				
36	3	0,1	2				
37	3	2,3	2				
38	3	4,5	2				
39	3	6,7	2				
40	3	8,9	2				
41	3	10,11	2				
42	3	0,1,6	2				
43	3	2,3,8	2				
44	3	4,5,10	2				
45	3	0,1,6,7	2				
46	3	2,3,8,9	2				
47	3	4,5,10,11	2				
48	1	0	2				
49	1	1	2				
50	1	6	2				
51	1	7	2				
52	1	0,1	2				
53	1	6,7	2				
54	2	0,1	2				
55	2	2,3	2				
56	2	6,7	2				

57	2	8,9	2				
$58-63$	Reserved	Reserved	Reserved				

Table 7.3.1.2.2-4A: Antenna port(s) (1000 + DMRS port), dmrs-Type=2, maxLength=2

One codeword: Codeword 0 enabled, Codeword 1 disabled				Two Codewords: Codeword 0 enabled, Codeword 1 enabled			
Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols	Value	Number of DMRS CDM group(s) without data	DMRS port(s)	Number of front-load symbols
0	1	0	1	0	3	0-4	1
1	1	1	1	1	3	0-5	1
2	1	0,1	1	2	2	0,1,2,3,6	2
3	2	0	1	3	2	0,1,2,3,6,8	2
4	2	1	1	4	2	0,1,2,3,6,7,8	2
5	2	2	1	5	2	0,1,2,3,6,7,8,9	2
6	2	3	1	6-63	Reserved	Reserved	Reserved
7	2	0,1	1				
8	2	2,3	1				
9	2	0-2	1				
10	2	0-3	1				
11	3	0	1				
12	3	1	1				
13	3	2	1				
14	3	3	1				
15	3	4	1				
16	3	5	1				
17	3	0,1	1				
18	3	2,3	1				
19	3	4,5	1				
20	3	0-2	1				
21	3	3-5	1				
22	3	0-3	1				
23	2	0,2	1				
24	3	0	2				
25	3	1	2				
26	3	2	2				
27	3	3	2				
28	3	4	2				
29	3	5	2				
30	3	6	2				
31	3	7	2				
32	3	8	2				
33	3	9	2				
34	3	10	2				
35	3	11	2				
36	3	0,1	2				
37	3	2,3	2				
38	3	4,5	2				
39	3	6,7	2				
40	3	8,9	2				
41	3	10,11	2				
42	3	0,1,6	2				
43	3	2,3,8	2				
44	3	4,5,10	2				
45	3	0,1,6,7	2				
46	3	2,3,8,9	2				
47	3	4,5,10,11	2				
48	1	0	2				
49	1	1	2				
50	1	6	2				
51	1	7	2				
52	1	0,1	2				
53	1	6,7	2				
54	2	0,1	2				
55	2	2,3	2				
56	2	6,7	2				

57	2	8,9	2				
58	2	$0,2,3$	1				
$59-63$	Reserved	Reserved	Reserved				

Table 7.3.1.2.2-5: VRB-to-PRB mapping

Bit field mapped to index	VRB-to-PRB mapping
0	Non-interleaved
1	Interleaved

Table 7.3.1.2.2-6: Allowed entries for DCI format 1_1, configured by higher layer parameter ul-AccessConfigListDCI-1-1

Entry index	Channel Access Type	The CP extension Text index defined in Clause 5.3.1 of [4, TS 38.211]
0	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0
1	Type2C-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2
2	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	0
3	Type2B-ULChannelAccess defined in [clause 4.2.1.2.3 in 37.213]	2
4	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	0
5	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	1
6	Type2A-ULChannelAccess defined in [clause 4.2.1.2.1 in 37.213]	3
7	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	0
8	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	1
9	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	2
10	Type1-ULChannelAccess defined in [clause 4.2.1.1 in 37.213]	3

7.3.1.2.3 Format 1_2

DCI format $1 _2$ is used for the scheduling of PDSCH in one cell.
The following information is transmitted by means of the DCI format $1 _2$ with CRC scrambled by C-RNTI or CSRNTI or MCS-C-RNTI:

- Identifier for DCI formats - 1 bits
- The value of this bit field is always set to 1 , indicating a DL DCI format.
- Carrier indicator - 0, 1, 2 or 3 bits determined by higher layer parameter carrierIndicatorSizeDCI-1-2, as defined in Clause 10.1 of [5, TS38.213].
- Bandwidth part indicator -0 , 1 or 2 bits as determined by the number of DL BWPs $n_{B W P, R R C}$ configured by higher layers, excluding the initial DL bandwidth part. The bitwidth for this field is determined as
$\left\lceil\log _{2}\left(n_{B W P}\right)\right\rceil$ bits, where
- $\quad n_{B W P}=n_{B W P, R R C}+1$ if $n_{B W P, R R C} \leq 3$, in which case the bandwidth part indicator is equivalent to the ascending order of the higher layer parameter BWP-Id;
- otherwise $n_{B W P}=n_{B W P, R R C}$, in which case the bandwidth part indicator is defined in Table 7.3.1.1.2-1;

If a UE does not support active BWP change via DCI, the UE ignores this bit field.

- Frequency domain resource assignment - number of bits determined by the following:
- $\quad N_{\text {RBG }}$ bits if only resource allocation type 0 is configured, where $N_{R B G}$ is defined in Clause 5.1.2.2.1 of [6, TS 38.214];
- $\quad\left[\log _{2}\left(N_{R B G, K 2}\left(N_{R B G, K 2}+1\right) / 2\right)\right\rceil$ bits if only resource allocation type 1 is configured, or $\left.\max \left(\Gamma \log _{2}\left(N_{R B G, К 2}\left(N_{R B G, К 2}+1\right) / 2\right)\right\rceil, N_{R B G}\right)+1$ bits if resourceAllocationDCI-1-2-r16 is configured as 'dynamicSwitch', where $\quad N_{R B G, K 2}=\Gamma\left(N_{R B}^{D L, B W P}+\left(N_{D L, B W P}^{\text {start }} \bmod K 2\right)\right) / K 27$, $N_{R B}^{D L, B W P}$ is the size of the active DL bandwidth part, $\quad N_{D L, B W P}^{s t a r t}$ is defined as in clause 4.4.4.4 of [4, TS 38.211] and $K 2$ is determined by higher layer parameter resourceAllocationType1GranularityDCI-1-2. If the higher layer parameter resourceAllocationType1GranularityDCI-1-2 is not configured, K2 is equal to 1 .
- If resourceAllocationDCI-1-2-r16 is configured as 'dynamicSwitch', the MSB bit is used to indicate resource allocation type 0 or resource allocation type 1 , where the bit value of 0 indicates resource allocation type 0 and the bit value of 1 indicates resource allocation type 1 .
- For resource allocation type 0 , the $\quad N_{\text {RBG }} \quad$ LSBs provide the resource allocation as defined in Clause 5.1.2.2.1 of [6, TS 38.214].
- For resource allocation type 1, the $\quad\left\lceil\log _{2}\left(N_{R B G, K 2}\left(N_{R B G, K 2}+1\right) / 2\right)\right\rceil \quad$ LSBs provide the resource allocation as defined in Clause 5.1.2.2.2 of [6, TS 38.214]

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part and if resourceAllocationDCI-1-2-r16 is configured as 'dynamicSwitch' for the indicated bandwidth part, the UE assumes resource allocation type 0 for the indicated bandwidth part if the bitwidth of the "Frequency domain resource assignment" field of the active bandwidth part is smaller than the bitwidth of the "Frequency domain resource assignment" field of the indicated bandwidth part.

- Time domain resource assignment $-0,1,2,3$, or 4 bits as defined in Clause 5.1.2.1 of [6, TS 38.214]. The bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the higher layer parameter pdsch-TimeDomainAllocationListDCI-1-2 if the higher layer parameter is configured, or I is the number of entries in the higher layer parameter pdsch-TimeDomainAllocationList if the higher layer parameter pdsch-TimeDomainAllocationList is configured when the higher layer parameter pdsch-
TimeDomainAllocationListDCI-1-2 is not configured; otherwise I is the number of entries in the default table.
- VRB-to-PRB mapping - 0 or 1 bit:
- 0 bit if the higher layer parameter vrb-ToPRB-InterleaverDCI-1-2 is not configured;
- 1 bit according to Table 7.3.1.2.2-5 otherwise, only applicable to resource allocation type 1 , as defined in Clause 7.3.1.6 of [4, TS 38.211].
- PRB bundling size indicator - 0 bit if the higher layer parameter prb-BundlingTypeDCI-1-2 is not configured or is set to 'static', or 1 bit if the higher layer parameter prb-BundlingTypeDCI-1-2 is set to 'dynamic' according to Clause 5.1.2.3 of [6, TS 38.214].
- Rate matching indicator -0 , 1 , or 2 bits according to higher layer parameters rateMatchPatternGroup1DCI-1-2 and rateMatchPatternGroup2DCI-1-2, where the MSB is used to indicate rateMatchPatternGroup1DCI-1-2 and the LSB is used to indicate rateMatchPatternGroup2DCI-1-2 when there are two groups.
- ZP CSI-RS trigger -0 , 1 , or 2 bits as defined in Clause 5.1.4.2 of [6, TS 38.214]. The bitwidth for this field is determined as $\left\lceil\log _{2}\left(n_{Z P}+1\right)\right\rceil$ bits, where $n_{Z P}$ is the number of aperiodic ZP CSI-RS resource sets configured by higher layer parameter aperiodicZP-CSI-RS-ResourceSetsToAddModListDCI-1-2.
- Modulation and coding scheme - 5 bits as defined in Clause 5.1.3.1 of [6, TS 38.214]
- New data indicator - 1 bit
- Redundancy version -0 , 1 or 2 bits determined by higher layer parameter numberOfBitsForRV-DCI-1-2
- If 0 bit is configured, $r v_{i d}$ to be applied is 0 ;
- $\quad 1$ bit according to Table 7.3.1.2.3-1;
- $\quad 2$ bits according to Table 7.3.1.1.1-2.
- HARQ process number $-0,1,2,3$ or 4 bits determined by higher layer parameter harq-ProcessNumberSizeDCI-1-2
- Downlink assignment index $-0,1,2$ or 4 bits
- 0 bit if the higher layer parameter downlinkAssignmentIndexDCI-1-2 is not configured;
- 1,2 or 4 bits determined by higher layer parameter downlinkAssignmentIndexDCI-1-2 otherwise,
- 4 bits if more than one serving cell are configured in the DL and the higher layer parameter $p d s c h-H A R Q-$ ACK-Codebook=dynamic, where the 2 MSB bits are the counter DAI and the 2 LSB bits are the total DAI
- 4 bits if one serving cell are configured in the DL and the higher layer parameter $p d s c h-H A R Q-A C K-$ Codebook=dynamic, and the UE is not provided coresetPoolIndex or is provided coresetPoolIndex with value 0 for one or more first CORESETs and is provided coresetPoolIndex with value 1 for one or more second CORESETs, and is provided ackNackFeedbackMode $=$ joint, where the 2 MSB bits are the counter DAI and the 2 LSB bits are the total DAI.
- 1 or 2 bits if only one serving cell is configured in the DL and the higher layer parameter $p d s c h-H A R Q$ -ACK-Codebook=dynamic, when the UE is not configured with coresetPoolIndex or the value of coresetPoolIndex is the same for all CORESETs if coresetPoolIndex is provided or the UE is not configured with ackNackFeedbackMode $=$ joint, where the 1 bit or 2 bits are the counter DAI.

If higher layer parameter priorityIndicatorDCI-1-2 is configured, if the bit width of the Downlink assignment index in DCI format $1 _2$ for one HARQ-ACK codebook is not equal to that of the Downlink assignment index in DCI format $1 _2$ for the other HARQ-ACK codebook, a number of most significant bits with value set to ' 0 ' are inserted to smaller Downlink assignment index until the bit width of the Downlink assignment index in DCI format 1_2 for the two HARQ-ACK codebooks are the same.

- TPC command for scheduled PUCCH - 2 bits as defined in Clause 7.2.1 of [5, TS 38.213]
- PUCCH resource indicator - 0 or 1 or 2 or 3 bits determined by higher layer parameter numberOfBitsForPUCCH-ResourceIndicatorDCI-1-2
- PDSCH-to-HARQ_feedback timing indicator - 0 , 1, 2, or 3 bits as defined in Clause 9.2.3 of [5, TS 38.213]. The bitwidth for this field is determined as $\left\lceil\log _{2}(I)\right\rceil$ bits, where I is the number of entries in the higher layer parameter DL-DataToUL-ACK-DCI-1-2.

If higher layer parameter priorityIndicatorDCI-1-2 is configured, if the bit width of the PDSCH-toHARQ_feedback timing indicator in DCI format $1 _2$ for one HARQ-ACK codebook is not equal to that of the PDSCH-to-HARQ_feedback timing indicator in DCI format 1_2 for the other HARQ-ACK codebook, a number of most significant bits with value set to '0' are inserted to smaller PDSCH-to-HARQ_feedback timing indicator until the bit width of the PDSCH-to-HARQ_feedback timing indicator in DCI format $1 _2$ for the two HARQACK codebooks are the same.

- Antenna port(s) $-0,4,5$, or 6 bits
- 0 bit if higher layer parameter antennaPortsFieldPresenceDCI-1-2 is not configured;
- Otherwise 4, 5 or 6 bits as defined by Tables 7.3.1.2.2-1/2/3/4, where the number of CDM groups without data of values 1 , 2 , and 3 refers to CDM groups $\{0\},\{0,1\}$, and $\{0,1,2\}$ respectively. The antenna ports $\left\{p_{0}, \ldots, p_{v-1}\right\}$ shall be determined according to the ordering of DMRS port(s) given by Tables 7.3.1.2.2$1 / 2 / 3 / 4$. If a UE is configured with both dmrs-DownlinkForPDSCH-MappingTypeA-DCI-1-2 and dmrs-DownlinkForPDSCH-MappingTypeB-DCI-1-2 and is configured with higher layer parameter antennaPortsFieldPresenceDCI-1-2, the bitwidth of this field equals $\max \left\{x_{A}, x_{B}\right\}$, where x_{A} is the "Antenna ports" bitwidth derived according to dmrs-DownlinkForPDSCH-MappingTypeA-DCI-1-2 and x_{B} is the "Antenna ports" bitwidth derived according to dmrs-DownlinkForPDSCH-MappingTypeB-DCI-1-2. A number of $\left|x_{A}-x_{B}\right| \quad$ zeros are padded in the MSB of this field, if the mapping type of the PDSCH corresponds to the smaller value of x_{A} and x_{B}.

If a UE is not configured with higher layer parameter antennaPortsFieldPresenceDCI-1-2, antenna port(s) are defined assuming bit field index value 0 in Tables 7.3.1.2.2-1/2/3/4.

- Transmission configuration indication - 0 bit if higher layer parameter tci-PresentDCI-1-2 is not configured; otherwise 1 or 2 or 3 bits determined by higher layer parameter tci-PresentDCI-1-2 as defined in Clause 5.1.5 of [6, TS38.214].

If "Bandwidth part indicator" field indicates a bandwidth part other than the active bandwidth part,

- if the higher layer parameter tci-PresentDCI-1-2 is not configured for the CORESET used for the PDCCH carrying the DCI format $1 _2$,
- the UE assumes tci-PresentDCI-1-2 is not configured for all CORESETs in the indicated bandwidth part;
- otherwise,
- the UE assumes tci-PresentDCI-1-2 is configured for all CORESETs in the indicated bandwidth part with the same value configured for the CORESET used for the PDCCH carrying the DCI format $1 _2$.
- SRS request $-0,1$, 2 or 3 bits
- 0 bit if the higher layer parameter srs-RequestDCI-1-2 is not configured;
- 1 bit as defined by Table 7.3.1.1.3-1 if the higher layer parameter srs-RequestDCI-1-2 = 1 and for UEs not configured with supplementaryUplink in ServingCellConfig in the cell;
- 2 bits if the higher layer parameter srs-RequestDCI-1-2 = 1 and for UEs configured with supplementaryUplink in ServingCellConfig in the cell, where the first bit is the non-SUL/SUL indicator as defined in Table 7.3.1.1.1-1 and the second bit is defined by Table 7.3.1.1.3-1;
- 2 bits as defined by Table 7.3.1.1.2-24 if the higher layer parameter srs-RequestDCI-1-2 $=2$ and for UEs not configured with supplementaryUplink in ServingCellConfig in the cell;
- 3 bits if the higher layer parameter srs-RequestDCI-1-2 = 2 and for UEs configured with supplementaryUplink in ServingCellConfig in the cell, where the first bit is the non-SUL/SUL indicator as defined in Table 7.3.1.1.1-1 and the second and third bits are defined by Table 7.3.1.1.2-24;
- DMRS sequence initialization -0 or 1 bit
- 0 bit if the higher layer parameter dmrs-SequenceInitializationDCI-1-2 is not configured;
- 1 bit otherwise.
- Priority indicator - 0 bit if higher layer parameter priorityIndicatorDCI-1-2 is not configured; otherwise 1 bit as defined in Clause 9 in [5, TS 38.213].

If DCI formats $1 _2$ are monitored in multiple search spaces associated with multiple CORESETs in a BWP for scheduling the same serving cell, zeros shall be appended until the payload size of the DCI formats 1_2 monitored in the multiple search spaces equal to the maximum payload size of the DCI format $1 _2$ monitored in the multiple search spaces.

Table 7.3.1.2.3-1: Redundancy version

Value of the Redundancy version field	Value of $r V_{\text {id }}$	to be applied
0	0	
1	3	

7.3.1.3 DCI formats for other purposes

7.3.1.3.1 Format 2_0

DCI format 2_0 is used for notifying the slot format, COT duration, available RB set, and search space set group switching.

The following information is transmitted by means of the DCI format $2 _0$ with CRC scrambled by SFI-RNTI:

- If the higher layer parameter slotFormatCombToAddModList is configured,
- Slot format indicator 1 , Slot format indicator $2, \ldots$, Slot format indicator N,
- If the higher layer parameter availableRB-SetsToAddModList is configured,
- Available RB set Indicator 1, Available RB set Indicator 2, ..., Available RB set Indicator N1,
- If the higher layer parameter co-DurationsPerCellToAddModList is configured
- COT duration indicator 1, COT duration indicator 2, \ldots, COT duration indicator N2.
- If the higher layer parameter switchTriggerToAddModList is configured
- Search space set group switching flag 1, Search space set group switching flag 2, ..., Search space set group switching flag M.

The size of DCI format 2_0 is configurable by higher layers up to 128 bits, according to Clause 11.1.1 of [5, TS 38.213].

7.3.1.3.2 Format 2_1

DCI format 2_1 is used for notifying the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE.

The following information is transmitted by means of the DCI format 2_1 with CRC scrambled by INT-RNTI:

- Pre-emption indication 1, Pre-emption indication 2, \ldots, Pre-emption indication N.

The size of DCI format 2_1 is configurable by higher layers up to 126 bits, according to Clause 11.2 of [5, TS 38.213]. Each pre-emption indication is 14 bits.

7.3.1.3.3 Format 2_2

DCI format 2_2 is used for the transmission of TPC commands for PUCCH and PUSCH.
The following information is transmitted by means of the DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI or TPC-PUCCH-RNTI:

- block number 1 , block number $2, \ldots$, block number N

The parameter tpc-PUSCH or tpc-PUCCH provided by higher layers determines the index to the block number for an UL of a cell, with the following fields defined for each block:

- Closed loop indicator -0 or 1 bit.
- For DCI format 2_2 with TPC-PUSCH-RNTI, 0 bit if the UE is not configured with high layer parameter twoPUSCH-PC-AdjustmentStates, in which case UE assumes each block in the DCI format 2 _2 is of 2 bits; 1 bit otherwise, in which case UE assumes each block in the DCI format $2 _2$ is of 3 bits;
- For DCI format 2_2 with TPC-PUCCH-RNTI, 0 bit if the UE is not configured with high layer parameter twoPUCCH-PC-AdjustmentStates, in which case UE assumes each block in the DCI format $2 _2$ is of 2 bits; 1 bit otherwise, in which case UE assumes each block in the DCI format $2 _2$ is of 3 bits;
- TPC command -2 bits

The number of information bits in format $2 _2$ shall be equal to or less than the payload size of format $1 _0$ monitored in common search space in the same serving cell. If the number of information bits in format $2 _2$ is less than the payload size of format $1 _0$ monitored in common search space in the same serving cell, zeros shall be appended to format $2 _2$ until the payload size equals that of format $1 _0$ monitored in common search space in the same serving cell.

7.3.1.3.4 Format 2_3

DCI format $2 _3$ is used for the transmission of a group of TPC commands for SRS transmissions by one or more UEs. Along with a TPC command, a SRS request may also be transmitted.

The following information is transmitted by means of the DCI format $2 _3$ with CRC scrambled by TPC-SRS-RNTI:

- block number 1, block number 2, \ldots, block number B
where the starting position of a block is determined by the parameter startingBitOfFormat2-3 or startingBitOfFormat2-3SUL-v1530 provided by higher layers for the UE configured with the block.

If the UE is configured with higher layer parameter srs-TPC-PDCCH-Group = typeA for an UL without PUCCH and PUSCH or an UL on which the SRS power control is not tied with PUSCH power control, one block is configured for the UE by higher layers, with the following fields defined for the block:

- SRS request - 0 or 2 bits. The presence of this field is according to the definition in Clause 11.4 of [5, TS38.213]. If present, this field is interpreted as defined by Table 7.3.1.1.2-24.
- TPC command number 1, TPC command number $2, \ldots$, TPC command number N, where each TPC command applies to a respective UL carrier provided by higher layer parameter cc-IndexInOneCC-Set
If the UE is configured with higher layer parameter srs-TPC-PDCCH-Group = typeB for an UL without PUCCH and PUSCH or an UL on which the SRS power control is not tied with PUSCH power control, one block or more blocks is configured for the UE by higher layers where each block applies to an UL carrier, with the following fields defined for each block:
- SRS request - 0 or 2 bits. The presence of this field is according to the definition in Clause 11.4 of [5, TS38.213]. If present, this field is interpreted as defined by Table 7.3.1.1.2-24.
- TPC command -2 bits

The number of information bits in format $2 _3$ shall be equal to or less than the payload size of format $1 _0$ monitored in common search space in the same serving cell. If the number of information bits in format $2 _3$ is less than the payload size of format 1_0 monitored in common search space in the same serving cell, zeros shall be appended to format 2_3 until the payload size equals that of format $1 _0$ monitored in common search space in the same serving cell.

7.3.1.3.5 Format 2_4

DCI format 2_4 is used for notifying the PRB(s) and OFDM symbol(s) where UE cancels the corresponding UL transmission from the UE according to Clause 11.2A of [5, TS 38.213].

The following information is transmitted by means of the DCI format $2 _4$ with CRC scrambled by ci-RNTI:

- Cancellation indication 1, Cancellation indication 2, ..., Cancellation indication indication N.

The size of DCI format $2 _4$ is configurable by higher layers parameter dci-PayloadSizeForCI up to 126 bits, according to Clause 11.2A of [5, TS 38.213]. The number of bits for each cancellation indication is configurable by higher layer parameter ci-PayloadSize. For a UE, there is at most one cancellation indication for an UL carrier.

7.3.1.3.6 Format 2_5

DCI format 2_5 is used for notifying the availability of soft resources as defined in Clause 9.3.1 of [10, TS 38.473]
The following information is transmitted by means of the DCI format $2 _5$ with CRC scrambled by AI-RNTI:

- Availability indicator 1, Availability indicator 2, ..., Availability indicator N.

The size of DCI format 2_5 is configurable by higher layers up to 128 bits, according to Clause 14 of [5, TS 38.213].

7.3.1.3.7 Format 2_6

DCI format 2_6 is used for notifying the power saving information outside DRX Active Time for one or more UEs.
The following information is transmitted by means of the DCI format 2_6 with CRC scrambled by PS-RNTI:

- block number 1 , block number 2,..., block number N
where the starting position of a block is determined by the parameter ps-PositionDCI-2-6 provided by higher layers for the UE configured with the block.

If the UE is configured with higher layer parameter $p s$-RNTI and dci-Format2-6, one block is configured for the UE by higher layers, with the following fields defined for the block:

- Wake-up indication - 1 bit
- SCell dormancy indication - 0 bit if higher layer parameter dormancyGroupOutsideActiveTime is not configured; otherwise 1, 2, 3, 4 or 5 bits bitmap determined according to higher layer parameter dormancyGroupOutsideActiveTime, where each bit corresponds to one of the SCell group(s) configured by higher layers parameter dormancyGroupOutsideActiveTime, with MSB to LSB of the bitmap corresponding to the first to last configured SCell group.

The size of DCI format 2_6 is indicated by the higher layer parameter sizeDCI-2-6, according to Clause 10.3 of [5, TS 38.213].

7.3.1.4 $\quad \mathrm{DCI}$ formats for scheduling of sidelink

7.3.1.4.1 Format 3_0

DCI format 3_0 is used for scheduling of NR PSCCH and NR PSSCH in one cell.
The following information is transmitted by means of the DCI format 3_0 with CRC scrambled by SL-RNTI or SL-CSRNTI:

- Resource pool index - $\left\lceil\log _{2} I\right\rceil$ bits, where I is the number of resource pools for transmission configured by the higher layer parameter sl-TxPoolScheduling.
- Time gap - 3 bits determined by higher layer parameter sl-DCI-ToSL-Trans, as defined in clause 8.1.2.1 of [6, TS 38.214]
- HARQ process number - 4 bits as defined in clause 16.4 of [5, TS 38.213]
- New data indicator - 1 bit as defined in clause 16.4 of [5, TS 38.213]
- Lowest index of the subchannel allocation to the initial transmission $\left.-\Gamma \log _{2}\left(\mathrm{~N}_{\text {subChannel }}^{\mathrm{SL}}\right)\right\rceil$ bits as defined in clause 8.1.2.2 of [6, TS 38.214]
- SCI format 1-A fields according to clause 8.3.1.1:
- Frequency resource assignment.
- Time resource assignment.
- PSFCH-to-HARQ feedback timing indicator - $\left\lceil\log _{2} N_{f b_{\text {timing }}}\right]$ bits, where $N_{f b_{\text {timing }}}$ is the number of entries in the higher layer parameter sl-PSFCH-ToPUCCH, as defined in clause 16.5 of [5, TS 38.213]
- PUCCH resource indicator -3 bits as defined in clause 16.5 of [5, TS 38.213].
- Configuration index - 0 bit if the UE is not configured to monitor DCI format 3_0 with CRC scrambled by SL-CS-RNTI; otherwise 3 bits as defined in clause 8.1.2 of [6, TS 38.214]. If the UE is configured to monitor DCI format 3_0 with CRC scrambled by SL-CS-RNTI, this field is reserved for DCI format 3_0 with CRC scrambled by SL-RNTI.
- Counter sidelink assignment index - 2 bits
- 2 bits as defined in clause 16.5 .2 of [5, TS 38.213] if the UE is configured with pdsch-HARQ-ACKCodebook $=$ dynamic
- 2 bits as defined in clause 16.5 .1 of [5, TS 38.213] if the UE is configured with pdsch-HARQ-ACKCodebook $=$ semi-static
- Padding bits, if required

If multiple transmit resource pools are provided in sl-TxPoolScheduling, zeros shall be appended to the DCI format 3_0 until the payload size is equal to the size of a DCI format 3_0 given by a configuration of the transmit resource pool resulting in the largest number of information bits for DCI format 3_0.

If the UE is configured to monitor DCI format 3_1 and the number of information bits in DCI format 3_0 is less than the payload of DCI format 3_1, zeros shall be appended to DCI format 3_0 until the payload size equals that of DCI format 3_1.

7.3.1.4.2 Format 3_1

DCI format 3_1 is used for scheduling of LTE PSCCH and LTE PSSCH in one cell.
The following information is transmitted by means of the DCI format 3_1 with CRC scrambled by SL Semi-Persistent Scheduling V-RNTI:

- Timing offset - 3 bits determined by higher layer parameter sl-TimeOffsetEUTRA, as defined in clause 16.6 of [5, TS 38.213]
- Carrier indicator -3 bits as defined in 5.3.3.1.9A of [11, TS 36.212].
- Lowest index of the subchannel allocation to the initial transmission - $\left[\log _{2}\left(N_{\text {subchannel }}^{\mathrm{SL}}\right) \rrbracket\right.$ bits as defined in 5.3.3.1.9A of [11, TS 36.212].
- Frequency resource location of initial transmission and retransmission, as defined in 5.3.3.1.9A of [11, TS 36.212]
- Time gap between initial transmission and retransmission, as defined in 5.3.3.1.9A of [11, TS 36.212]
- \quad SL index - 2 bits as defined in 5.3.3.1.9A of [11, TS 36.212]
- \quad SL SPS configuration index -3 bits as defined in clause 5.3.3.1.9A of [11, TS 36.212].
- Activation/release indication - 1 bit as defined in clause 5.3.3.1.9A of [11, TS 36.212].

If the UE is configured to monitor DCI format $3 _0$ and the number of information bits in DCI format $3 _1$ is less than the payload of DCI format 3_0, zeros shall be appended to DCI format $3 _1$ until the payload size equals that of DCI format 3_0.

7.3.2 CRC attachment

Error detection is provided on DCI transmissions through a Cyclic Redundancy Check (CRC).
The entire payload is used to calculate the CRC parity bits. Denote the bits of the payload by $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{A-1}$, and the parity bits by $p_{0}, p_{1}, p_{2}, p_{3}, \ldots, p_{L-1}$, where A is the payload size and L is the number of parity bits. Let $a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a^{\prime}{ }_{A+L-1}$ be a bit sequence such that $a_{i}^{\prime}=1$ for $i=0,1, \ldots, L-1$ and $a_{i}^{\prime}=a_{i-L}$ for $i=L, L+1, \ldots, A+L-1$. The parity bits are computed with input bit sequence $a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a^{\prime}{ }_{A+L-1}$ and attached according to Clause 5.1 by setting L to 24 bits and using the generator polynomial $g_{\text {CRC24C }}(D)$. The output bit $b_{0}, b_{1}, b_{2}, b_{3}, \ldots, b_{K-1}$ is

$$
\begin{array}{ll}
b_{k}=a_{k} \quad \text { for } \quad k=0,1,2, \ldots, A-1 \\
b_{k}=p_{k-A} & \text { for } \quad k=A, A+1, A+2, \ldots, A+L-1
\end{array}
$$

where $K=A+L$.
After attachment, the CRC parity bits are scrambled with the corresponding RNTI $X_{\text {rnti, } 0}, X_{\text {rnti, } 1}, \ldots, X_{\text {rnti,15 }}$, where
$X_{\text {rnti, } 0}$ corresponds to the MSB of the RNTI, to form the sequence of bits $C_{0}, C_{1}, C_{2}, C_{3}, \ldots, C_{K-1}$. The relation between c_{k} and b_{k} is:

$$
\begin{aligned}
& c_{k}=b_{k} \quad \text { for } k=0,1,2, \ldots, \quad A+7 \\
& c_{k}=\left(b_{k}+x_{r n t i, k-A-8}\right) \bmod 2 \quad \text { for } k=A+8, A+9, A+10, \ldots, A+23 .
\end{aligned}
$$

7.3.3 Channel coding

Information bits are delivered to the channel coding block. They are denoted by $\quad c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{K-1}$, where K is the number of bits, and they are encoded via Polar coding according to Clause 5.3.1, by setting $n_{\max }=9, I_{I L}=1$,

$$
n_{P C}=0 \text {, and } n_{P C}^{w m}=0
$$

After encoding the bits are denoted by $d_{0}, d_{1}, d_{2}, d_{3}, \ldots, d_{N-1}$, where N is the number of coded bits.

7.3.4 Rate matching

The input bit sequence to rate matching is $d_{0}, d_{1}, d_{2}, \ldots, d_{N-1}$.
Rate matching is performed according to Clause 5.4 .1 by setting $\quad I_{B I L}=0$
The output bit sequence after rate matching is denoted as $f_{0}, f_{1}, f_{2}, \ldots, f_{E-1}$.

8 Sidelink transport channels and control information 8.1 Sidelink broadcast channel

The processing for SL-BCH transport channel follows the BCH according to clause 7.1, with the following changes:

- Clause 7.1.1 for PBCH payload generation is replaced by Clause 8.1.1.
- Clause 7.1.2 for scrambling is not performed.
- In clause 7.1.5, the rate matching output sequence length $\mathrm{E}=1386$ when higher layer parameter cyclicPrefix is configured, otherwise, $\mathrm{E}=1782$.

8.1.1 PSBCH payload generation

8.2 Sidelink shared channel

The processing for SL-SCH transport channel follows the UL-SCH according to clause 6.2, with the following changes:

- Rate matching of SL-SCH follows the rate matching according to clause 6.2 .5 by setting $I_{\text {LBRM }}=0$
- Clause 6.2.7 is replaced by clause 8.2.1

8.2.1 Data and control multiplexing

Denote the coded bits for SL-SCH as $g_{0}^{S L-S C H}, g_{1}^{S L-S C H}, g_{2}^{S L-S C H}, g_{3}^{S L-S C H}, \cdots, g_{G^{S L-S C H}-1}^{S L-S C H}$.
Denote the coded bits for the $2^{\text {nd }}$-stage SCI, as $g_{0}^{\text {SCI2 }}, g_{1}^{\text {SCI2 }}, g_{2}^{\text {SCI2 } 2}, g_{3}^{\text {SCI2 }}, \cdots, g_{G^{S C I 2}-1}^{S I 2}$.
Denote the multiplexed data and control coded bit sequence as $g_{0}, g_{1}, \cdots, g_{G-1}$, where G is the total number of coded bits for transmission.

Assuming that N_{L} is the number of layers onto which the SL-SCH transport block is mapped, the multiplexed data and control coded bit sequence $g_{0}, g_{1}, \cdots, g_{G-1}$ is obtained as follows:

Denote $Q_{m}^{S C I 2}$ is modulation order of the $2^{\text {nd }}$-stage SCI.
if $\quad N_{L}=1$,

$$
\text { for } i=0 \text { to } G^{S C I 2}+G^{S L-S C H}-1
$$

if $0 \leq i<G^{S C I 2}$

$$
g_{i}=g_{i}^{S C I 2}
$$

end if
if $\quad G^{S C I 2} \leq i \leq G^{S C I 2}+G^{S L-S C H}-1$

$$
g_{i}=g_{i-G^{\text {cliz }}}^{\text {SL-SCH }}
$$

end if
end for
end if
if $\quad N_{L}=2$,
let $\quad M_{\text {count }, \text { SII } 2}^{\Re}=G^{\text {SCI2 }} / Q_{m}^{\text {SCI2 }}$
set $m_{\text {count }}^{\Re}=0$
for $i=0$ to $M_{\text {count }, S C 12}^{\Re}-1$

$$
\text { for } v=0 \text { to } N_{L}-1
$$

$$
\text { for } q=0 \text { to } Q_{m}^{\text {SCI2 }}-1
$$

$$
\text { if } \quad v=0
$$

$$
g_{m_{\text {ount }}^{n \prime \prime}}=g_{i \cdot Q_{m}^{s c l 2}+q}^{S C I 2}
$$

else

$$
g_{m_{\text {comex }}^{n}}=x \quad / / \text { placeholder bit }
$$

end if

$$
m_{\text {count }}^{\Re}=m_{\text {count }}^{\Re}+1
$$

end for
end for
end for
for $i=0$ to $G^{S L-S C H}-1$

$$
\begin{aligned}
& g_{m_{\text {coum }}^{\Re}}=g_{i}^{\text {SL-SCH }} \\
& m_{\text {count }}^{\Re}=m_{\text {count }}^{\Re}+1
\end{aligned}
$$

end for
end if

8.3 Sidelink control information on PSCCH

SCI carried on PSCCH is a $1^{\text {stt }}$-stage SCI, which transports sidelink scheduling information.

8.3.1 $\quad 1^{\text {stt-stage }}$ SCI formats

The fields defined in each of the $1^{\text {st }}$-stage SCI formats below are mapped to the information bits a_{0} to a_{A-1} as follows:

Each field is mapped in the order in which it appears in the description, with the first field mapped to the lowest order information bit $\quad a_{0}$ and each successive field mapped to higher order information bits. The most significant bit of each field is mapped to the lowest order information bit for that field, e.g. the most significant bit of the first field is mapped to a_{0}.

8.3.1.1 SCI format 1-A

SCI format 1-A is used for the scheduling of PSSCH and $2^{\text {nd }}$-stage-SCI on PSSCH
The following information is transmitted by means of the SCI format 1-A:

- Priority - 3 bits as specified in clause 5.4.3.3 of [12, TS 23.287] and clause 5.22.1.3.1 of [8, TS 38.321].
- Frequency resource assignment $-\quad\left\lceil\log _{2}\left(\frac{\mathrm{~N}_{\text {subChannel }}^{\text {SL }}\left(\mathrm{N}_{\text {subChannel }}^{\mathrm{SL}}+1\right)}{2}\right)\right\rceil$ bits when the value of the higher layer parameter sl-MaxNumPerReserve is configured to 2; otherwise
$\left\lceil\log _{2}\left(\frac{\mathrm{~N}_{\text {subChannel }}^{\mathrm{SL}}\left(\mathrm{N}_{\text {subChannel }}^{\mathrm{SL}}+1\right)\left(2 \mathrm{~N}_{\text {subChannel }}^{\mathrm{SL}}+1\right)}{6}\right)\right\rceil \quad$ bits when the value of the higher layer parameter sl-MaxNumPerReserve is configured to 3, as defined in clause 8.1.5 of [6, TS 38.214].
- Time resource assignment - 5 bits when the value of the higher layer parameter sl-MaxNumPerReserve is configured to 2 ; otherwise 9 bits when the value of the higher layer parameter sl-MaxNumPerReserve is configured to 3 , as defined in clause 8.1.5 of [6, TS 38.214].
- Resource reservation period - $\left\lceil\log _{2} N_{r s v_{\text {period }}}\right]$ bits as defined in clause 16.4 of [5, TS 38.213], where $N_{r s v_{\text {period }}}$ is the number of entries in the higher layer parameter sl-ResourceReservePeriodList, if higher layer parameter sl-MultiReserveResource is configured; 0 bit otherwise.
- DMRS pattern - $\left\lceil\log _{2} N_{\text {pattern }}\right\rceil$ bits as defined in clause 8.4.1.1.2 of [4, TS 38.211], where $\quad N_{\text {pattern }}$ is the number of DMRS patterns configured by higher layer parameter sl-PSSCH-DMRS-TimePatternList.
- $\quad 2^{\text {nd }}$-stage SCI format -2 bits as defined in Table 8.3.1.1-1.
- Beta_offset indicator - 2 bits as provided by higher layer parameter sl-BetaOffsets2ndSCI and Table 8.3.1.1-2.
- Number of DMRS port - 1 bit as defined in Table 8.3.1.1-3.
- Modulation and coding scheme - 5 bits as defined in clause 8.1.3 of [6, TS 38.214].
- Additional MCS table indicator - as defined in clause 8.1.3.1 of [6, TS 38.214]: 1 bit if one MCS table is configured by higher layer parameter sl-Additional-MCS-Table; 2 bits if two MCS tables are configured by higher layer parameter sl- Additional-MCS-Table; 0 bit otherwise.
- PSFCH overhead indication - 1 bit as defined clause 8.1.3.2 of [6, TS 38.214] if higher layer parameter sl-PSFCH-Period $=2$ or 4; 0 bit otherwise.
- Reserved - a number of bits as determined by higher layer parameter sl-NumReservedBits, with value set to zero.

Table 8.3.1.1-1: $\mathbf{2}^{\text {nd }}$-stage SCI formats

Value of 2nd-stage SCI format field	2nd-stage SCI format
00	SCI format 2-A
01	SCI format 2-B
10	Reserved
11	Reserved

Table 8.3.1.1-2: Mapping of Beta_offset indicator values to indexes in Table 9.3-2 of [5, TS38.213]

Value of Beta_offset indicator	Beta_offset index in Table 9.3-2 of [5, TS38.213]
00	1st index provided by higher layer parameter sl-
BetaOffsets2ndSCl	

Table 8.3.1.1-3: Number of DMRS port(s)

Value of the Number of DMRS port field	Antenna ports
0	1000
1	1000 and 1001

8.3.2 CRC attachment

CRC attachement is performed according to clause 7.3.2 except that scrambling is not performed.

8.3.3 Channel coding

Channel coding is performed according to clause 7.3.3.

8.3.4 Rate Matching

Rate matching is performed according to clause 7.3.4.

8.4 Sidelink control information on PSSCH

SCI carried on PSSCH is a $2^{\text {nd }}$-stage SCI, which transports sidelink scheduling information.

8.4.1 $\quad 2^{\text {nd }}$-stage SCl formats

The fields defined in each of the $2^{\text {nd }}$-stage SCI formats below are mapped to the information bits a_{0} to a_{A-1} as follows:

Each field is mapped in the order in which it appears in the description, with the first field mapped to the lowest order information bit a_{0} and each successive field mapped to higher order information bits. The most significant bit of each field is mapped to the lowest order information bit for that field, e.g. the most significant bit of the first field is mapped to a_{0}.

8.4.1.1 SCI format 2-A

SCI format 2-A is used for the decoding of PSSCH, with HARQ operation when HARQ-ACK information includes ACK or NACK, when HARQ-ACK information includes only NACK, or when there is no feedback of HARQ-ACK information.

The following information is transmitted by means of the SCI format 2-A:

- HARQ process number - 4 bits as defined in clause 16.4 of [5, TS 38.213].
- New data indicator -1 bit as defined in clause 16.4 of [5, TS 38.213].
- Redundancy version - 2 bits as defined in clause 16.4 of [6, TS 38.214].
- \quad Source ID - 8 bits as defined in clause 8.1 of [6, TS 38.214].
- Destination ID - 16 bits as defined in clause 8.1 of [6, TS 38.214].
- HARQ feedback enabled/disabled indicator - 1 bit as defined in clause 16.3 of [5, TS 38.213].
- Cast type indicator - 2 bits as defined in Table 8.4.1.1-1.
- CSI request - 1 bit as defined in clause 8.2.1 of [6, TS 38.214].

Table 8.4.1.1-1: Cast type indicator

Value of Cast type indicator	Cast type
00	Broadcast
01	when HARQ-ACK information includes ACK or NACK
10	Unicast
11	Groupcast when HARQ-ACK information includes only NACK

8.4.1.2 SCI format 2-B

SCI format 2-B is used for the decoding of PSSCH, with HARQ operation when HARQ-ACK information includes only NACK, or when there is no feedback of HARQ-ACK information.

The following information is transmitted by means of the SCI format 2-B:

- HARQ process number - 4 bits as defined in clause 16.4 of [5, TS 38.213].
- New data indicator -1 bit as defined in clause 16.4 of [5, TS 38.213].
- Redundancy version - 2 bits as defined in clause 16.4 of [6, TS 38.214].
- \quad Source ID - 8 bits as defined in clause 8.1 of [6, TS 38.214].
- Destination ID - 16 bits as defined in clause 8.1 of [6, TS 38.214].
- HARQ feedback enabled/disabled indicator - 1 bit as defined in clause 16.3 of [5, TS 38.213].
- Zone ID - 12 bits as defined in clause 5.8.11 of [9, TS 38.331].
- Communication range requirement - 4 bits determined by higher layer parameter sl-ZoneConfigMCR-Index.

8.4.2 CRC attachment

CRC attachment is performed according to clause 7.3.2 except that scrambling is not performed.

8.4.3 Channel coding

Channel coding is performed according to clause 7.3.3.

8.4.4 Rate Matching

For $2^{\text {nd }}-$ stage SCI transmission on PSSCH with SL-SCH, the number of coded modulation symbols generated for $2^{\text {nd }}-$ stage SCI transmission prior to duplication for the 2nd layer if present, denoted as $Q_{S C I 2}^{\prime}$, is determined as follows:
where

- $O_{\text {SCI2 }}$ is the number of the $2^{\text {nd }}$-stage SCI bits
- $\quad L_{\text {SCI2 }}$ is the number of CRC bits for the $2^{\text {nd }}$-Stage SCI, which is 24 bits.
- $\quad \beta_{\text {offsert }}^{\text {SCI }}$ is indicated in the corresponding $1^{\text {st-stage SCI. }}$
- $\quad M_{s c}^{\text {PSSCH }}(I)$ is the scheduled bandwidth of PSSCH transmission, expressed as a number of subcarriers.
- $\quad M_{s c}^{P S C C H}(l)$ is the number of subcarriers in OFDM symbol l that carry PSCCH and PSCCH DMRS associated with the PSSCH transmission.
- $\quad M_{s c}^{S C I 2}(l)$ is the number of resource elements that can be used for transmission of the $2^{\text {nd }}$-stage SCI in OFDM symbol l, for $l=0,1,2 \cdots, N_{\text {symbol }}^{\text {PSCH }}-1$ and for $N_{\text {symbol }}^{\text {PSCH }}=N_{\text {symb }}^{\text {sh }}-N_{\text {symb }}^{\text {PFCH }}$, in PSSCH transmission, where $N_{\text {symb }}^{\text {sh }} N_{\text {symb }}^{\text {slot }}=$ sl-lengthSymbols - 2 , where sl-lengthSymbols is the number of sidelink symbols within the slot provided by higher layers as defined in [6, TS 38.214]. If higher layer parameter sl-PSFCH-Period $=2$ or 4, $\quad N_{\text {symb }}^{\text {PSFH }}=3$ if "PSFCH overhead indication" field of SCI format 1-A indicates " 1 ", and $\quad N_{\text {symb }}^{\text {PSCH }}=0$ otherwise. If higher layer parameter sl-PSFCH-Period $=0, \quad N_{\text {symb }}^{\text {PSFCH }}=0$. If higher layer parameter sl-PSFCH-Period is $1, \quad N_{\text {symb }}^{\text {PSFCH }}=3$.
- $M_{s c}^{S C I 2}(l)=M_{s c}^{\text {PSSCH }}(l)-M_{s c}^{\text {PSCCH }}(l)$
- $\quad \gamma$ is the number of vacant resource elements in the resource block to which the last coded symbol of the $2^{\text {nd }}$ stage SCI belongs.
- $\quad R$ is the coding rate as indicated by "Modulation and coding scheme" field in SCI format 1-A.
- α is configured by higher layer parameter sl-Scaling.

The input bit sequence to rate matching is $d_{0}, d_{1}, d_{2}, d_{3}, \cdots, d_{N-1}$, where $\quad N$ is the number of coded bits.
Rate matching is performed according to Clause 5.4 .1 by setting $I_{B I L}=1$.
The output bit sequence after rate matching is denoted as $g_{0}^{\text {SCI2 }}, g_{1}^{\text {SCI2 }}, g_{2}^{\text {SCI2 }}, g_{3}^{\text {SCI2 }}, \cdots, g_{G^{\text {SCl2 }}-1}^{\text {SCI }}$, where $G^{S C I 2}=Q_{S C I 2}^{\prime} \cdot Q_{m}^{S C I 2}$ and $Q_{m}^{S C I 2} \quad$ is modulation order of the $2^{\text {nd }}$-stage SCI. A UE is not expected to have $G^{S C I 2}>4096$.

8.4.5 Multiplexing of coded $2^{\text {nd }}$-stage SCI bits to PSSCH

The coded $2^{\text {nd }}$-stage SCI bits are multiplexed onto PSSCH according to the procedures in Clause 8.2.1.

Annex A:

Change history

Change history							
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New version
2017-05	RAN1\#89	R1-1707082				Draft skeleton	0.0.0
2017-07	AH_NR2	R1-1712014				Inclusion of LDPC related agreements	0.0.1
2017-08	RAN1\#90	R1-1714564				Inclusion of Polar coding related agreements	0.0.2
2017-08	RAN1\#90	R1-1714659				Endorsed version by RAN1\#90 as basis for further updates	0.1.0
2017-09	RAN1\#90	R1-1715322				Capturing additional agreements on LDPC and Polar code from RAN1 \#90	0.1.1
2017-09	RAN\#77	RP-171991				For information to plenary	1.0.0
2017-09	RAN1\#90b	R1-1716928				Capturing additional agreements on LDPC and Polar code from RAN1 NR AH\#3	1.0.1
2017-10	RAN1\#90b	R1-1719106				Endorsed as v1.1.0	1.1.0
2017-11	RAN1\#91	R1-1719225				Capturing additional agreements on channel coding, etc.	1.1.1
2017-11	RAN1\#91	R1-1719245				Capturing additional agreements on DCI format, channel coding, etc.	1.1.2
2017-11	RAN1\#91	R1-1721049				Endorsed as v1.2.0	1.2.0
2017-12	RAN1\#91	R1-1721342				Capturing additional agreements on $\mathrm{UCl}, \mathrm{DCI}$, channel coding, etc.	1.2.1
2017-12	RAN\#78	RP-172668				Endorsed version for approval by plenary.	2.0.0
2017-12	RAN\#78					Approved by plenary - Rel-15 spec under change control	15.0.0
2018-03	RAN\#79	RP-180200	0001	-	F	CR capturing the Jan18 ad-hoc and RAN1\#92 meeting agreements	15.1.0
2018-04	RAN\#79					MCC: correction of typo in DCI format 0_1 (time domain resource assignment) - higher layer parameter should be puschAllocationList	15.1.1
2018-06	RAN\#80	RP-181172	0002	1	F	CR to 38.212 capturing the RAN1\#92bis and RAN1\#93 meeting agreements	15.2.0
2018-06	RAN\#80	RP-181257	0003	-	B	CR to 38.212 capturing the RAN1\#92bis and RAN1\#93 meeting agreements related to URLLC	15.2.0
2018-09	RAN\#81	RP-181789	0004	-	F	CR to 38.212 capturing the RAN1\#94 meeting agreements	15.3.0
2018-12	RAN\#82	RP-182523	0005	3	F	Combined CR of all essential corrections to 38.212 from RAN1\#94bis and RAN1\#95	15.4.0
2019-03	RAN\#83	RP-190448	0006	-	F	Correction of wrong implementation on frequency domain resource assignment bitwidth	15.5.0
2019-03	RAN\#83	RP-190448	0008	-	F	Correction to UCI multiplexing	15.5.0
2019-03	RAN\#83	RP-190448	0009	-	F	Correction on DCI format 2_3 for SUL cell in TS 38.212	15.5.0
2019-03	RAN\#83	RP-190448	0010	-	F	Corrections to TS38.212	15.5.0
2019-03	RAN\#83	RP-190448	0011	-	F	On bitwidth calculation for DCI fields using RRC parameter indicating maximum number of MIMO layers per serving cell	15.5.0
2019-03	RAN\#83	RP-190448	0012	-	F	CR on zero-padding of DCI 1 _ 1 in cross-carrier scheduling case	15.5.0
2019-03	RAN\#83	RP-190448	0013	-	F	Clarification on UL_SUL indicator field and SRS request field	15.5.0
2019-06	RAN\#84	RP-191282	0014	-	F	CR on correction to bitwidth of NNZC indicator	15.6 .0
2019-06	RAN\#84	RP-191282	0015	-	F	Correction on DCI size alignment in TS 38.212	15.6 .0
2019-06	RAN\#84	RP-191282	0016	-	F	Correction on UL/SUL indicator in DCI format 0_0	15.6 .0
2019-06	RAN\#84	RP-191282	0017	-	F	Corrections to 38.212 including alignment of terminology across specifications	15.6.0
2019-06	RAN\#84	RP-191282	0018	-	F	CR on maximum modulation order configured for serving cell	15.6 .0
2019-06	RAN\#84	RP-191282	0019	1	F	Corrections to 38.212 including alignment of terminology across specifications from RAN1\#97	15.6.0
2019-09	RAN\#85	RP-191941	0020	-	F	Corrections to 38.212 including alignment of terminology across specifications in RAN1\#98	15.7.0
2019-12	RAN\#86	RP-192625	0021	-	F	CR on UL/SUL indicator in DCI format 0_1	15.8.0
2019-12	RAN\#86	RP-192625	0022	-	F	Corrections to 38.212 including alignment of terminology across specifications in RAN1\#98bis and RAN1\#99	15.8.0
2019-12	RAN\#86	RP-192636	0023	-	B	Introduction of NR based access to unlicensed spectrum into 38.212	16.0.0
2019-12	RAN\#86	RP-192637	0024	-	B	Introduction of IAB into 38.212	16.0.0
2019-12	RAN\#86	RP-192638	0025	-	B	Introduction of 5G V2X sidelink features into TS 38.212	16.0.0
2019-12	RAN\#86	RP-192639	0026	-	B	Introduction of Physical Layer Enhancements for NR URLLC	16.0.0
2019-12	RAN\#86	RP-192641	0027	-	B	Introduction of Enhancements on NR MIMO	16.0.0

2019-12	RAN\#86	RP-192642	0028	-	B	Introduction of power saving in 38.212	16.0.0
2019-12	RAN\#86	RP-192645	0029	-	B	Introduction of MR DC/CA	16.0.0
2019-12	RAN\#86	RP-192643	0030	-	B	Introduction of NR positioning suppport	16.0.0
2019-12	RAN\#86	RP-192635	0031	-	B	Introduction of two-step RACH	16.0.0
2020-03	RAN\#87-e	RP-200185	0032	-	F	Corrections for Rel-16 NR-U after RAN1\#100-e	16.1.0
2020-03	RAN\#87-e	RP-200190	0033	-	F	Corrections for NR MIMO after RAN1\#100-e	16.1.0
2020-03	RAN\#87-e	RP-200188	0034	-	F	Corrections for URLLC after RAN1\#100-e	16.1.0
2020-03	RAN\#87-e	RP-200191	0035	-	F	Corrections for power saving after RAN1\#100-e	16.1.0
2020-03	RAN\#87-e	RP-200187	0036	-	F	Corrections on 5G V2X sidelink features after RAN1\#100-e	16.1.0
2020-06	RAN\#88-e	RP-200683	0038	-	A	CR on L1-RSRP report on PUSCH	16.2.0
2020-06	RAN\#88-e	RP-200693	0039	1	F	Corrections for power saving	16.2.0
2020-06	RAN\#88-e	RP-200689	0040	1	F	Corrections on 5G V2X sidelink features after RAN1\#100bis-e and RAN1\#101-e	16.2.0
2020-06	RAN\#88-e	RP-200694	0041	1	F	Corrections in TS 38.212 for NR postioning	16.2.0
2020-06	RAN\#88-e	RP-200692	0042	1	F	Corrections in TS 38.212 for NR MIMO	16.2.0
2020-06	RAN\#88-e	RP-200696	0043	-	F	Corrections for Rel-16 MR-DC/CA after RAN1\#100bis-e	16.2.0
2020-06	RAN\#88-e	RP-200690	0044	1	F	Corrections on NR eURLLC	16.2.0
2020-06	RAN\#88-e	RP-200687	0045	1	F	Corrections for Rel-16 NR-U	16.2.0
2020-06	RAN\#88-e	RP-200688	0046	-	F	Corrections for NR IAB	16.2.0
2020-09	RAN\#89-e	RP-201814	0047	-	F	Correction on UCI bit sequence generation	16.3.0
2020-09	RAN\#89-e	RP-201803	0049	-	A	CR on PTRS for TS 38.212	16.3.0
2020-09	RAN\#89-e	RP-201810	0050	-	F	Alignment of RRC parameter ps-RNTI	16.3.0
2020-09	RAN\#89-e	RP-201813	0051	-	F	CR to 38.212 on RRC parameter alignment for SCell dormancy	16.3.0
2020-09	RAN\#89-e	RP-201807	0052	-	F	Corrections on 5G V2X sidelink features	16.3.0
2020-09	RAN\#89-e	RP-201809	0053	-	F	Corrections to MIMO enhancements	16.3.0
2020-09	RAN\#89-e	RP-201805	0054	-	F	Corrections to MIMO enhancements	16.3.0
2020-09	RAN\#89-e	RP-201808	0055	-	F	Corrections on NR eURLLC	16.3.0
2020-12	RAN\#90-e	RP-202390	0056	-	F	RRC IE name fix to dynamic frequency domain resource allocation type selection (Rel-15 origin)	16.4.0
2020-12	RAN\#90-e	RP-202384	0057	-	F	Correction on Transmission configuration indication in DCI format 1_2	16.4.0
2020-12	RAN\#90-e	RP-202398	0058	-	F	Alignment CR for TS 38.212	16.4.0

